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Abstract 
 

This paper argues that a logical specification of the 
timing behavior, which represents the core abstraction 
of the Timing Definition Language (TDL), is the key to 
significantly reduce the development, maintenance and 
integration costs of FlexRay-based systems. We 
measured a productivity gain by a factor of 20 and 
more with TDL compared to state-of-the-art FlexRay 
development methods and tools (see Section 1). We 
illustrate how TDL allows the platform-independent 
modeling of the timing and functional behavior, and 
how we accomplish the automatic platform mapping. 
An outlook sketches future research activities.  
 
1. Platform-neutral modeling with TDL 
 
A development methodology that deserves the attribute 
model-driven needs to support the platform-neutral 
design and simulation of software components. In 
other words, model-driven development of embedded 
automtotive software requires appropriate domain 
abstractions. They allow developers to ignore nasty 
details in the process of modeling automotive software 
systems. On the one hand,  the challenge is to find 
abstractions that are high-level so that as many details 
as possible can be ignored. On the other hand, these 
abstractions must not be too disconnected from the 
underlying system so that efficient code can be 
generated out of the models.  

The Timing Definition Language (TDL) [6, 7, 12] 
is a pioneering domain-specific high-level modeling 
language for portable and deterministic hard real-time 
control systems, such as active rear-steering systems or 
x-by-wire systems. A TDL program explicitly specifies 

the exact real-time interactions of software components 
with each other and the physical world. The TDL 
compiler and bus schedule generator automatically 
generate the timing code and bus schedule(s) that 
ensure that the specified behavior on a given platform 
is equivalent to the one in the modeling and simulation 
phase, provided the platform offers sufficient 
computing and communication resources. 
Figure 1 illustrates schematically the consequence of 
model-driven development with TDL. In TDL a 
component, for example, called M1, is developed once. 
The automatic code generators allow the deployment 
on any platform with sufficient computing and 
communication resources. In case of FlexRay, M1 
could be deployed on a FlexRay cluster1 with 
Motorola’s PowerPC computing nodes and the real-
time operating system AES from DeComSys [11] or on 
a FlexRay cluster2 with MicroAutoBox nodes from 
dSpace. 
 

 
Figure 1.  A platform-independent TDL component M1 

versus platform-specific components. 
 



This TDL development process is in stark constrast to 
state-of-the-art approaches which require the definition 
of a platform and a topology as a first step. Then the 
software components are tailored to that specific 
platform and topology. A platform change, and even a 
change of the topology alone, that is, adding or 
removing a node, typically implies a development from 
scratch. Thus, M1 becomes tightly coupled with the 
particular platform: M1a is the software for platform 
variant a, M1b for variant b, etc. 
We measured how much time it takes to come up with 
a system that executes on a FlexRay cluster with the 
DESIGNERPRO tool from DeComSys (used by a 
developer with in-depth experience with that tool 
chain) and compared it with the time it took to solve 
the same problem with the TDL tools, again used by a 
developer with in-depth experience with the TDL tool 
chain. The result is that the development time is 20 
times less with TDL compared to the state-of-the-art 
approach. This was measured for a simple case study 
where only a value is communicated from one node to 
another node and then sent back to the original node. 
Thus, the bus schedule is fairly simple. For more 
complex problems we assume that the TDL approach 
might even lead to higher productivity gains compared 
to manual scheduling and parameter setting. 
 

Logical Execution Time abstraction. The 
programming model of TDL relies on the socalled 
Logical Execution Time (LET) [3, 4] abstraction, 
invented in the realm of the Giotto project  [1, 4, 5] at 
the University of California, Berkeley. The inputs of a 
periodically executing task are read at the beginning of 
the LET period and the newly calculated outputs are 
available at the end of the LET period. Between these, 
the outputs have the value of the previous execution. 
LET means that the observable temporal behavior of a 
task is independent from its physical execution. It is 
only assumed that physical task execution is fast 
enough to fit somewhere within the logical start and 
end points. 

 
Figure 2.  Schematic representation of a TDL module. 

TDL component model. Figure 2 illustrates a TDL 
component (= module): a TDL module forms a unit 
that consists of sensors, actuators, and modes. A TDL 
module typically corresponds to one automotive 
system (sometimes refered to as ‘function’) such as an 
active rear-steering system. A TDL module is in one 
mode at a time. A mode is a set of periodically 
executed activities. The activities are task invocations, 
actuator updates, and mode switches. All activities can 
have their own rate of execution and all activities can 
be executed conditionally. The timing definition after 
each task’s name is the particular LET. The tasks 
represent the functionality, particularly the control 
laws. Any suitable language can be chosen to 
implement the functionality. If MathWorks’ tools are 
used, the task functionality is modeled in 
Matlab®/Simulink® from which C code can be 
generated. 

