
Aspect-oriented hard real-time programming and
tool integration

Wolfgang Pree and Josef Templ

Department of Computer Science, University of Salzburg, Austria
firstname.lastname@cs.uni-salzburg.at

Abstract
The paper sketches how aspects, integrated into a hard real-time programming language, could improve the
modularization of embedded software. Based on an overview of the Timing Definition Language (TDL, as
described in the TDL language report [1]), we present how aspect-oriented concepts could be woven into that
language. A discussion of the advantages and disadvantages of AspectTDL rounds out the paper.

1 Motivation
Deterministic hard real-time programming systems such as Giotto [2] or TDL [1] assume to interoperate with
their environment through the usage of so-called sensors and actuators exclusively. A sensor represents a value
provided by the environment. It is read into the real-time system by using a getter function, i.e., a function that
returns the value of the sensor by accessing appropriate hardware registers or other environment variables. An
actuator represents a value to be set in the physical environment by means of a setter procedure that writes the
value to an appropriate hardware register or other environment variable. Getters and setters are the only means
to communicate with the physical environment of a real-time system and they are implemented outside of the
source code of the real-time system, for example, in C or Java.
 Getters and setters are called from the real-time system by means of internally maintained glue code,
called drivers. The execution system of real-time code simply calls the appropriate driver in order to activate a
getter or setter. The driver concept abstracts from the concrete implementation of getters and setters.
 Now suppose that we want to equip a real-time system with an additional feature called limit
monitoring. This allows a user to select a subset of sensors and actuators and to specify upper and lower
bounds for the values and associated actions in case of leaving the specified range. Such a feature would affect
all getters and setters insofar as code for range checking must be included for all sensors and actuators that
were selected for monitoring by the user. Clearly this is an undesirable global change of program code spread
across many different source files. In other words this would be a socalled crosscutting aspect, which is the
subject of aspect oriented programming (AOP) as pioneered by G. Kiczales et al. [3]. Another example of a
crosscutting aspect is integration, which means that the real-time system is integrated into some non real-time
environment used to visualize the process state and to interact with the user. The interaction between
heterogeneous real-time systems in a distributed system may also be seen as a crosscutting aspect.
 Without going into the details of AOP implementation, it should be mentioned here that the getter and
setter functions are a poor place for implementing crosscutting aspects of a real-time system. The drivers which
are used to abstract from the getter and setter implementation are much better place. If a driver provides the
means for incorporating additional functionality, aspects may be incorporated even dynamically without the
need to change existing code.

The following sections describe the concepts of AOP, the relevant features of the hard real-time
language TDL and refine the ideas of AOP in the context of real-time software.

2 Multi-dimensional modularization through aspects
Aspect-oriented programming (AOP, [3, 4, 5]) was pioneered by Gregor Kiczales mid of the 1990s as a means
of overcoming the problems related to one static modularization as prevalent in module- and object-oriented
programming languages. The premise of AOP is that there is not one perfect static modularization, but that
various different modularizations are required to modularize a software system. This is why we view AOP as a
means of multidimensional modularization. The additional modularizations that override the one static
modularization depend on conditions that are evaluated at run-time.
Conceptually, AOP is based on the more general idea of meta-programming, which had already been refined
by Gregor Kiczales. Meta-programming allows the modification and extension of the semantics of a

programming language by writing code that defines the specific semantics. For example, a method invocation
in an object-oriented language such as Java can be modified so that additional processing is done, either before
or after the actual method invocation. AOP applies meta-programming for improving the modularization of a
software system. In the following we summarize those AOP concepts and terms that are relevant in the context
of this paper.
Figure 1a schematically shows the static modularization of a software system. Each bar represents a module.
The length of a bar corresponds to the number of lines of code. Those parts of the source code that would
logically form a module but which had to be scattered over several modules are shown as gray bars in the
modules. Source code that logically belongs together but is split over several modules has the disadvantage that
changes have to be accomplished in several modules, not in one spot. Thus, it becomes difficult to maintain
consistency. The AOP advocates argue that it is impossible to find one perfect modularization for a real-world
software system that does not encounter the sketched problem. If one changes the static modularization to solve
one detected modularization glitch, the modularization of other aspects that were originally well modularized,
might be distorted. In other words, according to AOP one static modularization is not sufficient.

