
Analysis and Verification of the Interaction Model in Software Design

Guido Menkhaus Urs Frei, Jörg Wüthrich

Abstract

One essential aspect in software design and software
quality insurance is the complexity of component interde-
pendencies. More complex designs drive the cost of produc-
tion and maintenance. This paper proposes a new method-
ology for the analysis and verification of the interaction
model of the software design throughout the software de-
velopment lifecycle. For the analysis, the interaction model
is described in an interaction model description language.
Analysis techniques are applied to identify critical parts of
the software application and to anticipate potential scenar-
ios of failure modes. Coupling, cohesion, and instability
metrics are computed on different levels of design refine-
ment. They guide the analysis during the risk assessment of
failure modes. The interaction model allows for the verifi-
cation of the model against the underlying implementation
of the software application. We provide tool support for all
activities.

1. Introduction

Software has a substantial influence on the quality of a
product and on the services an organization offers [23]. Or-
ganizations increasingly rely on computerized systems and
these systems need to be designed, constructed, integrated
and maintained such to support the quality that justifies this
reliance [27]. At the same time, the complexity of com-
puterized systems increases continuously and offers more
opportunities for malfunctions and their consequences [32].
As the complexity of applications increases, it is essential
to introduce means to control the complexity of the applica-
tion and to define adequate methods and tools for analyzing
and verifying such applications to ensure their quality.

In this paper, we describe a methodology for the analysis
and verification of a software application and the interaction
model of its design. Most IT organizations allocate only a
limited amount of time to analysis, verification, and testing
of the software design. Since time is limited, the application
of the methodology is only tractable with tool support. We
present a toolchain that allows for efficient execution of the
analysis and verification of a software application.

The remaining of the paper is structured as follows: Sec-
tion 2 presents a short overview of verification and testing
activities. Our methodology for analysis and verification of
software is presented in Section 3 and the steps of fault pre-
vention, projection, prediction and identification are subse-
quently discussed. Section 4 presents results. Related work
is presented in Section 5 and Section 6 concludes the paper
with a brief talk about our future work.

2. Overview of Verification and Testing Activi-
ties

Verification and testing has become the preferred pro-
cess by which software is shown to possess a specific qual-
ity. The verification process demonstrates that a program
correctly conforms to its specification. Testing tries to
find cases where a program does not satisfy its specifica-
tion [17]. It is very common to divide testing and verifica-
tion into low-level and high-level tests [6] that correspond to
two broad categories: Acceptance and unit tests [3, 4]. Unit
tests are specified by developers basing on technical prior-
ities and insight into the implementation. They accompany
and guide the development and ensure that the application
runs as expected. Acceptance tests, being functional or non-
functional, are driven by business priorities and incorporate
business requirements. However, testing has its limits: The
deviation between the operational and the testing environ-
ment and the difficulty to reproduce those operational envi-
ronments limits the failure rates that can be verified empir-
ically and thus the detection of the number of critical units
of a system. This can lead to a misunderstanding of the
systems reliability properties [35]. To reduce the risk of
software failures, an early and thorough analysis identifying
risk-critical components is necessary. Risk is the likelihood
that a fault leads to an application failure. Risk-based anal-
ysis provides a methodology to identify what to test and to
better prioritize test cases.

Acceptance and unit tests base on business requirements
and technical insight. However,the extent to which the pro-
gram correctness can be established is not purely a function
of the programs external specifications and behavior but
it depends critically upon its internal structure[12]. The

Sebastian
Text Box
 In Proc. of the 10th International Conference on Engineering of Complex Computer Systems (ICECCS), 2005.

complexity of a structure increases when the variety (num-
ber of distinguishable parts) and the interactions (connec-
tions) of parts or aspects increase [18]. Software design is
the process of conceiving a structure that allows for oppor-
tunities to implement a solution and to limit the possibilities
with the aim of restricting the complexity of the solution.
The design process is an evolutionary process, in which a
comprehensive design evolves over time in an iterative man-
ner. Thus, most software systems are subject to a varying
degree of design changes during their development and are
revised to a greater extent as they are extended and adapted
to new requirements. The design changes from iteration to
iteration often entail complex interactions between compo-
nents to come to an implementation of a feature. Design
violations are often due to a lack of anticipation of unex-
pected interactions between a systems components, subsys-
tems and layers. As complexity increases, design violations
are more likely to occur when more interactions make it
harder to identify all possible behaviors [35].

