
Model-Driven Development of FlexRay-Based Systems with the Timing
Definition Language (TDL)

Andreas Naderlinger1), Johannes Pletzer1), Wolfgang Pree1,2),
Josef Templ1)

1) preeTEC GmbH,
Nico-Dostal-Str. 6, 5020 Salzburg, Austria

{Andreas.Naderlinger, Johannes.Pletzer, Wolfgang.Pree, Josef.Templ} at preeTEC.com
www.preeTEC.com

2) C. Doppler Laboratory Embedded Software Systems, Univ. Salzburg
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

www.cs.uni-salzburg.at

Abstract

This paper argues that a logical specification of the
timing behavior, which represents the core abstraction
of the Timing Definition Language (TDL), is the key to
significantly reduce the development, maintenance and
integration costs of FlexRay-based systems. We
measured a productivity gain by a factor of 20 and
more with TDL compared to state-of-the-art FlexRay
development methods and tools (see Section 1). We
illustrate how TDL allows the platform-independent
modeling of the timing and functional behavior, and
how we accomplish the automatic platform mapping.
An outlook sketches future research activities.

1. Platform-neutral modeling with TDL

A development methodology that deserves the attribute
model-driven needs to support the platform-neutral
design and simulation of software components. In
other words, model-driven development of embedded
automtotive software requires appropriate domain
abstractions. They allow developers to ignore nasty
details in the process of modeling automotive software
systems. On the one hand, the challenge is to find
abstractions that are high-level so that as many details
as possible can be ignored. On the other hand, these
abstractions must not be too disconnected from the
underlying system so that efficient code can be
generated out of the models.

The Timing Definition Language (TDL) [6, 7, 12]
is a pioneering domain-specific high-level modeling
language for portable and deterministic hard real-time
control systems, such as active rear-steering systems or
x-by-wire systems. A TDL program explicitly specifies

the exact real-time interactions of software components
with each other and the physical world. The TDL
compiler and bus schedule generator automatically
generate the timing code and bus schedule(s) that
ensure that the specified behavior on a given platform
is equivalent to the one in the modeling and simulation
phase, provided the platform offers sufficient
computing and communication resources.
Figure 1 illustrates schematically the consequence of
model-driven development with TDL. In TDL a
component, for example, called M1, is developed once.
The automatic code generators allow the deployment
on any platform with sufficient computing and
communication resources. In case of FlexRay, M1
could be deployed on a FlexRay cluster1 with
Motorola’s PowerPC computing nodes and the real-
time operating system AES from DeComSys [11] or on
a FlexRay cluster2 with MicroAutoBox nodes from
dSpace.

Figure 1. A platform-independent TDL component M1

versus platform-specific components.

This TDL development process is in stark constrast to
state-of-the-art approaches which require the definition
of a platform and a topology as a first step. Then the
software components are tailored to that specific
platform and topology. A platform change, and even a
change of the topology alone, that is, adding or
removing a node, typically implies a development from
scratch. Thus, M1 becomes tightly coupled with the
particular platform: M1a is the software for platform
variant a, M1b for variant b, etc.
We measured how much time it takes to come up with
a system that executes on a FlexRay cluster with the
DESIGNERPRO tool from DeComSys (used by a
developer with in-depth experience with that tool
chain) and compared it with the time it took to solve
the same problem with the TDL tools, again used by a
developer with in-depth experience with the TDL tool
chain. The result is that the development time is 20
times less with TDL compared to the state-of-the-art
approach. This was measured for a simple case study
where only a value is communicated from one node to
another node and then sent back to the original node.
Thus, the bus schedule is fairly simple. For more
complex problems we assume that the TDL approach
might even lead to higher productivity gains compared
to manual scheduling and parameter setting.