Figure 1. AOP cross-cutting

In order to solve the problem of scattered code that logically forms a unit, AOP allows us to cross cut several
modules, that is, to cut the scattered code and put it into an additional module. The gray rectangle in Figure 1b
represents such an additional module containing the code that was originally scattered over several modules.
After presenting the Timing Definition Language we show how aspects could be integrated into that language.

3 The Timing Definition Language (TDL)
Giotto [2] with its sound formal semantics provides language constructs that allow the development of
deterministic, composable control applications. Their timing and communication behavior can be specified
independent of their implementation. The Timing Description Language (TDL, [1]) enhances Giotto towards a
component architecture for real-time control applications. Besides some syntactical changes and minor
adaptations of the semantics, however, TDL is based on the same programming model as Giotto.

Figure 2. Visual Representation of a TDL module

Giotto programs are multi-mode and multi-rate systems that periodically execute a set of tasks and other
activities. Figure 2 shows a simplified, visual representation of a Giotto program, which corresponds to a TDL

module. A TDL application comprises one or more modules. A module consists of a set of modes. A mode
contains a set of activities: task invocations, actuator updates, and mode switches. A TDL module is in one
mode at a time. A mode defines the set of tasks that needs to be executed in parallel in a particular mode of
operation of the real-time application. In addition to executing tasks, a mode also defines actuator update
operations and the conditions for mode switches. All kinds of activities (task invocation, actuator updates, and
mode switches) can be activated with different rates. In order to provide deterministic behavior of a control
system, Giotto defines that task outputs are only available at the end of a task's logical execution period, which
is also called the FLET (fixed logical execution time) assumption. The results of a task may be available earlier
in internal program variables, but each result value that is visible to clients of a task is updated exactly at the
end of the task's FLET.

Figure 3. The Giotto/TDL Task Model

FLET provides the cornerstone to deterministic behavior, platform abstraction, transparent distribution, and
well-defined interaction semantics between different activities. It is always determined which
value is in use at which point in time and there are no race conditions or priority inversions involved.
Figure 3 shows the FLET property of Giotto/TDL tasks.
 In addition to the drivers mentioned in the motivation section, TDL uses drivers for all task events and
for mode switches, where the latter are not shown above.

• the release driver is called at the beginning of the task’s FLET by the socalled E-machine, part of
TDL’s run-time system,

• the start driver is called by the socalled S-machine, also part of TDL’s run-time system, in order to
invoke the task’s implementation function,

• the stop driver is called by the S-machine after finishing execution of a task and
• the termination driver is called at the end of the task’s FLET by the E-machine.

It is beyond the scope of this paper to describe the details of the driver implementations, however, it should be
clear that the drivers are the key of an AOP implementation for TDL. They allow for extending the semantics
of various runtime activities without the need to change the E-machine or the functionality code.

Differences between Giotto and TDL
The most visible syntactical differences between TDL and Giotto are:
• the introduction of a top level language construct (module) and the reorganization of mode declarations,

where ’start’ is a modifier of a mode declaration in TDL.
• the elimination of global output ports, which are replaced by task output ports in TDL,
• the elimination of explicit task and mode drivers, which are merged into mode declarations in TDL,
• the addition of constants, which may also be used to initialize ports in TDL,
• the introduction of units for timing values in TDL.

The following list explains differences between TDL and Giotto semantics.
• program start. A TDL program is started by switching to the start mode. This means that at time zero,

there are neither actuator updates nor mode switches. In Giotto, the actuator updates and mode switches
of the start mode take place at time zero. There are, however, no further actuator updates or mode
switches of the target mode at time zero.