Studies have found that reworking defective require-
ments, design, and code typically consumes 40 to 50 per-
cent of the total cost of software development [19]. A defect
created in the design has a high impact if it is only detected
in a later design iteration of a project. Consequently, more
time needs to be spent on early analysis and verification of
the design of the software application since testing always
starts late. Defects found during testing may require mas-
sive rework, and it is more cost effectively done in the early
phases of the software development lifecycle.

3. Analysis and Verification Methodology

Both approaches, analysis and verification/testing activ-
ities, aim at producing more reliable software [13].

1. Testing and Verification.On the one hand the aim of
testing is to identify faults. On the other hand, it ver-
ifies that the software performs what it is supposed to
do. Verification and testing however, does not prove
that the behavior of software is correct, but provides a
certain level of confidence.

2. Analysis.Analysis provides characteristics of the over-
all confidence in the behavioral software properties.
Analysis establishes also indicators that some parts of
the software system are more likely to be prone to er-
rors than others.

For quality insurance, Bowen and Stavridou proclaim us-
ing a combination of approaches and methods [5]. Analy-
sis, testing and verification approaches can be related and
mapped to activities in the software development lifecycle.
Iterations of the software lifecycle can be represented by
the V-model [7]. The left side of the inner V in Figure 1

describes the design process for the construction of the sys-
tem, starting from the requirements definition, followed by
the system design and becoming more detailed at every step
until the implementation phase, where the code is created.
The implementation phase lies between construction and
design (left side of the inner V) and the integration and veri-
fication (right side of the inner V). The right side of the inner
V covers the different testing and verification phases, which
relate to specific design phases of the left side of the inner
V. In parallel to the activities on the left and the right side
of the V-model run analysis activities. The left side covers
activities that are applied during the specific construction
and design phases before implementation has started. Ac-
tivities on the right side of the V-model perform analysis
after a significant part of the implementation has already
been established. Our risk-based analysis and verification
methodology includes the following steps and concentrates
on the horizontal aspect of software design throughout the
software development lifecycle (see Figure 1):

1. Fault Prevention.From the perspective of software en-
gineering, the software design has a key impact on
product quality and complexity control [8, 34]. A
sound and verifiable design prevents or minimizes the
occurrence and presence of faults. Tracz states in [37]
that the most difficult problems in testing and analyz-
ing software all revolve around the question of how
software architectures are specified. We believe that
relating implementation to models at different levels
of abstraction and to be able to reason about them is
essential for software quality control.

2. Fault Projecting. Petroski argues in [30] that many
spectacular bridge failures have occurred because of
copying attributes of successful design and focusing
on previous successes instead of additionally consid-
ering possible failure modes. Projecting failure modes
in software development is used to establish a fault hy-
pothesis and estimate the presence of faults.

3. Fault Prediction. Managing complexity is the single
most important aspect in software development. Fault
prediction tries to identify complex structures that are
likely to become a source of faults. For complex soft-
ware there is a necessity to provide tool support for ob-
jective and repeatable measurements at different levels
of design refinements.

4. Fault Identification. Identify faults and remove them
by repeated verification. An implementation that re-
sults in non-compliance to the design (a fault with re-
spect to the design) will not mean that the software
does not deliver the intended functionality. However,
it is a major issue in complexity control, reusability
and modularity.

Design FMEA
applied to Subsystem

Integration Test

Design Verification
and Subsystem

Metrics
applied to Subsystem

Subsystem
Design

and Debugging
Audit, Inspection

Design
Component, ModuleFMEA

applied to Components

applied to System
Design FMEA System Test

Design Verification
and System

Metrics
applied to System

Implementation

Requirements
Definition

Acceptance Test

Unit Test

System Design

Fault Identification and RemovalFault Prevention Fault PredictionFault Projection

Figure 1. Fault projection, prevention, identification, and prediction in the software development
lifecycle.

