
Real-Time Component Integration
Based on Transparent Distribution

Emilia Farcas, Claudiu Farcas, Wolfgang Pree and Josef Templ

Department of Computer Science, University of Salzburg, Austria
firstname.lastname@cs.uni-salzburg.at

ABSTRACT
This paper introduces a real-time component model that offers a
separation of concerns which allows a straight-forward integration
of independently developed components. So-called transparent
distribution forms the backbone of the integration process.
Transparent distribution means that (1) the functional and
temporal behavior of a system is the same no matter on which
node of a distributed system a component is executed and (2) the
developer does not have to care about the differences of local
versus distributed execution of a component. We first present the
concepts of a component model for real time systems that is well
suited for transparent distribution. The component model is based
on logical execution time, which abstracts from physical
execution time and thereby from both the execution platform and
the communication topology. Then we discuss the resulting tool
chain and integration process. A case study rounds out the paper.

1. INTRODUCTION
Traditional development of software for embedded systems is
highly platform specific. The hardware costs are reduced to a
minimum whereas high development costs are considered
acceptable in case of large quantities of devices being sold.
However, with more powerful processors even in the low cost
range, we observe a shift of functionality from hardware to
software and in general more ambitious requirements. A luxury
car, for example, comprises up to 80 electronic control units
interconnected by multiple buses and driven by more than a
million lines of code. In order to cope with the increased
complexity of the resulting software, a more platform independent
“high-level” programming style becomes mandatory. In case of
real-time software, this applies not only to functional aspects but
also to the temporal behavior of the software. Dealing with time,
however, is not covered appropriately by any of the existing
component models for high-level languages.

A particularly promising approach towards a high-level
component model for real time systems has been laid out in the
Giotto project [5][12][13][14] by introduction of logical execution
time (LET), which abstracts from the physical execution time on a
particular platform and thereby abstracts from both the underlying
execution platform and the communication topology. Thus, it
becomes possible to change the underlying platform and even to

distribute components between different nodes without affecting
the overall system behavior. Giotto, however, is primarily an
abstract mathematical concept and there exist only simple
prototype implementations, which show some of the potential of
LET.

This paper presents a component model, named TDL (Timing
Definition Language) [7], that has been developed in the course of
the MoDECS1 project at the University of Salzburg, as a
successor of Giotto. It shares with Giotto the basic idea of LET
but introduces additional high-level concepts for structuring large
real time systems.

In the following, we start with an explanation of LET and proceed
with an overview of the TDL component model and its associated
notion of transparent distribution. Then, we sketch the envisioned
integration process of TDL components. The integration of two
sample components rounds out the paper.

2. LOGICAL EXECUTION TIME (LET)
LET means that the observable temporal behavior of a task is
independent from its physical execution [12]. It is only assumed
that physical task execution is fast enough to fit somewhere within
the logical start and end points. Figure 1 shows the relation
between logical and physical task execution.

timetask invocation

Logical Execution Time (LET)

Logical

Physical

start stop (worst case)suspend resume

release terminate

Figure 1 – Logical Execution Time

The inputs of a task are read at the release event and the newly
calculated outputs are available at the terminate event. Between
these, the outputs have the value of the previous execution.

LET introduces a delay for observable outputs, which might be
considered a disadvantage. On the other hand, however, LET
provides the cornerstone to deterministic behavior, platform
abstraction and well-defined interaction semantics between
parallel activities [2]. It is always defined which value is in use at
which instant and there are no race conditions or priority
inversions involved. As we will see later, LET also provides the
foundation for transparent distribution.

1 The MoDECS project (www.MoDECS.cc) is supported by the
FIT-IT Embedded Systems grant 807144 (www.fit-it.at).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
© 2005 ACM 1-59593-128-7/05/0005...$5.00

Based on the concept of LET, Giotto introduces the notion of a
mode as a set of periodically executed activities. The activities are
task invocations (with LET semantics), actuator updates, or mode
switches. All activities can have their own rate of execution and
all activities can be executed conditionally. Actuator updates and
mode switches are considered to be much faster than task
invocations, thus they are executed in logical zero time. The set of
all modes reachable from a distinguished start mode constitutes
the Giotto program.

For the reader who knows Giotto in more detail, the following list
summarizes the differences between the original and the successor
(TDL) that we have created as a platform for real-time component
development and integration.