Logical Execution Time abstraction. The
programming model of TDL relies on the socalled
Logical Execution Time (LET) [3, 4] abstraction,
invented in the realm of the Giotto project [1, 4, 5] at
the University of California, Berkeley. The inputs of a
periodically executing task are read at the beginning of
the LET period and the newly calculated outputs are
available at the end of the LET period. Between these,
the outputs have the value of the previous execution.
LET means that the observable temporal behavior of a
task is independent from its physical execution. It is
only assumed that physical task execution is fast
enough to fit somewhere within the logical start and
end points.

Figure 2. Schematic representation of a TDL module.

TDL component model. Figure 2 illustrates a TDL
component (= module): a TDL module forms a unit
that consists of sensors, actuators, and modes. A TDL
module typically corresponds to one automotive
system (sometimes refered to as ‘function’) such as an
active rear-steering system. A TDL module is in one
mode at a time. A mode is a set of periodically
executed activities. The activities are task invocations,
actuator updates, and mode switches. All activities can
have their own rate of execution and all activities can
be executed conditionally. The timing definition after
each task’s name is the particular LET. The tasks
represent the functionality, particularly the control
laws. Any suitable language can be chosen to
implement the functionality. If MathWorks’ tools are
used, the task functionality is modeled in
Matlab®/Simulink® from which C code can be
generated.

In TDL actuator updates and mode switches are
considered to be much faster than task invocations,
thus they are executed in logical zero time, whereas
task invocations adhere to the LET semantics. All
communications between tasks and between modules
(not shown in Figure 2) adhere to LET semantics. Note
that TDL modules correspond to parallel automata that
can switch their operation mode independently.

Figure 3. ARS system model with two TDL

components.

Sample TDL components. Figure 3 shows a
sample Matlab®/Simulink® model of an Active Rear
Steering (ARS) system. The ARS system is courtesy of
MagnaSteyr Fahrzeugtechnik [2]. The model consists
of the two TDL modules RearActuatorController and
VehicleDynamics and a subsystem Vehicle that
represents the ‘plant’, that is, the relevant aspects of the
vehicle that needs to be controlled. The TDL module
RearActuatorController controls the DC motor of the
rear axis. The TDL module VehicleDynamics
computes the desired value of the rear steering angle,
based on the following sensor data: the steering angle
of the front wheels, the car speed (both of which are set
by the human driver), and the yaw angle of the car. For
a detailed description of the ARS case study, in
particular how to specify the timing and functionality
for each TDL module we refer to [13].

2. Mapping TDL components to a FlexRay
platform

The principal concept of the platform mapping
results from the fact that a set of TDL modules
modelled in Matlab®/Simulink® can be mapped to
any number of specific platforms. In order to map a set
of TDL modules to a specific platform, the user puts a
Distribution block from the Simulink® Library
Browser to the particular model by dragging it from the
library to the model (see Figure 4). In our example, we
name the block AES-FlexRay platform as we want to
map the two TDL modules to a FlexRay cluster [9]
with the socalled AES operating system [11]. Note that
any number of platform mappings can be defined for a
model. To map the modules, for example, to a FlexRay
cluster from dSpace GmbH, the user would drag
another Distribution block from the Simulink® Library

Figure 4. Adding a Distribution block to the ARS

system model.

Browser, drop it on the model and specify the platform
as well as the particular module-to-node mapping.

A double-click on the TDL Distribution block
opens the TDL:VisualDistributor tool (see Figure 5). It
already contains the TDL modules RearActuator-
Controller and VehicleDynamics defined in the ARS
model where the Distribution block was inserted.

Figure 5. TDL:VisualDistributor tool with the TDL

modules.
In order to assign the TDL modules to nodes of a
platform we need to define the platform first. The
TDL:VisualDistributor offers the editing features to
define the topology and properties of distributed
platforms that are common in the automotive domain.
For a demo video that illustrates how to define a
FlexRay platform we refer to the Web [12]. The
TDL:VisualDistributor can also save and load
platforms. In this case study we assume that a platform
that describes a FlexRay cluster with two MPC5554
nodes as ECUs, each running the AES operating
system, has already been defined. We load that
platform and can then assign the two TDL modules to
the two nodes of that particular FlexRay cluster.