3.1. Fault Prevention by Model-based Design

All forms of engineering rely on models to understand
complex, real-world systems. Software design produces
models that provide abstractions for reasoning about the
system by ignoring extraneous details while focusing on rel-
evant ones. However, models and their resulting software
applications diverge and software applications are likely to
become complex and instable as they are developed, ex-
tended, and modified. The quality suffers as the complexity
increases [22]. To control the growth of complexity in a sys-
tem with a growing number of parts and connections, the
complexity of each individual part must not increase with
the growth of the system. Horizontal layering (abstraction),
vertical layering (partitioning) and hierarchical division of
systems are the means to combat the complexity of large
systems [21].

We have developed an interaction model description lan-
guage (IMDL), inspired by approaches of xArch [11], con-
cepts for component-based modeling [16] and the descrip-
tion language employed in Dependometer [25]. The princi-
ple abstractions in our IMDL are layers, subsystem, connec-
tors, components, actions, and interactions. Layers, subsys-
tems, and connectors describe the logical view of the soft-
ware design. Components, actions and interactions present
the implementation view of the software (see Figure 2). The
IMDL combines both views consistently in a single model.

We consider a software system, which is divided into a
set of layers, denoted byL = {l1, . . . , ln}. Each layerli
contains a set of subsystemsU(li) = {uli,1, . . . , uli,m} ∈
U . A connectorc describes interactions between layers
and subsystems forming a dependency graph. This de-
pendency graph describes the interaction model of a soft-
ware application. The set of connectors of a subsystem or
layer is denoted asC(·). A connector is directed and has

L

C

IK

Project

Layer

Subsystem

Connector

Component

Logical View

Action
Interaction

Implementation View

K

UC

C

I

Figure 2. Logical view of the software design
and implementation view of the software ap-
plication.

a sourcesource(c) ∈ L ∪ U and a targettarget(c) ∈
L ∪ U . Each subsystemuj may consists of other subsys-
tems and is implemented by a set of componentsK(uj) =
{kj,1, . . . kj,o} ∈ K. A componentk has a vocabulary of
actionsA(k) with A =

⋃
k∈K A(k). A connectorc is a sub-

set ofA and defines a set of interactionsc = {a1, · · · , ap},
denoted byIC(c) and IK(k) denotes the set of interac-
tions of a componentk. An interactionai has an initiator
init(ai) ∈ K and a set of cooperatorscoop(ai) ∈ K. If
initiator and cooperator represent the same component, the
interaction is called internal interaction; otherwise it is an
external interaction. For the initiator, the interaction is an
efferent interaction, for the cooperator, it is an afferent in-

teraction.
The IMDL describes the logical interaction model in the

design of a software application and links it to the imple-
mentation. The model is subsequently used in the steps of
fault projection, prediction, and identification.

3.2. Fault Projection applying FMEA

The Failure Mode and Effects Analysis (FMEA) is a
risk-based analysis method that aims at identifying fail-
ure modes of a software application. It projects their ef-
fects, identifies their causes, designs detection and preven-
tion mechanisms, and advises recommended actions to sup-
press these effects and to eliminate the causes of the failure
modes [26, 29, 31]. Figure 3 shows the line of causal re-
lationship between faults, errors, failures, and effects. The
FMEA is developed along that line of cause and effect.

• Fault. The cause of a failure is a fault that ranges from
specification and design defects to physical or human
factors.

• Error. An error is a design flaw or a deviation from the
desired or intended state of a system.

• Failure. A failure is defined as the manner in which
a component, subsystem, or system could potentially
fail to meet or deliver the intended function.

• Effect.The effect is the actual consequence of a system
behavior in the presence of a failure.

• Recommended Actions.Actions that are not yet imple-
mented but are recommended for implementation for
identifying failure modes and reducing the probability
of their occurrence.

A FMEA on the design level assessing risks can be per-
formed early in the software development process. The ob-
jective is minimizing the impact of failure modes at a time
when changes to the software system can be made most cost
effectively [14]. This indicates the necessity to analyze the
design of a software system thoroughly prior to construction
and testing.

When conducting an FMEA, the following three steps
need to be performed:

1. Identification of failure modes, effects, and possible
causes, associated with the layers, subsystems and
components described in the interaction model in the
IMDL.

