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ABSTRACT 
This paper introduces a real-time component model that offers a 
separation of concerns which allows a straight-forward integration 
of independently developed components. So-called transparent 
distribution forms the backbone of the integration process. 
Transparent distribution means that (1) the functional and 
temporal behavior of a system is the same no matter on which 
node of a distributed system a component is executed and (2) the 
developer does not have to care about the differences of local 
versus distributed execution of a component. We first present the 
concepts of a component model for real time systems that is well 
suited for transparent distribution. The component model is based 
on logical execution time, which abstracts from physical 
execution time and thereby from both the execution platform and 
the communication topology. Then we discuss the resulting tool 
chain and integration process. A case study rounds out the paper. 
 
1. INTRODUCTION 
Traditional development of software for embedded systems is 
highly platform specific. The hardware costs are reduced to a 
minimum whereas high development costs are considered 
acceptable in case of large quantities of devices being sold. 
However, with more powerful processors even in the low cost 
range, we observe a shift of functionality from hardware to 
software and in general more ambitious requirements. A luxury 
car, for example, comprises up to 80 electronic control units 
interconnected by multiple buses and driven by more than a 
million lines of code. In order to cope with the increased 
complexity of the resulting software, a more platform independent 
“high-level” programming style becomes mandatory. In case of 
real-time software, this applies not only to functional aspects but 
also to the temporal behavior of the software. Dealing with time, 
however, is not covered appropriately by any of the existing 
component models for high-level languages. 

A particularly promising approach towards a high-level 
component model for real time systems has been laid out in the 
Giotto project [5][12][13][14] by introduction of logical execution 
time (LET), which abstracts from the physical execution time on a 
particular platform and thereby abstracts from both the underlying 
execution platform and the communication topology. Thus, it 
becomes possible to change the underlying platform and even to 

distribute components between different nodes without affecting 
the overall system behavior. Giotto, however, is primarily an 
abstract mathematical concept and there exist only simple 
prototype implementations, which show some of the potential of 
LET. 

This paper presents a component model, named TDL (Timing 
Definition Language) [7], that has been developed in the course of 
the MoDECS1 project at the University of Salzburg, as a 
successor of Giotto. It shares with Giotto the basic idea of LET 
but introduces additional high-level concepts for structuring large 
real time systems. 

In the following, we start with an explanation of LET and proceed 
with an overview of the TDL component model and its associated 
notion of transparent distribution. Then, we sketch the envisioned 
integration process of TDL components. The integration of two 
sample components rounds out the paper. 
 
2. LOGICAL EXECUTION TIME (LET) 
LET means that the observable temporal behavior of a task is 
independent from its physical execution [12]. It is only assumed 
that physical task execution is fast enough to fit somewhere within 
the logical start and end points. Figure 1 shows the relation 
between logical and physical task execution. 
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Figure 1 – Logical Execution Time 

The inputs of a task are read at the release event and the newly 
calculated outputs are available at the terminate event. Between 
these, the outputs have the value of the previous execution. 

LET introduces a delay for observable outputs, which might be 
considered a disadvantage. On the other hand, however, LET 
provides the cornerstone to deterministic behavior, platform 
abstraction and well-defined interaction semantics between 
parallel activities [2]. It is always defined which value is in use at 
which instant and there are no race conditions or priority 
inversions involved. As we will see later, LET also provides the 
foundation for transparent distribution. 

                                                 
1 The MoDECS project (www.MoDECS.cc) is supported by the 
FIT-IT Embedded Systems grant 807144 (www.fit-it.at). 
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Based on the concept of LET, Giotto introduces the notion of a 
mode as a set of periodically executed activities. The activities are 
task invocations (with LET semantics), actuator updates, or mode 
switches. All activities can have their own rate of execution and 
all activities can be executed conditionally. Actuator updates and 
mode switches are considered to be much faster than task 
invocations, thus they are executed in logical zero time. The set of 
all modes reachable from a distinguished start mode constitutes 
the Giotto program. 

For the reader who knows Giotto in more detail, the following list 
summarizes the differences between the original and the successor 
(TDL) that we have created as a platform for real-time component 
development and integration. 

• TDL defines a concrete syntax and a binary e-code file 
format, whereas Giotto is primarily a mathematical 
abstraction of real-time programming based on LET. 

• TDL provides a named top-level program entity (module) 
and a component model based on the notion of modules. We 
shall go into more details of the component model in the 
subsequent chapters. 

• TDL considers modules as units of distribution, whereas 
Giotto envisions to distribute individual tasks. 