• TDL defines a concrete syntax and a binary e-code file
format, whereas Giotto is primarily a mathematical
abstraction of real-time programming based on LET.

• TDL provides a named top-level program entity (module)
and a component model based on the notion of modules. We
shall go into more details of the component model in the
subsequent chapters.

• TDL considers modules as units of distribution, whereas
Giotto envisions to distribute individual tasks.

• TDL replaces global output ports by task output ports.
• TDL eliminates mode ports and replaces them by optional

assignments to task ports upon a mode switch.
• TDL eliminates explicit task, update, and mode drivers and

merges them into mode declarations.
• TDL adds named constants, which may be used to initialize

ports.
• TDL introduces units for timing values and uses

microseconds internally instead of milliseconds.
• TDL defines program start as mode switch to the start mode

of a module without any special treatment for program start.
• TDL disallows non-harmonic mode switches, i.e. mode

switches must not occur during the logical execution of a
task.

• TDL introduces the new e-code instruction SWITCH, which
is used for performing mode switches.

• TDL defines deterministic mode switches as the switch to the
first mode in textual order whose guard evaluates to true
rather then specifying that only one guard is allowed to
return true.

3. TDL COMPONENT MODEL
Our successor of Giotto, named TDL (Timing Definition
Language), extends the concepts introduced in Giotto by the
notion of the module, which is a named Giotto program that may
import other modules and may export some of its own program
entities to other client modules. Every module may provide its
own distinguished start mode. Thus, all modules execute in
parallel or in other words, a TDL application can be seen as the
parallel composition of a set of TDL modules. It is important to
note that LET is always preserved, i.e. adding a new module will
never affect the observable temporal behavior of other modules. It
is the responsibility of internal scheduling mechanisms to
guarantee conformance to LET, given that the worst-case
execution times (wcet) and the execution rates are known for all
tasks. Figure 2 sketches a sample module with two modes
containing two cooperating tasks each.

Parallel tasks within a mode may depend on each other, i.e. the
output of one task may be used as the input of another task. All
tasks are logically executed in sync and the dataflow semantics is
defined by LET.

Figure 2 – Visual representation of a TDL module

Modules support an export/import mechanism similar to modern
general purpose programming languages such as Java or C#. A
service provider module may export a task’s outputs, which in
turn may be imported by a client module and used as inputs for
the client’s computations. All modules are logically executed in
sync and again the dataflow semantics is defined by LET.
Modules are a top-level structuring concept that serves multiple
purposes: (1) a module provides a name space and an
export/import mechanism and thereby supports decomposition of
large systems, (2) modules provide parallel composition of real
time applications, (3) modules serve as units of loading, i.e. a
runtime system may support dynamic loading and unloading of
modules, and (4) modules are the natural choice as unit of
distribution because dataflow within a module (cohesion) will
most probably be much larger than dataflow across module
boundaries (adhesion). The possibility to distribute TDL modules
across different computation nodes leads us to the notion of
transparent distribution as discussed below. In the following we
exemplify the syntax of a TDL module. The TDL language report
[7] describes the language syntax and semantics in detail.

TDL module. The module construct starts with the keword
module followed by the name of the module and a pair of curly
brackets, which represent the namespace introduced by the
module. The following example shows the skeleton of a module.

 module EngineControl {
 // TDL code consisting of sensor, actuator, task,
 // and mode declarations
 }

In order to provide for globally unique module names by prefixing
with revers internet domain names (similar to Java) module names
are allowed to contain '.'.

CPU partitioning. A module may provide a start mode, which is
the mode the application is executing after loading the module
into an Electronic Control Unit (ECU). Executing a module
implies the reservation of a percentage of the available CPU time
for execution of this module, given that the CPU is fast enough to
execute this module in addition to possibly other modules loaded
before. A module which needs to reserve a percentage of the CPU
is called a 'partition' and splitting the CPU between multiple
partitions is called 'CPU partitioning'. A module which does not
provide a start mode will not be executed, which means, it will not

Task1
300Hz
Task2
100Hz

Init mode

Operation mode
Mode Switch

Sensor Actuator

Sample
Module

Task1
200Hz
Task3
600Hz

need a CPU partition but it may still be meaningful for example to
export common constants or types.