2. Assessment of the risk of the failure modes.

3. Determination of risk reduction activities.

Failure modes are ranked according to the risk priority
number (RPN). The RPN of a failuref depends on (1) the
severitys(f) of the failure’s effect, (2) the likelihood of de-
tectiond(f) of the error leading to the failure and (3) the
frequency of occurrenceo(f) of the error’s cause. The RPN
of a failuref is computed as:

RPN(f) = s(f)o(f)(1− t(d(f)))

where t is a function that tends asymptotically to 1 with
increasing quality and number of detection mechanisms,s
increases gradually from no effect to hazardous effects, and
o from persistent faults to unlikely faults. In a system in
which components interact with other components, a com-
ponents failure might result in a fault of a component, which
depends on it (see Figure 3). From the point of view of the
depending component, the risk associated with that failure
is denoted as the inherited risk and the failure is an inher-
ited failure. The RPN of a componentk having a set of
failuresF and a set of failures inherited from components
it depends onFÂ, is defined as:

RPN(k) =
∑
f∈F

RPN(f) +
∑

f∈FÂ

RPN(f)(1− t(d(f)))

The term1− t(d(·)) in the last equation denotes the likeli-
hood of detection of an inherited failure in the implementa-
tion of the depending component.

The results of the FMEA is a ranking of

1. components, prioritized according to the RPN of the
components and

2. failure modes, which have the highest risk impact on
the complete software system.

For each failure mode there is a list of its effects and
causes assigned. The highest ranking components and fail-
ure modes are selected and recommended actions are deter-
mined, such as changes in the design that could eliminate
or reduce the probability of the occurrence of the potential
failures.

Ideally, a FMEA is applied in regular intervals in evo-
lutionary software development. It verifies whether the
recommended actions were successfully implemented to
guarantee constant improvement. This makes the FMEA
tedious, laborious and time-consuming to carry out [28].
Therefore it is necessary to focus the FMEA. After part of
the implementation is present, metrics are used to identify
the most complex and instable and thus most error-prone
parts of a software system. Their results support the analysis
team, which performs the FMEA, in their decision-making
process and let them focus the analysis on the risk intrinsic
parts of a software system.

is a

Fault ErrorError
propagatesactivates

Failure
leads to

Effect
causes

inherits

Fault ErrorError
propagatesactivates

Failure
leads to

Effect
causes

Figure 3. Causal relationship between faults, errors, failures, and effects.

3.3. Fault Prediction using Design Metrics

Hierarchically constructed software aims at produc-
ing systems that are either decomposable or near-
decomposable, in which intra-layer, intra-subsystem and
internal interactions are strong (high cohesion) and inter-
layer, inter-subsystem and external interactions are negli-
gible or weak (low coupling), respectively. As a rule-of-
thumb, low complexity software should exhibit low cou-
pling and high cohesion [9].

As outlined in Section 3.1 software design is performed
on different levels of refinement. Metrics are computed
on the basis of source code and are most often applied on
the component level. They identify the most complex and
therefore most error-prone and hard to test parts of a system.
Employing our IMDL, we compute metrics at the level of
components, subsystems and layers.

• Component Level.At the level of components we com-
pute metrics measuring coupling and cohesion: Cou-
pling between components and lack of cohesion of in-
teractions [10].

• Layer and Subsystem Level.On the layer and subsys-
tem level we compute a design instability metric [24].

Component Level. Coupling between components is a
count of the number of other components to which a com-
ponent is coupled:cbo(k) = |{a ∈ IK(k)|coop(a) 6= k}|.
Intensive coupling between components is opposed to mod-
ular design, prevents reuse and increases maintenance costs.
The more independent a component, the easier it is to reuse
it. Less independent components are more sensitive to
changes in the design. Coupling metrics provide data indi-
cating how complex the testing of parts of a design is likely
to be. The higher the number of interactions, the more strict
analysis and testing is required.

Lack of cohesion of interactions measures the dissimi-
larity of actions in a component by attributes. A component
k has a vocabulary of attributesM(k) = {m1, · · · ,mq}
and interactionsIK(k). Let A(IK(k),mj) denote the
set of interactions interacting with attributemj . Lack
of cohesion of a componentk is defined aslocoa(k) =
(1
|M(k)|

∑
m∈M(k) |A(IK(k),m)|−|IK(k)|)/(1−|IK(k)|).

High values indicate lack of cohesion of a component which
means increased complexity and high likelihood of occur-
rence of errors during the development process. Low values
imply simplicity and high reusability.