In TDL actuator updates and mode switches are 
considered to be much faster than task invocations, 
thus they are executed in logical zero time, whereas 
task invocations adhere to the LET semantics. All 
communications between tasks and between modules 
(not shown in Figure 2) adhere to LET semantics. Note 
that TDL modules correspond to parallel automata that 
can switch their operation mode independently. 
 



 
Figure 3. ARS system model with two TDL 

components. 

Sample TDL components. Figure 3 shows a 
sample Matlab®/Simulink® model of an Active Rear 
Steering (ARS) system. The ARS system is courtesy of 
MagnaSteyr Fahrzeugtechnik [2]. The model consists 
of the two TDL modules RearActuatorController and 
VehicleDynamics and a subsystem Vehicle that 
represents the ‘plant’, that is, the relevant aspects of the 
vehicle that needs to be controlled. The TDL module 
RearActuatorController controls the DC motor of the 
rear axis. The TDL module VehicleDynamics 
computes the desired value of the rear steering angle, 
based on the following sensor data: the steering angle 
of the front wheels, the car speed (both of which are set 
by the human driver), and the yaw angle of the car. For 
a detailed description of the ARS case study, in 
particular how to specify the timing and functionality 
for each TDL module we refer to [13]. 
 
2. Mapping TDL components to a FlexRay 
platform 
 

The principal concept of the platform mapping 
results from the fact that a set of TDL modules 
modelled in Matlab®/Simulink® can be mapped to 
any number of specific platforms. In order to map a set 
of TDL modules to a specific platform, the user puts a 
Distribution block from the Simulink® Library 
Browser to the particular model by dragging it from the 
library to the model (see Figure 4). In our example, we 
name the block AES-FlexRay platform as we want to 
map the two TDL modules to a FlexRay cluster [9] 
with the socalled AES operating system [11]. Note that 
any number of platform mappings can be defined for a 
model. To map the modules, for example, to a FlexRay 
cluster from dSpace GmbH, the user would drag 
another Distribution block from the Simulink® Library  

 

 
Figure 4. Adding a Distribution block to the ARS 

system model. 

Browser, drop it on the model and specify the platform 
as well as the particular module-to-node mapping. 

A double-click on the TDL Distribution block 
opens the TDL:VisualDistributor tool (see Figure 5). It 
already contains the TDL modules RearActuator-
Controller and VehicleDynamics defined in the ARS 
model where the Distribution block was inserted. 

 
Figure 5. TDL:VisualDistributor tool with the TDL 

modules. 
In order to assign the TDL modules to nodes of a 
platform we need to define the platform first. The 
TDL:VisualDistributor offers the editing features to 
define the topology and properties of distributed 
platforms that are common in the automotive domain. 
For a demo video that illustrates how to define a 
FlexRay platform we refer to the Web [12]. The 
TDL:VisualDistributor can also save and load 
platforms. In this case study we assume that a platform 
that describes a FlexRay cluster with two MPC5554 
nodes as ECUs, each running the AES operating 
system, has already been defined.  We load that 
platform and can then assign the two TDL modules to 
the two nodes of that particular FlexRay cluster. 



 
Figure 6. Mapping of TDL modules to ECUs connected 

with a FlexRay bus. 

The TDL:VisualDistributor accomplishes the 
automatic generation of all files that are required to 
build the executable(s) for the specific platform. In 
case of the FlexRay-AES platform we need, for 
example, the platform-independent TDL source code 
for modules M1 and M2, the C code (generated with 
Real-Time-Workshop Embedded Coder) for each task 
function of each TDL module, the FIBEX file 
representing the bus schedule, the FlexRay-specific 
configurations and the makefiles. For that purpose we 
simply choose the Build All menu item in the File 
menu (see Figure 7). 

 
Figure 7. Code and bus schedule generation. 

After compiling the code and uploading it to each of 
the nodes the system behaves as simulated in the 
TDL:VisualCreator. As TDL modeling means simply 
setting the LET periods of tasks, and as the user does 
not have to define a bus schedule and the numerous 
FlexRay details, TDL together with the automatic 
generators reduces the development effort by a 
quantitatively measured factor of 20 and more 
compared to state-of-the-art methods and tools, if a 
FlexRay-system is developed from scratch. 

 

3. Automatic bus schedule generation 
 
The timing definition, expressed as logical execution 
time intervals for each task of a TDL module, is the 
starting point for bus schedule generation. If a user 
specifies with the TDL:VisualDistributor tool that two 
TDL modules execute on separate nodes and if the one 
receives information from the other, a generated 
schedule is correct if sending and receiving is 
accomplished so that the LET semantics is preserved.  

One of the challenges when implementing the 
automatic mapping of TDL modules to a distributed 
platform is to come up with a scalable bus schedule 
generator. Remember that each TDL module can 
switch its mode independently of other TDL modules. 
Due to a combinatorial explosion of bus schedules it 
would not be feasible to generate a separate bus 
schedule for each combination of modes of a 
predefiined set of TDL modules. This section describes 
an approach that we have called Dynamic Multiplexing 
as basis to come up with a scalable bus schedule 
generation algorithm. 
 