Module import. In order to allow the decomposition of large
applications into smaller parts and to allow expressing
dependencies between modules statically, the module concept
provides an import mechanism, which allows a client module to
specify that it is dependent from a service module and to access
public elements of the imported module. The import relationship
forms a directed acyclic graph (DAG) between client and service
modules.

 module AdvancedCar{
 import EngineControl;
 import BrakeByWire;
 import ...;
 // sensor, actuator, task and mode declarations;
 // may access public elements of imported modules
 }

While it is obvious that using imported constants, types and
sensors does not pose any semantic difficulties, it is not a priori
clear how to treat constructs such as tasks, modes and actuators.
Multiple applications may read the same sensors, for example, but
what happens if multiple applications write to the same actuators?
Note that any of the parallel running applications may be in one of
several modes and it is not statically defined which actuators are
under control of which application at which time. Therefore it
must be prevented that multiple applications write to the same
actuator. The module construct comes in handy to solve this
problem. We simply restrict actuator update to the module the
actuator is declared in. Thus, the module construct also acts as a
partitioning of the set of actuators. In a large application, sensors
could be declared in a common service module, from where they
can be used in any client module. A client module declares a
subset of the actuators of the complete system and provides the
functionality and timing to set their values.

Information hiding. According to popular programming
languages we use the keyword 'public' to mark program elements
as being publicly visible. There is no need (so far) for a corres-
ponding keyword 'private', as this is the default anyway and there
is no further level of visibility.

 module EngineControl {
 public const maxRpm = 6500;
 //... more code
 }

Separation of concerns. A TDL module expresses only the
timing behavior with LET semantics: when tasks read inputs and
when they provide outputs, when mode switch conditions are
checked and when actuators are updated. The functionality is
separated and specified as functions external to TDL: that is, how
sensors are read, how actuators are updated, how tasks process
their inputs. These external functions can be implemented in any
programming language. Currently, TDL supports language
bindings for ANSI C and Java.

We view this separation of timing and functionality as a
precondition of a component model in the automotive industry. It
allows the protection of intellectual property rights of the supplier
companies. The supplier companies still can implement the
particular control laws and provide that functionality as object
code. On the other hand, the Original Equipment Manufacturers

(OEMs) can integrate the components from various different
suppliers based on the TDL component model - they do not have
to know about the implementation of the functionality. We shall
discuss the integration process in more detail in section 5.

The TDL component model offers another separation of concerns:
the behavior of a component is independent of the execution
platform. The platform is considered after a component has been
developed. This is in stark contrast to current development
practice which produces software that is strongly intertwined with
the platform it was developed for. The following sections discuss
the advantages of what we call transparent distribution in the
realm of component integration.

4. TRANSPARENT DISTRIBUTION
We define the term transparent distribution in the context of hard
real-time applications with respect to two aspects. Firstly, at
runtime a TDL application behaves exactly the same, no matter if
all modules (i.e. components) are executed on a single node or if
they are distributed across multiple nodes. The logical timing is
always preserved, only the physical timing, which is not
observable from the outside, may be changed. Secondly, for the
developer of a TDL module, it does not matter where the module
itself and any imported modules are executed. The TDL tool chain
and runtime system frees the developer from the burden of
explicitly specifying the communication requirements of modules.
It should be noted that in both aspects transparency applies not
only to the functional but also to the temporal behavior of an
application.

The advantage of transparent distribution for a developer is that
the TDL modules can be specified without having the execution
on a potentially distributed platform in mind. The only place
where distribution is visible is for the system integrator, who must
specify the module-to-node assignment (see section 5).

Figure 3 shows an example of a set of four TDL modules
distributed across three nodes.

bus

M2

M3

M1

M4

node 1

node 2 node 3

Figure 3 – Example of distributed modules

In order to illustrate transparent distribution of TDL modules, we
start with a subset of Figure 3. Let us consider modules M1 and
M2, which are located on two different nodes. For the sake of
simplicity, we assume that each module has a single mode of
operation, which invokes a single task. task1 runs within module
M1 and task2 runs within module M2 using as input the output of
task1. In this case, following the TDL semantics, module M2 has
to import module M1, and task2 must have as input the output
port of task1. The arrow between the two tasks from the modules
M1 and M2 in Figure 4 expresses this relationship.

task1

M1 M2

task2task1

M1 M2

task2

Figure 4 – Communication between two modules on separate
nodes

For this example, we further assume that task2 runs twice as
often as task1, i.e. the LET of task1 is twice as large as the LET
of task2. Remember that the LET concept specifies that no matter
when the task runs within its LET, the task gets its inputs at the
beginning of LET and provides its outputs to other tasks or
actuators only at the end of its LET. As a first step, Figure 5
shows a sample execution of the two tasks on a single node .