Layer and Subsystem Level. Stable layers and subsys-
tems are both independent and highly responsible. They
are independent, if they do not depend upon the results of
other subsystems. They are called responsible, if changes of
this subsystem have a strong impact on other subsystems.
The responsibility, independence and instability of a layer
or subsystem can be computed by measuring the numbers
of their connections and interactions.

Instability of a layer is considered as the ratio of the
number of efferent to the number of efferent and affer-
ent connectors. Efferent connectors of a layerl account
for the number of connections of its subsystemC(l) =⋃

u∈U(l) C(u) to subsystems in different layers. The set
of efferent connections of a layer is defined asICE(l) =⋃

u∈U(l){c ∈ C(u)|init(c) ∈ C(l) ∧ coop(c) /∈ C(l)} and
the set of afferent connections asICA(l) =

⋃
u∈U(l){c ∈

C(u)|coop(c) ∈ C(l) ∧ init(c) /∈ C(l)}. Instabil-
ity of a layer l is here computed as:instability(l) =
|ICE(l)|/|ICE(l)∪ ICA(l)|. Analogous to the instability
of a layer we describe the instability of a subsystem. Insta-
bility of a subsystem considers efferent and afferent inter-
actions of its components to components in different sub-
systems. The set of efferent interactions of a subsystemu is
defined asICE(u) =

⋃
k∈K(u){a ∈ IK(k)|source(a) ∈

K(u) ∧ target(a) /∈ K(u)} and the set of afferent inter-
actions asICA(u) =

⋃
k∈K(u){a ∈ IK(k)|target(a) ∈

K(u) ∧ source(a) /∈ K(u)}. Instability is an indicator
of the resilience to change. A value of zero means maxi-
mal stability and a value of one means maximal instability.
Instable subsystems are generally undesirable and are rec-
ommended for careful design, implementation and testing.

Automatic Computation. The computation of metrics
helps identifying complex, instable and therefore most
error-prone components. An advantage of the presented
metrics is the fact that they are automatically computed.
The results of the computation of the metrics allow the anal-
ysis team to direct their effort of analysis to the indicated

critical parts of the software application. The team does not
require performing a detailed analysis and inspection of the
complete system.

3.4. Design Verification and Fault Identification

According to the laws of software evolution [22], the
functional scope of a software system must be continually
maintained, adapted and improved over the system devel-
opment and lifetime to maintain usefulness. If the system
is not adapted to take into account changes, the quality will
decline. Thus, continuing change, adaptation and increase
in volume and functional scope increases the complexity,
unless work is done to maintain or to reduce it.

To control the complexity of a software product there is
need for support of automatic and repeatable verification of
the logical interaction model of the software design against
the underlying implementation, which might deviate from
the intended design over time. Given the importance of the
software design and the laws of software evolution, we ver-
ify the design and identify violations of the implementation
with respect to the logical interaction model.

A design violation is defined as an implemented interac-
tion between two components, the two components being
in two different subsystems or layers and there is no con-
nector specified between the two subsystems and layers in
the interaction model. Formally, we consider all connectors
between layers and subsystemsC =

⋃
u∈L∪U C(u) and

their interactionsIC =
⋃

c∈C IC(c). We check the imple-
mentation of all componentsk ∈ K =

⋃
u∈L∪U K(u) for

interactionsIK =
⋃

k∈K IK(k) and verify that those inter-
actions comply with the interaction model. A design viola-
tion of the interaction model is defined as:DV IM(k) =
{a|a ∈ IK ∧ a /∈ IC ∧ init(a) = k} 6= ∅. Checking the
model for violations in the implementation, identifying and
removing those violations ensures consistency of model and
implementation and allows for complexity control.

4. Results

Our analysis and verification methodology fosters con-
tinuous execution of activities for monitoring and control-
ling the design of a software system. We have developed
a tool suite to support these activities: The fault avoid-
ance (FA) tool allows for designing the interaction model
and analyzing the software application. The fault identifi-
cation (FI) tool computes metrics and verifies the interac-
tion model. It uses the interaction model constructed and
analyzed in the FA-tool.