• TDL replaces global output ports by task output ports. 
• TDL eliminates mode ports and replaces them by optional 

assignments to task ports upon a mode switch. 
• TDL eliminates explicit task, update, and mode drivers and 

merges them into mode declarations. 
• TDL adds named constants, which may be used to initialize 

ports. 
• TDL introduces units for timing values and uses 

microseconds internally instead of milliseconds. 
• TDL defines program start as mode switch to the start mode 

of a module without any special treatment for program start. 
• TDL disallows non-harmonic mode switches, i.e. mode 

switches must not occur during the logical execution of a 
task. 

• TDL introduces the new e-code instruction SWITCH, which 
is used for performing mode switches. 

• TDL defines deterministic mode switches as the switch to the 
first mode in textual order whose guard evaluates to true 
rather then specifying that only one guard is allowed to 
return true. 

 
3. TDL COMPONENT MODEL 
Our successor of Giotto, named TDL (Timing Definition 
Language), extends the concepts introduced in Giotto by the 
notion of the module, which is a named Giotto program that may 
import other modules and may export some of its own program 
entities to other client modules. Every module may provide its 
own distinguished start mode. Thus, all modules execute in 
parallel or in other words, a TDL application can be seen as the 
parallel composition of a set of TDL modules. It is important to 
note that LET is always preserved, i.e. adding a new module will 
never affect the observable temporal behavior of other modules. It 
is the responsibility of internal scheduling mechanisms to 
guarantee conformance to LET, given that the worst-case 
execution times (wcet) and the execution rates are known for all 
tasks. Figure 2 sketches a sample module with two modes 
containing two cooperating tasks each. 

Parallel tasks within a mode may depend on each other, i.e. the 
output of one task may be used as the input of another task.  All 
tasks are logically executed in sync and the dataflow semantics is 
defined by LET. 

 

Figure 2 – Visual representation of a TDL module 

Modules support an export/import mechanism similar to modern 
general purpose programming languages such as Java or C#. A 
service provider module may export a task’s outputs, which in 
turn may be imported by a client module and used as inputs for 
the client’s computations. All modules are logically executed in 
sync and again the dataflow semantics is defined by LET. 
Modules are a top-level structuring concept that serves multiple 
purposes: (1) a module provides a name space and an 
export/import mechanism and thereby supports decomposition of 
large systems, (2) modules provide parallel composition of real 
time applications, (3) modules serve as units of loading, i.e. a 
runtime system may support dynamic loading and unloading of 
modules, and (4) modules are the natural choice as unit of 
distribution because dataflow within a module (cohesion) will 
most probably be much larger than dataflow across module 
boundaries (adhesion). The possibility to distribute TDL modules 
across different computation nodes leads us to the notion of 
transparent distribution as discussed below. In the following we 
exemplify the syntax of a TDL module. The TDL language report 
[7] describes the language syntax and semantics in detail. 

TDL module. The module construct starts with the keword 
module followed by the name of the module and a pair of curly 
brackets, which represent the namespace introduced by the 
module. The following example shows the skeleton of a module. 

  module EngineControl { 
      // TDL code consisting of sensor, actuator, task, 
      // and mode declarations 
  } 

In order to provide for globally unique module names by prefixing 
with revers internet domain names (similar to Java) module names 
are allowed to contain '.'.  

CPU partitioning. A module may provide a start mode, which is 
the mode the application is executing after loading the module 
into an Electronic Control Unit (ECU). Executing a module 
implies the reservation of a percentage of the available CPU time 
for execution of this module, given that the CPU is fast enough to 
execute this module in addition to possibly other modules loaded 
before. A module which needs to reserve a percentage of the CPU 
is called a 'partition' and splitting the CPU between multiple 
partitions is called 'CPU partitioning'. A module which does not 
provide a start mode will not be executed, which means, it will not 
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need a CPU partition but it may still be meaningful for example to 
export common constants or types. 