M1 time
LET1

LET2
M2

Figure 5 – Single node execution of two tasks

After task1 finishes its physical execution, the TDL run-time
system buffers its output internally and provides it to task2 at the
end of LET1. task2 reads its input at the beginning of the LET2,
but the TDL run-time system schedules it for execution later.
According to LET semantics, the first instance of task1
communicates its outputs to the third instance of task2 at end of
LET1, as the vertical arrow indicates.

Copying values from one location of memory to another takes
close to zero time on a single node. In a distributed setting,
however, there is a delay because communication takes much
longer and only one node can send at a time. Figure 6 shows a
sample communication pattern between the two tasks on different
nodes. In order to implement this exchange of information
between the two tasks, we need to add an auxiliary
communication layer on both nodes that we call TDLComm. Its
purpose is to send and receive messages at the right times.

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2
M2

Figure 6 – Sample communication between two tasks

In order to be able to guarantee the timing of messages, we use a
TDMA (Time Division Multiple Access) [6] approach. This
means that any node is allowed to send messages in statically
defined slots only. Furthermore, we implement the Producer-
Consumer (i.e., Push) model. This means that the tasks that
generate information, the producers, trigger the sending of a
message. The consumers do not send any requests to the
producers, as for example in the Client-Server model. In the

previous example, the Push model avoids to resend messages
without any value being changed.

The bus schedule generation tool automatically determines the
communication pattern for a given set of modules and network
properties. The resulting bus schedule is a statically defined table
that specifies which node sends which package at which time. The
table defines all network activities within one communication
period (also named bus period), which is the least common
multiple of all activity periods involved.

In order to achieve our goal of transparent distribution, after
task1 finishes, the system copies the internal output value to the
TDLComm layer on node1 (comm1) that buffers it. Afterwards,
comm1 sends the value in a packet at the time specified in the
bus schedule while the TDLComm layer from node2 (comm2)
has to receive the packet and buffer it. We assume that network
operations are executed by a dedicated network controller in
parallel with task execution, which is the case in most systems.
On node2, at the LET-end instant of task1, when the value
should logically arrive, the system provides the value from the
TDLComm layer. Clients of task1, such as task2, then use this
value without making any difference between importing it locally
or remotely. For a detailed description of the middleware
implementation and the schedule generation we refer to [3].

5. TDL TOOL CHAIN AND

INTEGRATION PROCESS
This section provides an overview of the core TDL tool chain and
its implications for integrating components. Figure 7 shows the
tool chain as well as which inputs the tools require and which
outputs they produce.

The compiler processes TDL source code and generates an
abstract syntax tree (AST) representation of the TDL program as
intermediate format as well as the so-called embedded code (e-
code) [11], which describes when to release a task. The plug-in
architecture of the compiler allows the extension of the tool with
any number of tools that rely on the AST.

We also provide a VisualTDL editor that is seamlessly integrated
in Simulink [4]. Thus a developer can visually and interactively
model a TDL module and its functionality in Simulink, simulate it
and once it fulfills the requirements generate the TDL source code
for the timing behavior and C source code for the functionality.

Figure 7 –TDL Tool Chain

The bus scheduler is a plug-in tool that generates the bus
schedule, based on a configuration file. The configuration file
simply contains a list of computing nodes that comprise the

. tdl Compiler TDL Run - time
Environment

Bus Scheduler
plugin

AST

. ecode

functionality
code

configuration busch

particular platform, the assignment of TDL modules to computing
nodes, and the physical properties of the communication
infrastructure.

The runtime environment of TDL is structured in several layers
and is based on virtual machines. Tasks are executed according to
the LET semantics under the control of the E-Machine[11]: a
virtual machine that executes E-code instructions. Scheduling
decisions generated by the bus scheduler can be executed by the
OS scheduler or better by the S-Machine [10]: a virtual machine
that executes scheduling-code (S-code) instructions.