Fibex Multiplexing versus Dynamic Multiplexing. 
Figure 8a illustrates the known multiplexing concept as 
described in the FIBEX standard [8]. We assume that a 
frame is sent at three successive times. Each one has 
the statically determined switch and data spaces with 
exactly the same length and same position within 
frame f, no matter when it is sent. Only the contents of 
the switch and data spaces can vary. 

In the following we call the switch space tag, and 
the data space message. They form what we call a tag-
message group. Figure 8b exemplifies Dynamic 
Multiplexing. At t1 only one tag-message group is sent 
in frame f. At t2 two tag-message groups are sent. The 
message in the first tag-message group has a different 
size than the message sent at time t1. The message of 
the second tag-message group sent at t2 has also a 
different size than the message of the first tag-message 
group. In an analogous way the tag-message groups 
sent in frame f at time t3 differ from each other and the 
tag-message groups sent in frame f in the previous time 
instances t1 and t2. In other words, the Fibex 
multiplexing is only one special case of Dynamic 
Multiplexing. 

 



 
Figure 8. Multiplexing according to the FIBEX standard 

(a) versus Dynamic Multiplexing (b). 

Preliminaries for bus schedule generation. We 
assume that the access to the shared communication 
medium is collision free via a TDMA (Time Division 
Multiple Access, [9]) approach. Furthermore, we 
adhere to the Producer/Consumer model. This means 
that the nodes that generate information—the 
producers—trigger the sending of information over the 
network. The nodes that need the information—the 
consumers—do not send any requests to the producers 
as it is the case in the Request/Response model. 
Mode switch instants per module. LET-based 
description languages such as TDL restrict mode 
switches such that task invocations are never 
interrupted by a mode switch. Thus, mode switches are 
said to be harmonic, that is, a mode switch must not 
occur during the LET of every task invocation of the 
currently active mode. Therefore, the period of a mode 
switch must be a multiple of the LCM (least common 
multiple) of the period of tasks invoked in this mode. 
This check is done during compilation. Furthermore, 
the mode period is always a multiple of the periods of 
task invocations and mode switches. 

For a given module M, we define mspGCDM as the 
GCD (greatest common divisor) of mode periods and 
mode switch periods in all modes in M. We know that 
within the time span [N*mspGCDM  .. 
(N+1)*mspGCDM] there will not be a mode switch 
within module M. In other words, we can express the 
mode switch instants as an integer multiple of 
mspGCDM. 
Bus period. As we generate a static schedule, the size 
of the schedule needs to be finite. Thus, the schedule is 
repeated periodically. We call the time span covered by 
the schedule the bus period. 

As each mode in every module may have its 
specific communication requirements, an obvious 
candidate for the bus period is the longest time span 
without a mode switch in any module. Thus we 

calculate the bus period as GCD of the mspGCDM of 
each module M which communicates on the bus.  

Each mode period consists of an integer multiple of 
bus periods and we introduce the term phase in order 
to distinguish these mutually exclusive parts of a 
mode. 
Messages. We define the term message as the 
collection of all values of the task output ports 
produced by a TDL task invocation. Each task 
invocation produces one message. Note that if a task is 
invoked N times per mode period, N messages are 
produced. As an optimization, task output ports that are 
not used by any client are ignored. Furthermore, tasks 
that are not public or that have no clients produce no 
messages. 
Each message has individual timing constraints. The 
release constraint is the earliest time instant message 
sending can be started. The deadline constraint of the 
message is the latest time instant when the message 
sending must be finished.  
Frames per TDL module. In order to use the 
communication medium efficiently, we map the 
messages of a phase to one or more reserved 
communication windows within the bus period such 
that these communication windows can be used for all 
phases of a module. A reserved communication 
window corresponds to a frame, which is the unit of 
information to be sent on the bus. 
The schedule generator determines the frames and 
binds each message to exactly one frame. At run-time, 
the phase of a module determines which subset of the 
messages bound to a frame is actually sent. 

The release (r) constraint of a frame is the 
maximum of the release constraints of the bound 
messages. The deadline (d) constraint of a frame is the 
minimum of the deadline constraints of the bound 
messages. The schedule generator guarantees that the 
frame size as well as the release and deadline 
constraints are sufficient for the communication 
requirements of all phases. 
 
4. Status and outlook 
 
The TDL:VisualCreator and TDL:VisualDistributor 
tools are available as products. We are currently 
implementing the mapping to different specific 
FlexRay platforms, including the AUTOSAR-FlexRay 
stack. Our research efforts focus on refinements of 
incremental bus schedule generation, which allows the 
import of existing bus schedules to TDL tools and the 
extensions of the bus schedules. 
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