• non-harmonic mode switch. Giotto allows to switch a mode even if there are running tasks as long as
those tasks exist with the same task period in the target mode. However, there may be delays involved
when switching to the target mode. Furthermore, the task will deliver output values to the target mode,
which do not correspond to inputs specified there. TDL does not allow non-harmonic mode switches. We

are thinking about alternative ways of performing even faster mode switches without the need to
continue running tasks in the target mode, with simpler semantics and, last but not least, without any
delays.

• deterministic mode switch. Giotto requests that among all mode switch guards of a mode only one may
return true at a particular point of time. In contrast, TDL evaluates mode switch guards in textual order
from top to bottom and performs the first mode switch whose guard returns true. This definition allows a
more efficient implementation and preserves determinism.

• actuator update. A guarded actuator update in Giotto means that the actuator setter is called
independently of the guard’s result. In TDL, actuator update and actuator setter are both guarded and
performed only if the guard returns true.

The following list describes tool related differences between TDL and Giotto.
• E-code file format. TDL defines a binary, platform independent E-code file format and uses statically

typed APIs for connecting programs with external functionality code. Platform specific output may be
generated by a platform plugin for the TDL compiler.

• E-code instructions. The structure and semantics of Giotto E-code instructions has not been changed in
TDL but a SWITCH instruction has been added. It is used to perform mode switches. In Giotto, mode
switches are performed by the JUMP instruction by jumping to code of a different mode. The SWITCH
instruction makes this special usage of JUMP explicit and thereby simplifies the detection of mode
switches in the E-machine.

• Time Resolution. TDL uses microseconds internally for all timing values, whereas Giotto is based on
milliseconds. This means, that TDL programs may use mode periods below 1 millisecond, given that the
underlying E-machine is fast enough.

4 AspectTDL
The following example illustrates our ideas regarding an aspect-oriented extension of TDL. Note that this is an
experimental syntax and that we have not yet implemented the aspect-oriented extensions of TDL. The
presentation should lead to discussions regarding, for example, the pros and cons of aspects in the context of
TDL or which level of genericity such an extension should provide. The syntax will significantly be shaped by
the implementation of these language features.

The basic concept of AspectTDL is that the various entities described in TDL, associated with various
TDL modules, are subject to cross-cutting. For example, the developer could define an extra module as aspect
that deals with a subset of tasks that are defined in the already specified modules.

We use the TDL module construct, which is the primary unit of program decomposition in TDL, as a
container for aspect-oriented declarations. Following the terminology introduced for aspect-oriented Java [4],
we declare aspects by using the keyword aspect. A module may declare any number of aspects.

module SampleAspectTDLModule {
 aspect limo { //assume: limit monitoring on task outputs
 pointcut limoTasks (task): uses limoPointcutImpl;
 after terminate [wcet=1us] uses limoImpl;
 }
 aspect connect { //assume: output und actuator ports will be connected to the environment
 pointcut connectedPorts (output || actuator): uses connectPointcutImpl;
 before set [wcet=2us] uses connectImpl;
 }
 aspect watchdog { //assume: mode switches will be monitored
 pointcut watchSwitches (mode): uses watchPointcutImpl;
 after switch uses watchImpl;
 }
}

An aspect has a name, which serves to describe the basic idea associated with the aspect. The details of the
aspect are defined within the aspect's body, which is surrounded by a pair of curly brackets.

Every aspect needs a definition of TDL program entities that are the subject of the aspect. We use the
keyword pointcut for defining the selection of those subjects. In addition, an advice (before or after) must be
specified which will be executed whenever the selected program entity performs a specific action.

A pointcut always refers to one of the various TDL program entities such as task, sensor, actuator,
output or mode. The filter specified in the parentheses may be an elaborate expression or simply an appropriate
keyword. In addition to selecting the program entities in the aspect declaration the user may specify a filter
using an external function (e.g., limoPointcutImpl). This function must be implemented as external
functionality code.