TDL component integration process. A TDL module is
supposed to encapsulate the functionality that is typically put on
one ECU in current automotive system designs, such as the all-
wheel-drive control system or the engine control system. Figure 8
shows what we call the V-Cluster-Life-Cycle: Modules are
developed independently of each other, potentially by different
suppliers. Each V-Life-Cycle delivers a module. Each module can
be tested by its supplier, typically independent of the other
modules that are integrated into one system later. The supplier
only needs other modules for testing if his particular module
imports other ones.

The TDL component integration that takes place at an OEM
would work as follows: The system integrator specifies the
module-to-node assignment by means of a configuration file. The
compiler generates the e-code and the bus scheduler generates a
static description of the network activities according to the import
relationships and the communication infrastructure. Due to
transparent distribution the behavior (timing and functionality) of
the modules is unchanged no matter how they are distributed on a
specific platform.

It might happen that the platform resources are not sufficient to
execute all modules that should be integrated into one system. In
this case the compiler tool set does not generate code. In order to
avoid such a situation at a late stage of system development, an
OEM might want to specify the TDL modules in advance. In this
case, the separation of timing and functionality greatly supports
the integration process: The TDL modules can be specified
without much effort in advance, probably in interaction with the
component suppliers: they describe only the timing behavior, not
the functionality. The functionality is then provided by the
suppliers later.

�����������	

�������
�
�����

�����
����
����

��	�

����
��
����

�
���
����

��������
	
��

��

���������

�����������	

�������
�
�����

�����
����
����

��	�

����
��
����

�
���
����

��������
	
��

��

���������

�����������	

�������
�
�����

�����
����
����

��	�

����
��
����

�
���
����

��������
	
��

��

���������

��

��

��

Figure 8 – V-Cluster-Life-Cycle

Though each module has to be tested, verified and validated, the
advantage of the TDL component model is that the integration of

the modules into one system, which causes significant costs today,
comes for free through automatic code generation and guarantees
that the behavior of each component is unchanged. The LET
abstraction forms the basis that the ‘glue code’ can be generated
automatically. The code generation process could be formally
verified.

6. CASE STUDY
We illustrate transparent distribution by means of two modules
with simple functionality. Figure 9 shows the modules with their
modes, tasks, and ports. Module M1 has one sensor input, two
tasks called inc and dec, and two actuators connected to the
output ports of the tasks. The inc task increments its output value
by 10, starting with the initial value 50 up to the upper limit 200.
The dec task decrements its output value by 10, starting with the
initial value 200 down to the lower limit 50. The sensor is only
used for switching between the two modes of the module. In mode
f11 both tasks have the same LET, namely 10 ms. In mode f12
the task dec has a LET of 5 ms—it produces the output values
twice as fast as task inc.

Figure 9 – Module M2 imports module M1

Module M2 imports module M1 and thus has access to the output
ports of M1’s tasks inc and dec. Module M2’s task sum simply
adds the outputs of M1’s inc and dec tasks. The LET of task sum
is 10 ms.

As a developer specifies only the timing behavior in TDL, the
functionality of the tasks has to be implemented in another
programming language. In this case study the functions invoked
by the tasks and the drivers for reading sensors and updating
actuators have been implemented in C as external functionality
code. The TDL source code shown below indicates this by the
keyword uses.

module M1 {

 public const
 c1 = 50; c2 = 200; refPeriod = 10ms;

 sensor int s uses getS;

 actuator
 int a1 := c1 uses setA1;
 int a2 := c2 uses setA2;

 public task inc [wcet=1ms] {
 output int o := c1;
 uses incImpl(o); // inc. by step 10
 }
 public task dec [wcet=1ms] {
 output int o := c2;
 uses decImpl(o); // dec. by step 10
 }