Figure 6. Mapping of TDL modules to ECUs connected

with a FlexRay bus.

The TDL:VisualDistributor accomplishes the
automatic generation of all files that are required to
build the executable(s) for the specific platform. In
case of the FlexRay-AES platform we need, for
example, the platform-independent TDL source code
for modules M1 and M2, the C code (generated with
Real-Time-Workshop Embedded Coder) for each task
function of each TDL module, the FIBEX file
representing the bus schedule, the FlexRay-specific
configurations and the makefiles. For that purpose we
simply choose the Build All menu item in the File
menu (see Figure 7).

Figure 7. Code and bus schedule generation.

After compiling the code and uploading it to each of
the nodes the system behaves as simulated in the
TDL:VisualCreator. As TDL modeling means simply
setting the LET periods of tasks, and as the user does
not have to define a bus schedule and the numerous
FlexRay details, TDL together with the automatic
generators reduces the development effort by a
quantitatively measured factor of 20 and more
compared to state-of-the-art methods and tools, if a
FlexRay-system is developed from scratch.

3. Automatic bus schedule generation

The timing definition, expressed as logical execution
time intervals for each task of a TDL module, is the
starting point for bus schedule generation. If a user
specifies with the TDL:VisualDistributor tool that two
TDL modules execute on separate nodes and if the one
receives information from the other, a generated
schedule is correct if sending and receiving is
accomplished so that the LET semantics is preserved.

One of the challenges when implementing the
automatic mapping of TDL modules to a distributed
platform is to come up with a scalable bus schedule
generator. Remember that each TDL module can
switch its mode independently of other TDL modules.
Due to a combinatorial explosion of bus schedules it
would not be feasible to generate a separate bus
schedule for each combination of modes of a
predefiined set of TDL modules. This section describes
an approach that we have called Dynamic Multiplexing
as basis to come up with a scalable bus schedule
generation algorithm.

Fibex Multiplexing versus Dynamic Multiplexing.
Figure 8a illustrates the known multiplexing concept as
described in the FIBEX standard [8]. We assume that a
frame is sent at three successive times. Each one has
the statically determined switch and data spaces with
exactly the same length and same position within
frame f, no matter when it is sent. Only the contents of
the switch and data spaces can vary.

In the following we call the switch space tag, and
the data space message. They form what we call a tag-
message group. Figure 8b exemplifies Dynamic
Multiplexing. At t1 only one tag-message group is sent
in frame f. At t2 two tag-message groups are sent. The
message in the first tag-message group has a different
size than the message sent at time t1. The message of
the second tag-message group sent at t2 has also a
different size than the message of the first tag-message
group. In an analogous way the tag-message groups
sent in frame f at time t3 differ from each other and the
tag-message groups sent in frame f in the previous time
instances t1 and t2. In other words, the Fibex
multiplexing is only one special case of Dynamic
Multiplexing.

Figure 8. Multiplexing according to the FIBEX standard

(a) versus Dynamic Multiplexing (b).

Preliminaries for bus schedule generation. We
assume that the access to the shared communication
medium is collision free via a TDMA (Time Division
Multiple Access, [9]) approach. Furthermore, we
adhere to the Producer/Consumer model. This means
that the nodes that generate information—the
producers—trigger the sending of information over the
network. The nodes that need the information—the
consumers—do not send any requests to the producers
as it is the case in the Request/Response model.
Mode switch instants per module. LET-based
description languages such as TDL restrict mode
switches such that task invocations are never
interrupted by a mode switch. Thus, mode switches are
said to be harmonic, that is, a mode switch must not
occur during the LET of every task invocation of the
currently active mode. Therefore, the period of a mode
switch must be a multiple of the LCM (least common
multiple) of the period of tasks invoked in this mode.
This check is done during compilation. Furthermore,
the mode period is always a multiple of the periods of
task invocations and mode switches.