Figure 4 presents a screenshot of the FA-tool Eclipse
Plug-in. The FA-tool provides a perspective for perform-
ing a failure mode and effects analysis. Figure 4 shows the

Figure 4. FA-tool support for analyzing a soft-
ware application.

design of the interaction model of a chat-application and re-
sults of the analysis. The interaction model can be seen in
the upper right corner. The results of the FMEA with re-
spect to the risk assessment determining the RPN of each
part of the application are shown in the upper left corner.
The identified causes, failures, effects, and recommended
actions of the subsystems are listed in panels at the bottom
of the GUI.

common

Layer

Subsystem commandline

Layer

Subsystem simple metrics

chidamber / kemerer

depend

calculationResults

Layer

Subsystem caclulation, configuration

elements

Layer

Subsystem configuration

Layer

Subsystem jal, parsing, xml

userInterface

metricCalculation

model

configuration

3rdParty

Layer

Subsystem utils

Figure 5. Design of the interaction model of
the FI-tool.

The FI-tool is a command-line application that outputs
a report, in which the results of the design metrics of Sec-
tion 3.3 and the design violations of Section 3.4 are indi-
cated. Currently, the FI-tool targets software applications
written in Delphi. Figure 5 shows the design of the inter-
action model of the FI-tool representing its layers, subsys-
tems, and layer connectors. Connectors at subsystem level
and the subsystem’s components are not shown. Theuser-

Interface-layer performs input and output tasks. Themodel-
layer analysis the interaction model and initiates the com-
putation of metrics at the layer and subsystem level. The
metricCalculation-layer provides a set of metrics. Thecon-
figuration-layer manages the configurations for the metric
calculations and thecommonand the3rdParty-layers are
proprietary and third party utilities.

The output of the FI-tool, with the IMDL of the FI-tool
of Figure 5 as input, is a report indicating metric results
and design violations. Table 1 shows results of the insta-
bility metric computed on the layer and subsystem level.
They show that theuserInterface-layer is the most unstable
layer. This fact is supported by a high instability value of
the commandline-subsystem. One of the most stable sub-
systems is thecalculation-results-subsystem. However, the
subsystems that are in the same layer (metricCalculation-
layer) are highly unstable, resulting in an unstable layer.
We have verified the interaction model of the FI-tool dur-
ing its development and Listing 1 presents an extract of the
results of an early version of the tool showing design vio-
lations. Line 2 shows that subsystem3rdParty.parsingin-
teracts with subsystem3rdParty.jal although the design of
the interaction model disallows this connection. The de-
sign violation from thecommonto theconfiguration-layer
(Line 4) is caused by a connector from the subsystemcom-
mon.utilsto the subsystemconfiguration.configurationre-
lating to an interaction between the componentsDcaMet-
ricManager andDcaMetricConfiguration. More informa-
tion about the concrete interaction that causes the violation
can be found in the detailed report.

5. Related Work

Following the steps in the V-model of software develop-
ment, research activities in model-based verification tech-
niques can broadly be divided into three categories. Tech-
niques that allow for constructing models from require-
ments and specifications, models that target primarily the
interaction model of a software design and models for the
composition of components.

• Modeling of Requirements.The Abstract State Ma-
chine Language (AsmL) is a modeling language for
describing scenarios and use cases as sequences of
events [2]. AsmL-models can be used for semi-
automatic parameter generation, action call sequence
generation and conformance testing. The AsmL test
environment allows binding a model to an implemen-
tation, and using the model as a test oracle. However,
formal specification languages have been applied to
numerous problems but had only limited success in a
small number of specific domains.

• Modeling of Design.The Unified Modeling Language

Layer or subsystem IA IE Instability
3rdParty 13 0 0
configuration 4 3 0.43
common 3 5 0.63
metricCalculation 4 6 0.6
userInterface 0 5 1
model 2 7 0.78
xml 1 0 0
parsing 19 1 0.05
calculationResult 14 0 0
configuration 7 4 0.36
jal 14 0 0
elements 9 1 0.1
utils 9 15 0.63
commandline 0 14 1
configuration 1 6 0.86
calculation 2 17 0.89
chidamber-kemerer 0 7 1
depend 0 8 1
simplemetrics 0 3 1

Table 1. Instability metric results at layer and
subsystem level.