Inc
LET=10ms

Dec
LET=10ms

mode f11

mode f12
Mode Switch

Sensor
Actuators

Module M1

Sum
LET=10ms

mode main

Actuator

Module M2 Import

Inc
LET=10ms

Dec
LET=5ms

 start mode f11 [period=refPeriod] {
 task
 [freq=1] inc(); // LET of task inc is 10/1 = 10 ms
 [freq=1] dec();
 actuator
 [freq=1] a1 := inc.o; // actuator a1 update every 10 ms
 [freq=1] a2 := dec.o;
 mode
 [freq=1] if switch2m2(s, inc.o) then f12;
 }
 mode f12 [period=refPeriod] {
 task
 [freq=1] inc();
 [freq=2] dec(); // LET of task dec is 10/2 = 5 ms
 actuator
 [freq=1] a1 := inc.o;
 [freq=2] a2 := dec.o;
 mode
 [freq=1] if switch2m1(s, inc.o) then f11;
 }
}

module M2 {
 import M1;

 actuator int a := M1.c2 uses setA;

 public task sum [wcet=1ms] {
 input int i1; int i2;
 output int o := M1.c2;
 uses sumImpl(i1, i2, o);
 }
 start mode main [period=M1.refPeriod] {
 task
 [freq=1] sum(M1.inc.o, M1.dec.o);
 actuator
 [freq=1] a := sum.o;
 }
}

Execution on two different computing platforms. We want to
execute the two modules 1) on a single node platform and 2) on a
distributed platform with two computing nodes. The single node
platform consists of a Kanis Evaluation Board [8] based on the
MPC555 processor, with 4MB RAM and the OSEKWorks [9]
real-time operating system. For the distributed, two-node platform
we add an identical board. The two boards communicate via the
CAN bus [1]. We implemented a simple time-triggered protocol
on top of CAN to avoid collisions. A simple push button serves as
sensor for module M1. The actuators are four channels 8-bit DAC
connected to each board. We connect the probes of a digital
oscilloscope to the output channels of the DAC in order to
visualize the output signals generated by the sample application.
Due to transparent distribution, both the functional and temporal
behavior of the modules have to be exactly the same no matter
where the modules are executed. Remember that distribution is
only visible for the system integrator, who must specify the
module-to-node assignment by means of a configuration file.

If both modules should be executed on the single node platform,
no configuration file has to be provided at all. The developer
simply compiles each module. The compiler produces the TDL-
specific output, in particular the E-Code. An OSEK-specific TDL
compiler-plugin generates the so-called OIL file, which is
required to execute the modules on the OSEK operating system.
After compiling the functionality code with the DIAB C compiler
the executables are uploaded and ready to run. Figure 10 shows
the outputs of module M1’s inc and dec tasks and module M2’s

sum task. Module M1 is in mode f11 in the beginning while the
sum task is producing a constant output. After pushing the sensor
button, a mode switch occurs and task sum produces the
corresponding output pattern. The delay between the output of the
sum task and the output of the inc and dec tasks is due to the
LET semantics.

Figure 10 – Functional and temporal behavior of modules M1

and M2 (mode f11 and then f22)

In order to run the modules on two different nodes, we have to
specify to which node a module should be assigned. The
configuration file simply contains a list of computing nodes that
comprise the particular platform and the assignment of TDL
modules to computing nodes. The syntax of the configuration file
adheres to the syntax of Java property files, which represent
properties as key-value pairs. Indexed properties are used to
express lists. For example, the assignment of module M1 to
node1 and module M2 to node2 is specified as follows:

 tdl.bus.nodes = 2
 tdl.bus.nodes.0 = node1
 tdl.bus.nodes.1 = node2
 tdl.bus.modules = 2
 tdl.bus.modules.0 = M1:node1
 tdl.bus.modules.1 = M2:node2

The configuration file, which is one input to the bus schedule
generator, contains further information about the communication
system. For example, in case of the CAN bus with our simple
time-triggered protocol, the configuration file specifies the
following properties: envelope bits, gap bits, bus rate in Hz,
minimum packet size, max packet size, and the clock resolution.

We now compile the two modules again, providing also the
configuration file as input. As a result the corresponding compiler
plugins produce in addition to the outputs obtained in the single-
node case the stub module for Node2 and a separate Makefile and
OIL file for each node. After recompiling the application using
the two Makefiles we get two executables, one for each board.
Each board now runs a TDL run-time environment that comprises
TDLComm. Remember that the access to the shared
communication medium is collision free via a TDMA approach.
In order to support this we rely on a mechanism for clock
synchronization over the network. In the set-up of our case study,
this is not available a priori. Thus, we had to implement it in

software: for this purpose, the TDLComm layer generates
synchronization frames with timestamps for all other nodes that
might be connected to the CAN bus. The TDLComm layer on
each node uses the synchronization frames from the bus to
synchronize the local OSEK clock to the remote clock.