Module import. In order to allow the decomposition of large 
applications into smaller parts and to allow expressing 
dependencies between modules statically, the module concept 
provides an import mechanism, which allows a client module to 
specify that it is dependent from a service module and to access 
public elements of the imported module. The import relationship 
forms a directed acyclic graph (DAG) between client and service 
modules. 

  module AdvancedCar{ 
    import EngineControl; 
    import BrakeByWire; 
    import ...; 
    //  sensor, actuator, task and mode declarations; 
    //  may access public elements of imported modules 
  } 

While it is obvious that using imported constants, types and 
sensors does not pose any semantic difficulties, it is not a priori 
clear how to treat constructs such as tasks, modes and actuators. 
Multiple applications may read the same sensors, for example, but 
what happens if multiple applications write to the same actuators? 
Note that any of the parallel running applications may be in one of 
several modes and it is not statically defined which actuators are 
under control of which application at which time. Therefore it 
must be prevented that multiple applications write to the same 
actuator. The module construct comes in handy to solve this 
problem. We simply restrict actuator update to the module the 
actuator is declared in. Thus, the module construct also acts as a 
partitioning of the set of actuators. In a large application, sensors 
could be declared in a common service module, from where they 
can be used in any client module. A client module declares a 
subset of the actuators of the complete system and provides the 
functionality and timing to set their values. 
 
Information hiding. According to popular programming 
languages we use the keyword 'public' to mark program elements 
as being publicly visible. There is no need (so far) for a corres-
ponding keyword 'private', as this is the default anyway and there 
is no further level of visibility. 

  module EngineControl { 
    public const maxRpm = 6500; 
    //... more code 
  } 

Separation of concerns. A TDL module expresses only the 
timing behavior with LET semantics: when tasks read inputs and 
when they provide outputs, when mode switch conditions are 
checked and when actuators are updated. The functionality is 
separated and specified as functions external to TDL: that is, how 
sensors are read, how actuators are updated, how tasks process 
their inputs. These external functions can be implemented in any 
programming language. Currently, TDL supports language 
bindings for ANSI C and Java. 

We view this separation of timing and functionality as a 
precondition of a component model in the automotive industry. It 
allows the protection of intellectual property rights of the supplier 
companies. The supplier companies still can implement the 
particular control laws and provide that functionality as object 
code. On the other hand, the Original Equipment Manufacturers 

(OEMs) can integrate the components from various different 
suppliers based on the TDL component model - they do not have 
to know about the implementation of the functionality. We shall 
discuss the integration process in more detail in section 5. 

The TDL component model offers another separation of concerns: 
the behavior of a component is independent of the execution 
platform. The platform is considered after a component has been 
developed. This is in stark contrast to current development 
practice which produces software that is strongly intertwined with 
the platform it was developed for. The following sections discuss 
the advantages of what we call transparent distribution in the 
realm of component integration. 
 
4. TRANSPARENT DISTRIBUTION 
We define the term transparent distribution in the context of hard 
real-time applications with respect to two aspects. Firstly, at 
runtime a TDL application behaves exactly the same, no matter if 
all modules (i.e. components) are executed on a single node or if 
they are distributed across multiple nodes. The logical timing is 
always preserved, only the physical timing, which is not 
observable from the outside, may be changed. Secondly, for the 
developer of a TDL module, it does not matter where the module 
itself and any imported modules are executed. The TDL tool chain 
and runtime system frees the developer from the burden of 
explicitly specifying the communication requirements of modules. 
It should be noted that in both aspects transparency applies not 
only to the functional but also to the temporal behavior of an 
application. 

The advantage of transparent distribution for a developer is that 
the TDL modules can be specified without having the execution 
on a potentially distributed platform in mind. The only place 
where distribution is visible is for the system integrator, who must 
specify the module-to-node assignment (see section 5). 

Figure 3 shows an example of a set of four TDL modules 
distributed across three nodes.  
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Figure 3 – Example of distributed modules 

In order to illustrate transparent distribution of TDL modules, we 
start with a subset of Figure 3. Let us consider modules M1 and 
M2, which are located on two different nodes. For the sake of 
simplicity, we assume that each module has a single mode of 
operation, which invokes a single task. task1 runs within module 
M1 and task2 runs within module M2 using as input the output of 
task1. In this case, following the TDL semantics, module M2 has 
to import module M1, and task2 must have as input the output 
port of task1. The arrow between the two tasks from the modules 
M1 and M2 in Figure 4 expresses this relationship. 
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Figure 4 – Communication between two modules on separate 
nodes 

For this example, we further assume that task2 runs twice as 
often as task1, i.e. the LET of task1 is twice as large as the LET 
of task2. Remember that the LET concept specifies that no matter 
when the task runs within its LET, the task gets its inputs at the 
beginning of LET and provides its outputs to other tasks or 
actuators only at the end of its LET. As a first step, Figure 5 
shows a sample execution of the two tasks on a single node . 
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Figure 5 – Single node execution of two tasks 

After task1 finishes its physical execution, the TDL run-time 
system buffers its output internally and provides it to task2 at the 
end of LET1. task2 reads its input at the beginning of the LET2, 
but the TDL run-time system schedules it for execution later. 
According to LET semantics, the first instance of task1 
communicates its outputs to the third instance of task2 at end of 
LET1, as the vertical arrow indicates. 