An advice is either performed before or after the selected program entity performs a specific action,
which depends on the kind of entity. A task, for example, may be released, started, stopped, and terminated. An
output or actuator port may be set or a mode may be switched to. An advice may need a non-negligible amount
of CPU time, which can be specified by an optional wcet-annotation (worst case execution time). In any case
the implementation of an advice will be done in external functionality code.

Implementation strategy
The basic idea of implementing aspects in TDL is to augment the driver architecture of the TDL E-machine.
Every action performed on a program entity is invoked by using a so-called driver, which serves as the glue
code between the E-machine and the external functionality code. By applying the Observer pattern [6] to the
notion of a driver, we arrive at a framework that allows the registering of listeners for driver events. In addition
to executing a driver's code, we prepare the hooks needed for pre- and postprocessing as sketched in the
following pseudo code:

void terminateDriver() {
 for each b in beforeTerminateListeners: b.call();
 driver code;
 for each a in afterTerminateListeners: a.call();
}

A listener object is created for each task that belongs to a particular aspect. The developer has to provide the
corresponding pointcut implementation function which would look like the following pseudo code:

boolean limoPointcastImpl(Task t) {
 return (aspect limo applies to t);
}

Returning true means that a listener is to be created for the particular task and the listener has to be registered.
Registering a listener means that in case of a before advice the listener is added to the corresponding 'before...'
list and in case of an after advice the listener is added to the corresponding 'after...' list.

5 Conclusions
From the evidences outlined in the paper we believe that weaving aspects into a hard real-time programming
language such as TDL would help to improve the modularization of embedded software. As mentioned in the
motivation, it also facilitates the integration with legacy systems or with non-real-time environments.

We have integrated TDL with the Simulink tool chain [7] so that it becomes useful for our cooperating
industry partners. In this context, the aspect-oriented extension was inspired as we had to think of requests such
as the one how limit monitoring could be specified. The aspect-oriented extension of TDL seems to be the
adequate means for that and for analogous future requirements. In other words, an AspectTDL will
significantly improve the already accomplished integration of TDL within the Simulink environment.

A potential disadvantage is the additional complexity of TDL. Furthermore, the processing of aspects
leads to a run-time overhead that interfers with the Giotto/TDL paradigm of synchronous input and output.
 A first implementation of AspectTDL might imply changes to the syntax of AspectTDL. Several
details, such as the syntax of filters, still need to be defined.

Bibliography
[1] J. Templ. TDL Specification and Report, Technical Report, University of Salzburg;

http://www.SoftwareResearch.net/site/publications/C059.pdf
[2] T.A. Henzinger, C.M. Kirsch, and B. Horowitz. Giotto: A time-triggered language for embedded

programming. Proceedings of the IEEE, 91(1):84–99, January 2003.
[3] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier, J.-M., and Irwin, J.

Aspect-Oriented Programming. In Proc. of ECOOP, Springer-Verlag (1997).
http://www.cs.ubc.ca/~gregor/papers/kiczales-ECOOP1997-AOP.pdf

[4] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm and William G. Griswold. An
Overview of AspectJ. In Proc. of ECOOP, Springer-Verlag (2001).
http://www.cs.ubc.ca/~gregor/papers/kiczales-ECOOP2001-AspectJ.pdf

[5] Hidehiko Masuhara and Gregor Kiczales. Modeling Crosscutting in Aspect-Oriented Mechanisms. In
Proceedings of ECOOP 2003, Springer-Verlag (2003).
http://www.cs.ubc.ca/~gregor/papers/masuhara-ECOOP2003.pdf

[6] E. Gamma, R. R. Helm, R. Johnson, J. Vlissides: Design Patterns—Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[7] W. Pree, G.Stieglbauer: Visual and interactive development of hard real-time code; Automotive Software
Workshop San Diego, CA, January 2004 (Springer LNCS)