After uploading both modules the functional and temporal
behavior of modules M1 and M2 is exactly the same as when both
modules are executed on one node. After connecting one
oscilloscope probe to the appropriate DAC channel of the second
board, the oscilloscope patterns are again the ones shown in
Figure 10.

The TDL runtime environment composed of E-Machine,
TDLComm, and some system dependent functions that handle the
platform clock and task management, has a very low memory
footprint, in our case around 68KB (or 24KB without OSEK
debugging information).

7. CONCLUSIONS
The LET abstraction invented in the realm of the Giotto project
paved the way for a lean component model for real-time systems
that offers transparent distribution. The resulting tool chain and
integration process could significantly reduce the costs of
integration and system testing. Future research and implemen-
tation efforts are required to show the scalability of transparent
distribution and the usability of the integration process in practice.
It also needs to be investigated which other attributes besides
timing and functionality have to be considered. An example
would be the memory requirements of a component. Another
challenge is the dynamic loading and unloading of modules which
would lead to an extension of the run-time system and probably
would require enhancements of the component model.

8. ACKNOWLEDGEMENTS
We thank the MoDECS project team at the University of Salzburg
for providing valuable input during informal discussions and
group meetings. This research was supported in part by the FIT-IT
Embedded Systems grant 807144 provided by the Austrian
government through its Bundesminsterium für Verkehr,
Innovation und Technologie.

9. REFERENCES
[1] Bosch, 1991, CAN Specification, Version 2. Robert Bosch

GmbH, http://www.can.bosch.com/docu/can2spec.pdf

[2] C.M. Kirsch, 2002, Principles of Real-Time Programming.
In Proceedings of EMSOFT 2002,Grenoble LNCS, 2491.

[3] Emilia Coste, Claudiu Farcas, Wolfgang Pree and Josef
Templ. Transparent Distribution of TDL modules. Technical
Report, University of Salzburg, Austria, 2005.

[4] Gerald Stieglbauer and Wolfgang Pree. Visual and
Interactive Development of Hard Real Time Code.
Automotive Software Workshop San Diego (ASWSD 2004)

[5] Giotto Project,
http://www-cad.eecs.berkeley.edu/~fresco/giotto/

[6] H. Kopetz, 1997, Real-time Systems: Design Principles for
Distributed Embedded Applications. Kluwer, 1997.

[7] J. Templ, 2004, TDL Specification and Report. Technical
Report C059, Department of Computer Science, University
of Salzburg, http://www.cs.uni-
salzburg.at/pubs/reports/T001.pdf

[8] OAK_EMUF Dev. Board, Ing. Buero W. Kanis GmbH
http://www.kanis.de/home/products/oak_emuf/i_oak.htm

[9] OSEK Group, 2001, OSEK/VDX Time-triggered Operating
System Specification, Version 1.0,
http://www.osek-vdx.org/mirror/ttos10.pdf

[10] T.A. Henzinger, C.M. Kirsch, and S. Matic. Schedule
carrying code. In Proc. of the Third International
Conference on Embedded Software (EMSOFT), LNCS,
Springer-Verlag, 2003.

[11] T.A. Henzinger and C.M. Kirsch, 2002, The Embedded
Machine: predictable, portable real-time code. In Proc.
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 315–326.

[12] Thomas A. Henzinger, Benjamin Horowitz, and Christoph
M. Kirsch. Giotto: A time-triggered language for embedded
programming. Proceedings of the First International
Workshop on Embedded Software (EMSOFT), Lecture
Notes in Computer Science 2211, Springer-Verlag, 2001, pp.
166-184.

[13] Thomas A. Henzinger, Benjamin Horowitz, and Christoph
M. Kirsch. Embedded control systems development with
Giotto. Proceedings of the International Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES), ACM Press, 2001, pp. 64-72.

[14] Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A.
Sanvido, and Wolfgang Pree. From control models to real-
time code using Giotto. IEEE Control Systems Magazine
23(1):50-64, 2003.