Copying values from one location of memory to another takes 
close to zero time on a single node. In a distributed setting, 
however, there is a delay because communication takes much 
longer and only one node can send at a time.  Figure 6  shows a 
sample communication pattern between the two tasks on different 
nodes. In order to implement this exchange of information 
between the two tasks, we need to add an auxiliary 
communication layer on both nodes that we call TDLComm. Its 
purpose is to send and receive messages at the right times. 
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Figure 6 – Sample communication between two tasks 

In order to be able to guarantee the timing of messages, we use a 
TDMA (Time Division Multiple Access) [6] approach. This 
means that any node is allowed to send messages in statically 
defined slots only. Furthermore, we implement the Producer-
Consumer (i.e., Push) model. This means that the tasks that 
generate information, the producers, trigger the sending of a 
message. The consumers do not send any requests to the 
producers, as for example in the Client-Server model. In the 

previous example, the Push model avoids to resend messages 
without any value being changed. 

The bus schedule generation tool automatically determines the 
communication pattern for a given set of modules and network 
properties. The resulting bus schedule is a statically defined table 
that specifies which node sends which package at which time. The 
table defines all network activities within one communication 
period (also named bus period), which is the least common 
multiple of all activity periods involved. 

In order to achieve our goal of transparent distribution, after  
task1 finishes, the system copies the internal output value to the 
TDLComm layer on node1 (comm1) that buffers it. Afterwards, 
comm1 sends the value in a packet at the time specified in the 
bus schedule while the TDLComm layer from node2 (comm2) 
has to receive the packet and buffer it. We assume that network 
operations are executed by a dedicated network controller in 
parallel with task execution, which is the case in most systems. 
On node2, at the LET-end instant of task1, when the value 
should logically arrive, the system provides the value from the 
TDLComm layer. Clients of task1, such as task2, then use this 
value without making any difference between importing it locally 
or remotely. For a detailed description of the middleware 
implementation and the schedule generation we refer to [3]. 
 
5. TDL TOOL CHAIN AND 

INTEGRATION PROCESS 
This section provides an overview of the core TDL tool chain and 
its implications for integrating components. Figure 7 shows the 
tool chain as well as which inputs the tools require and which 
outputs they produce. 

The compiler processes TDL source code and generates an 
abstract syntax tree (AST) representation of the TDL program as 
intermediate format as well as the so-called embedded code (e-
code) [11], which describes when to release a task. The plug-in 
architecture of the compiler allows the extension of the tool with 
any number of tools that rely on the AST. 

We also provide a VisualTDL editor that is seamlessly integrated 
in Simulink [4]. Thus a developer can visually and interactively 
model a TDL module and its functionality in Simulink, simulate it 
and once it fulfills the requirements generate the TDL source code 
for the timing behavior and C source code for the functionality.  

 

Figure 7 –TDL Tool Chain  

The bus scheduler is a plug-in tool that generates the bus 
schedule, based on a configuration file. The configuration file 
simply contains a list of computing nodes that comprise the 
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particular platform, the assignment of TDL modules to computing 
nodes, and the physical properties of the communication 
infrastructure. 

The runtime environment of TDL is structured in several layers 
and is based on virtual machines. Tasks are executed according to 
the LET semantics under the control of the E-Machine[11]: a 
virtual machine that executes E-code instructions. Scheduling 
decisions generated by the bus scheduler can be executed by the 
OS scheduler or better by the S-Machine [10]: a virtual machine 
that executes scheduling-code (S-code) instructions. 

TDL component integration process. A TDL module is 
supposed to encapsulate the functionality that is typically put on 
one ECU in current automotive system designs, such as the all-
wheel-drive control system or the engine control system. Figure 8 
shows what we call the V-Cluster-Life-Cycle: Modules are 
developed independently of each other, potentially by different 
suppliers. Each V-Life-Cycle delivers a module. Each module can 
be tested by its supplier, typically independent of the other 
modules that are integrated into one system later. The supplier 
only needs other modules for testing if his particular module 
imports other ones.  