(UML) is the standard for visually describing the struc-
ture and behavior of software systems. Goseva et al.
present a risk analysis on the architectural level using
UML models [15]. For verifying the conformance of a
logical view of the design against the implementation
Dependometer [25] and the Software Tomograph [36]
use their proprietary IMDL.

• Modeling of Component Composition.Component-
based engineering is widely used in all engineering
disciplines. A framework for modeling of the be-
havior, interaction and execution model is proposed
in [16]. However, a coherent tool support is missing
and only specific aspects can be formally verified, such
as timing constraints [1].

For software analysis, semantic metrics assess the qual-
ity of software and are meant to be computed from require-
ments or design specifications [33]. They are based on the
vague notion of ideas and concepts and cannot be automat-
ically computed. Worse, in most projects requirements and
specifications are incomplete, change often and most com-
pleted systems have implemented only a small fraction of
the originally-proposed features and functions specified in
the requirements.

Most analysis techniques are informal and use the insight
of the system architect. The architecture tradeoff analysis
method is used to base architectural design decisions on ra-
tional goal-based attributes [20]. Quality attributes such as

Listing 1. Example of design violations of the FI-tool.
1 . . .
2 3 r d P a r t y . p a r s i n g −> 3 r d P a r t y . j a l
3 . . .
4 common −> c o n f i g u r a t i o n
5 common . u t i l s −> c o n f i g u r a t i o n . c o n f i g u r a t i o n
6 common . u t i l s . DcaMetr icManager−> c o n f i g u r a t i o n . c o n f i g u r a t i o n . D c a M e t r i c C o n f i g u r a t i o n
7 . . .

modifiability, safety, and security are measured using in-
spections. Scenarios guide the analysis in the identification
of risks, non-risks, sensitivity and tradeoff points in the ar-
chitecture.

Most of the techniques target a specific aspect of soft-
ware testing and are not integrated into a concept covering a
complete horizontal layer of the development lifecycle from
fault projection and prevention to fault prediction, identifi-
cation and removal.

6. Conclusion

We presented a methodology for analyzing and verifying
the interaction model of software design. Tool support for
performing the analysis and verification activities has been
developed to support automatic and repeatable measure-
ments of interaction dependencies between software com-
ponents, subsystems, and layers. The steps of our method-
ology start from fault prevention through logical interaction
model design, fault projection applying risk priority num-
ber based analysis and evaluation, fault prediction by quan-
tifying interactions between components, subsystems, and
layers, and fault identification and removal by verifying the
logical interaction model against the implementation of the
software system.

In our future work we will investigate metrics, computed
on the interaction model, which point out design weak-
nesses and potential design flaws. For this purpose it is less
necessary to compute precise metrics. The benefit comes
from being able to reveal and identify sensitivity and trade-
off points in the design.

References

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi. Times - A Tool for Modelling and Implementation
of Embedded Systems. InProc. of TACAS 2002, volume
2280 ofLNCS Springer, pages 460 – 464, 2002.

[2] M. Barnett, W. Grieskamp, Y. Gurevich, W. Schulte, N. Till-
mann, and M. Veanes. Scenario-oriented Modeling in AsmL
and its Instrumentation for Testing. InProc. of SCESM’03,
2003.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[4] K. Beck.Test Driven Development. Addison-Wesley Profes-
sional, 2002.

[5] J. Bowen and V. Stavridou. Safety-Critical Systems, For-
mal Methods and Standards.Software Engineering Journal,
1992.

[6] B. Broekman and E. Notenbool.Testing Embedded Software.
Addison Wesley, 2003.

[7] A. Burnard. Verifying and Validating Automatically Gener-
ated Code. InProc. of International Automotive Conference
(IAC), Stuttgart, Germany, 2004.

[8] W. Chapman, A. Bahill, and A. Wymore.Engineering, Mod-
elling and Design. CRC Press, 1992.

[9] D. Chen and M. T̈orngren. A Metrics System for Quanti-
fying Operational Coupling in Embedded Computer Control
Systems. InProc. of EMSOFT’04, pages 184 – 192, Pisa,
Italy, 2004.

[10] S. Chidamber and C. Kemerer. A Metrics suite for Object
Oriented design. M.I.T. Sloan School of Management E53-
315, 1993.