For a given module M, we define mspGCDM as the
GCD (greatest common divisor) of mode periods and
mode switch periods in all modes in M. We know that
within the time span [N*mspGCDM ..
(N+1)*mspGCDM] there will not be a mode switch
within module M. In other words, we can express the
mode switch instants as an integer multiple of
mspGCDM.
Bus period. As we generate a static schedule, the size
of the schedule needs to be finite. Thus, the schedule is
repeated periodically. We call the time span covered by
the schedule the bus period.

As each mode in every module may have its
specific communication requirements, an obvious
candidate for the bus period is the longest time span
without a mode switch in any module. Thus we

calculate the bus period as GCD of the mspGCDM of
each module M which communicates on the bus.

Each mode period consists of an integer multiple of
bus periods and we introduce the term phase in order
to distinguish these mutually exclusive parts of a
mode.
Messages. We define the term message as the
collection of all values of the task output ports
produced by a TDL task invocation. Each task
invocation produces one message. Note that if a task is
invoked N times per mode period, N messages are
produced. As an optimization, task output ports that are
not used by any client are ignored. Furthermore, tasks
that are not public or that have no clients produce no
messages.
Each message has individual timing constraints. The
release constraint is the earliest time instant message
sending can be started. The deadline constraint of the
message is the latest time instant when the message
sending must be finished.
Frames per TDL module. In order to use the
communication medium efficiently, we map the
messages of a phase to one or more reserved
communication windows within the bus period such
that these communication windows can be used for all
phases of a module. A reserved communication
window corresponds to a frame, which is the unit of
information to be sent on the bus.
The schedule generator determines the frames and
binds each message to exactly one frame. At run-time,
the phase of a module determines which subset of the
messages bound to a frame is actually sent.

The release (r) constraint of a frame is the
maximum of the release constraints of the bound
messages. The deadline (d) constraint of a frame is the
minimum of the deadline constraints of the bound
messages. The schedule generator guarantees that the
frame size as well as the release and deadline
constraints are sufficient for the communication
requirements of all phases.

4. Status and outlook

The TDL:VisualCreator and TDL:VisualDistributor
tools are available as products. We are currently
implementing the mapping to different specific
FlexRay platforms, including the AUTOSAR-FlexRay
stack. Our research efforts focus on refinements of
incremental bus schedule generation, which allows the
import of existing bus schedules to TDL tools and the
extensions of the bus schedules.

5. References

[1] Giotto Project, embedded.eecs.berkeley.edu/giotto/
[2] Magna Steyr Fahrzeugtechnik: www.MagnaSteyr.com/
[3] C.M. Kirsch, 2002, Principles of Real-Time
Programming. In Proceedings of EMSOFT 2002,Grenoble
LNCS, 2491.
[4] Thomas A. Henzinger, Benjamin Horowitz, and
Christoph M. Kirsch. Embedded control systems
development with Giotto. Proceedings of the International
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), ACM Press, 2001.
[5] T.A. Henzinger, C.M. Kirsch, M.A.A. Sanvido, and W.
Pree. From control models to real-time code using Giotto.
IEEE Control Systems Magazine 23(1):50-64, 2003.
[6] J. Templ, 2007, TDL Specification and Report. Technical
Report, on the Web at http://www.preeTEC.com
[7] E. Farcas, C. Farcas, W. Pree, J. Templ. Transparent
Distribution of Real-Time Components Based on Logical
Execution Time, Proc. of ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), ACM Press, 2005, pages 31-39
[8] FIBEX standard: www.asam.net/
[9] FlexRay standard: www.flexray.com/
[10] AUTOSAR standard: www.autosar.org/
[11] DeComSys GmbH: www.decomsys.com/
[12] preeTEC GmbH: www.preeTEC.com/
[13] W. Pree, J. Templ: Modeling with the Timing Definition
Language (TDL). Automotive Software Workshop San
Diego (ASWSD), 15–17 March 2006.