The TDL component integration that takes place at an OEM 
would work as follows: The system integrator specifies the 
module-to-node assignment by means of a configuration file. The 
compiler generates the e-code and the bus scheduler generates a 
static description of the network activities according to the import 
relationships and the communication infrastructure. Due to 
transparent distribution the behavior (timing and functionality) of 
the modules is unchanged no matter how they are distributed on a 
specific platform.  

It might happen that the platform resources are not sufficient to 
execute all modules that should be integrated into one system. In 
this case the compiler tool set does not generate code. In order to 
avoid such a situation at a late stage of system development, an 
OEM might want to specify the TDL modules in advance. In this 
case, the separation of timing and functionality greatly supports 
the integration process: The TDL modules can be specified 
without much effort in advance, probably in interaction with the 
component suppliers: they describe only the timing behavior, not 
the functionality. The functionality is then provided by the 
suppliers later. 
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Figure 8 – V-Cluster-Life-Cycle 

Though each module has to be tested, verified and validated, the 
advantage of the TDL component model is that the integration of 

the modules into one system, which causes significant costs today, 
comes for free through automatic code generation and guarantees 
that the behavior of each component is unchanged. The LET 
abstraction forms the basis that the ‘glue code’ can be generated 
automatically. The code generation process could be formally 
verified. 
  
6. CASE STUDY 
We illustrate transparent distribution by means of two modules 
with simple functionality. Figure 9 shows the modules with their 
modes, tasks, and ports. Module M1 has one sensor input, two 
tasks called inc and dec, and two actuators connected to the 
output ports of the tasks. The inc task increments its output value 
by 10, starting with the initial value 50 up to the upper limit 200. 
The dec task decrements its output value by 10, starting with the 
initial value 200 down to the lower limit 50. The sensor is only 
used for switching between the two modes of the module. In mode 
f11 both tasks have the same LET, namely 10 ms. In mode f12 
the task dec has a LET of 5 ms—it produces the output values 
twice as fast as task inc. 

   
Figure 9 – Module M2 imports module M1 

Module M2 imports module M1 and thus has access to the output 
ports of M1’s tasks inc and dec. Module M2’s task sum simply 
adds the outputs of M1’s inc and dec tasks. The LET of task sum 
is 10 ms. 

As a developer specifies only the timing behavior in TDL, the 
functionality of the tasks has to be implemented in another 
programming language. In this case study the functions invoked 
by the tasks and the drivers for reading sensors and updating 
actuators have been implemented in C as external functionality 
code. The TDL source code shown below indicates this by the 
keyword uses. 

module M1 { 

  public const 
    c1 = 50; c2 = 200; refPeriod = 10ms; 

  sensor int s uses getS; 

  actuator 
    int a1 := c1 uses setA1; 
    int a2 := c2 uses setA2; 

  public task inc [wcet=1ms] { 
    output int o := c1; 
    uses incImpl(o);   // inc. by step 10 
  } 
  public task dec [wcet=1ms] { 
    output int o := c2; 
    uses decImpl(o);    // dec. by step 10 
  } 
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 start mode f11 [period=refPeriod] { 
    task 
      [freq=1] inc();    // LET of task inc is 10/1 = 10 ms 
      [freq=1] dec(); 
    actuator 
      [freq=1] a1 := inc.o;    // actuator a1 update every 10 ms 
      [freq=1] a2 := dec.o; 
    mode 
      [freq=1] if switch2m2(s, inc.o) then f12; 
  } 
  mode f12 [period=refPeriod] { 
    task 
      [freq=1] inc(); 
      [freq=2] dec();   // LET of task dec is 10/2 = 5 ms 
    actuator 
      [freq=1] a1 := inc.o; 
      [freq=2] a2 := dec.o;  
    mode 
      [freq=1] if switch2m1(s, inc.o) then f11; 
  } 
} 

module M2 { 
  import M1; 

  actuator int a := M1.c2 uses setA; 

  public task sum [wcet=1ms] { 
    input int i1; int i2; 
    output int o := M1.c2; 
    uses sumImpl(i1, i2, o); 
  } 
  start mode main [period=M1.refPeriod] { 
    task 
      [freq=1] sum(M1.inc.o, M1.dec.o); 
    actuator 
      [freq=1] a := sum.o; 
  } 
} 

Execution on two different computing platforms. We want to 
execute the two modules 1) on a single node platform and 2) on a 
distributed platform with two computing nodes. The single node 
platform consists of a Kanis Evaluation Board [8] based on the 
MPC555 processor, with 4MB RAM and the OSEKWorks [9] 
real-time operating system. For the distributed, two-node platform 
we add an identical board. The two boards communicate via the 
CAN bus [1]. We implemented a simple time-triggered protocol 
on top of CAN to avoid collisions. A simple push button serves as 
sensor for module M1. The actuators are four channels 8-bit DAC 
connected to each board. We connect the probes of a digital 
oscilloscope to the output channels of the DAC in order to 
visualize the output signals generated by the sample application. 
Due to transparent distribution, both the functional and temporal 
behavior of the modules have to be exactly the same no matter 
where the modules are executed. Remember that distribution is 
only visible for the system integrator, who must specify the 
module-to-node assignment by means of a configuration file. 