[11] E. Dashof, A. v.d. Hoek, and R. Taylor. A Highly-Extensible,
XML-Based Architecture Description Language. InProc. of
WICSA 2001, Amsterdam, Netherlands, 2001.

[12] E. Dijkstra. Structured Programming, chapter Notes on
Structured Programming, pages 1 – 82. Academic Press,
London, UK, 1972.

[13] F. Doerenberg. Analysis and Synthesis of Depend-
able Computing and Communication Systems, chapter De-
pendability Impairments: Faults, Errors and Failures.
www.nonstopsystems.com. to be published, 2004.

[14] P. L. Goddard. Software FMEA Techniques. InIEEE Proc.
Annual Reliability and Maintainability Symposium, 2000.

[15] K. Goseva-Popstojanova, A. Hassan, A. G. W. Abdelmoez,
D. Nassar, H. Ammar, and A. Mili. Architectural-Level Risk
Analysis Using UML. IEEE Transaction on Software Engi-
neering, 29(10):946 – 960, October 2003.

[16] G. Gössler and J. Sifakis. Composition for Component-based
modeling. InProc. of FMCO’02, Leiden, Netherlands, 2002.

[17] B. Hailpern and P. Santhanam. Software debugging, testing
and verification.IBM Systems Journal, 41(1):4–12, 2002.

[18] F. Heylighen. The Evolution of Complexity, chapter The
Growth of Structural and Functional Complexity during Evo-
lution. Kluwer Academic Publishers, 1996.

[19] C. Jones.Programming Productivity. McGraw-Hill, 1986.
[20] R. Kazman, M. Klein, and P. Clements. Evaluating Soft-

ware Architectures for Real-Time Systems. Technical report,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213 USA, Jul 1999.

[21] H. Kopetz and G. Bauer. The Time-Triggered Architecture.
IEEE Special Issue on Modeling and Design of Embedded
Software, 23(1), 2002.

[22] M. Lehmann. Software evolution - cause and effects. In
Proc. of the 9th International Stevens Awards at IEEE ICSM,
2003.

[23] Lufthansa. Failure of check-in system disrupts ser-
vices. Deutsche Lufthansa AG Corporate Communications ,
September 2004.

[24] R. Martin. OO Design Quality Metrics (An Analysis of De-
pendencies).ROAD, 1995.

[25] D. Menges and I. Otter. Dependometer. Sourceforge, 2003.
[26] G. Menkhaus and B. Andrich. Metric Suite for Directing the

Failure Mode Analysis of Embedded Software Systems. In
Proc. of ICEIS, 2005.

[27] G. Menkhaus and U. Frei. Legacy System Integration us-
ing a Grammar-based Transformation System.CIT - Journal
of Computing and Information Technology, 12(2):95 – 102,
2004.

[28] H. Parkinson, G. Thomson, and S. Iwnicki. The development
of an FMEA methodology for rolling stock remanufacture
and software quality.ImechE Seminar Publication, 20:55 –
66, 1998.

[29] H. Pentti and H. Atte. Failure mode and effects analysis
of software-based automation systems. Technical Report
STUK-YTO-TR 190, STUK, Helsinki, Aug. 2002.

[30] H. Petroski. Design Paradigms: Case Histories of Error
and Judgment in Engineering. Cambridge University Press,
1994.

[31] SAE. Surface vehicle recommended practice. Technical Re-
port SAE-J1739, Society of Automotive Engineers, Warren-
dale, USA, 2002.

[32] L. Sha. Using Simplicity to Control Complexity.IEEE Soft-
ware, pages 20 – 28, July/August 2001.

[33] C. Stein, L. Etzkorn, and D. Utley. Computing Software Met-
rics from Design Documents. InACMSE, 2004.

[34] N. Suh.Axiomatic Design: Advances and Applications. Ox-
ford University Press, 2001.

[35] H. Thane. Safe and Reliable Computer Control Sys-
tems Concepts and Methods. Technical Report ISRN
KTH/MMK/R–96/13-SE, Mechatronics Laboratory, Depart-
ment of Machine Design, Royal Institute of Technology,
KTH, Stockholm, Sweden, 1996.

[36] S. Tomography. www.software-tomography.com, 2003.
[37] W. Tracz. Testing and Analysis of Software Architectures.

In Proc. of ACM ISSTA96, S. Diego, USA, 1996.