If both modules should be executed on the single node platform, 
no configuration file has to be provided at all. The developer 
simply compiles each module. The compiler produces the TDL-
specific output, in particular the E-Code. An OSEK-specific TDL 
compiler-plugin generates the so-called OIL file, which is 
required to execute the modules on the OSEK operating system. 
After compiling the functionality code with the DIAB C compiler 
the executables are uploaded and ready to run. Figure 10 shows 
the outputs of module M1’s  inc and dec tasks and module M2’s 

sum task. Module M1 is in mode f11 in the beginning while the 
sum task is producing a constant output. After pushing the sensor 
button, a mode switch occurs and task sum produces the 
corresponding output pattern. The delay between the output of the  
sum task and the output of the inc and dec tasks is due to the 
LET semantics. 

 
Figure 10 – Functional and temporal behavior of modules M1 

and M2 (mode f11 and then f22) 

In order to run the modules on two different nodes, we have to 
specify to which node a module should be assigned. The 
configuration file simply contains a list of computing nodes that 
comprise the particular platform and the assignment of TDL 
modules to computing nodes. The syntax of the configuration file 
adheres to the syntax of Java property files, which represent 
properties as key-value pairs. Indexed properties are used to 
express lists. For example, the assignment of module M1 to 
node1 and module M2 to node2 is specified as follows: 

  tdl.bus.nodes = 2  
  tdl.bus.nodes.0 = node1  
  tdl.bus.nodes.1 = node2 
  tdl.bus.modules = 2  
  tdl.bus.modules.0 = M1:node1  
  tdl.bus.modules.1 = M2:node2 

The configuration file, which is one input to the bus schedule 
generator, contains further information about the communication 
system. For example, in case of the CAN bus with our simple 
time-triggered protocol, the configuration file specifies the 
following properties: envelope bits, gap bits, bus rate in Hz, 
minimum packet size, max packet size, and the clock resolution. 

We now compile the two modules again, providing also the 
configuration file as input. As a result the corresponding compiler 
plugins produce in addition to the outputs obtained in the single-
node case the stub module for Node2 and a separate Makefile and 
OIL file for each node. After recompiling the application using 
the two Makefiles we get two executables, one for each board. 
Each board now runs a TDL run-time environment that comprises 
TDLComm. Remember that the access to the shared 
communication medium is collision free via a TDMA approach. 
In order to support this we rely on a mechanism for clock 
synchronization over the network. In the set-up of our case study, 
this is not available a priori. Thus, we had to implement it in 



software: for this purpose, the TDLComm layer generates 
synchronization frames with timestamps for all other nodes that 
might be connected to the CAN bus. The TDLComm layer on 
each node uses the synchronization frames from the bus to 
synchronize the local OSEK clock to the remote clock. 

After uploading both modules the functional and temporal 
behavior of modules M1 and M2 is exactly the same as when both 
modules are executed on one node. After connecting one 
oscilloscope probe to the appropriate DAC channel of the second 
board, the oscilloscope patterns are again the ones shown in 
Figure 10. 

The TDL runtime environment composed of E-Machine, 
TDLComm, and some system dependent functions that handle the 
platform clock and task management, has a very low memory 
footprint, in our case around 68KB (or 24KB without OSEK 
debugging information). 
 
7. CONCLUSIONS 
The LET abstraction invented in the realm of the Giotto project 
paved the way for a lean component model for real-time systems 
that offers transparent distribution. The resulting tool chain and 
integration process could significantly reduce the costs of 
integration and system testing. Future research and implemen-
tation efforts are required to show the scalability of transparent 
distribution and the usability of the integration process in practice. 
It also needs to be investigated which other attributes besides 
timing and functionality have to be considered. An example 
would be the memory requirements of a component. Another 
challenge is the dynamic loading and unloading of modules which 
would lead to an extension of the run-time system and probably 
would require enhancements of the component model. 
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