
Task Sequencing for Optimizing the Computation Cycle in a Timed
Computation Model

Sebastian Fischmeister and Guido Menkhaus, University of Salzburg, Austria

Abstract

Recent developments in embedded control systems
promote the timed computation model following the
principles of logical execution time (LET).
Resulting control applications are time
deterministic, value deterministic, and their
properties may be subject to formal verification
against a mathematical model of the control design.
However, the timed computation model introduces
inefficiencies to computation cycles. As the LET of
a real-time control task requires being greater than
its worst-case execution time and computed values
are always propagated at the end of the LET,
actuator updates are unnecessarily delayed. This
makes the control cycle less responsive.
In this paper, we present an approach that allows the
definition of task sequences for a timed computation
model implemented by the timing definition
language (TDL). Task sequences help minimizing
timing delays between sensor readings and actuator
updates (e.g., in estimator-based control systems),
managing startup and shutdown phases of control
systems, and providing mechanisms for
error-detection in fault-tolerant systems.

Keywords: real-time control systems, timed
computation model

1 Introduction

Reactive systems continuously receive stimuli from
sensors, measure the environment, and react on the
environment by controlling actuator states [1, 2].
The systems must be able to sense and control the
environment within a predefined time frame for
which the environment dictates the exact length.
Such systems can be found, for instance, in real-time

process controls in manufacturing or embedded
control systems in the automotive area.
The design of a control system typically involves
creating a set of periodically executed tasks. The
system needs to react quickly to stimuli from the
environment and sequencing of tasks is of primary
concern [3]. A sequence defines a logical
relationship between tasks and the release event of
one task depends upon the termination of its
preceding task. This allows using resources in a
certain order with data dependencies within the
same period.
Programming languages, which implement the
timed computation model such as TDL [4] and
Giotto [5] gained more recognition recently [6, 7, 8].
The essential idea of such languages is
time-triggered cyclic computation in which
computing a task follows reading inputs (e.g., sensor
data) and precedes updating actuators. The logical
execution time (LET) and the worst-case execution
time (WCET) describe the timing behavior of a task.
The task is released at the beginning and terminated
at the end of the LET. The release and the
termination event are time-triggered. According to a
scheduling scheme, the task starts after it has been
released and completes its execution before the LET
has elapsed. The end of the LET specifies the
instance of time when the outputs of the
computation of a task become available to other
tasks or actuators, even if the output of a task is
available earlier (e.g., at the end of the WCET).
TDL, for example, declares a set of modes, which
define sets of task invocations and other activities
that are executed periodically and in parallel. A task
has a set of input ports and a set of output ports. A
driver provides values for the input ports and drivers
assign values to the output ports. Reading input
ports and writing to output ports happens at the

beginning and the end of the LET. This is the reason,
why task sequencing in TDL with data dependencies
can only be arranged across task periods and not
within the same period.
The concept of a LET for tasks introduces
determinism to the control system. A system is said
to be value deterministic, if a set of tasks produces
the same sequence of outputs given the same
sequence of inputs, even though the environment
changes. If the system produces the same output at
always the same time, it is time deterministic. These
properties apply only, if each task is itself value and
time deterministic and the composition of the tasks
is schedulable [9]. The timed computation model
favors system determinism and predictability over
code efficiency and system reactivity [10]. This a
drawback when applying this model to real-time
control systems.
In this article, we introduce task sequencing using
micro-tasks. Micro-tasks help minimizing
inefficiencies in the timed computation model. They
are useful in reducing timing delays between sensor
readings and actuator updates (e.g., estimator-based
control systems), managing startup and shutdown
phases of control systems, and providing
mechanisms for error-detection in fault-tolerant
systems.
The remaining of the article is structured as follows:
Section 2 presents the motivation of the work.
Related work is discussed in Section 3. We
introduce the concept of task sequencing and
micro-tasks for a timed computation model in
Section 4. The implementation and a case study is
discussed in Section 5 and we conclude the article in
Section 6 with a brief outline about our future work.

2 Motivation

When programming embedded control systems in
the automotive, aerospace, and manufacturing
domain, it is necessary not only to specify a task
execution frequency, but also a time-based order of
the execution of tasks. The order defines a sequence
of tasks having a specific execution frequency. It
allows for splitting the calculation of a task into a set
of micro-tasks to

• specify a time-based causal order of tasks,

which require to be executed one after the
other, and

• execute drivers for sensor readings and actuator
updates intertwined with the invocation of
micro-tasks.

Intertwined Invocation. The intertwined
invocation of micro-tasks with actuator updates can
reduce the delay between reading sensor values and
writing actuator updates in timed computation
models. Such a delay has no effect in control
systems in which the invocation period of the task
that computes the control algorithm is comparable to
the computation time of the control algorithm.
However, usually the computation time required to
calculate the control algorithm is small compared to
the sampling period. The delay of updating an
actuator only at the end of the LET can be severe in
feedback control systems, where a long delay could
be disastrous for stability [11].
The specification of a sequence of tasks is desirable
when the state of a real-time image of a real-time
entity needs to be estimated before it is used [12]. A
real-time image is the current state of a real-time
entity. A real-time entity is a controlled object. The
estimation is necessary, if the real-time image has
lost its validity due to the progression of time
between the time of observation of the real-time
entity and the time of usage of its real-time image.
This delay between observation and usage can be
caused by the time it takes to transport the
observation of the real-time entity from the place of
observation to the place of processing or it is due to
a slow sampling frequency of the real-time entity.
The delay between observation and usage introduces
an error. However, the control algorithm can
approximate the error and estimate the state of the
real-time image. Usually state estimation requires
building a model of the dynamics of the real-time
entity. The model allows the computation of the
state of the real-time entity for the interval in which
the real-time image has lost its validity [13].

System Startup and Shutdown. System startup
and shutdown requires a specific sequence of tasks
to be executed. Adherence to this sequence ensures

that the system does not enter an unsafe state. In this
sequence, parallel execution of the tasks is not an
option, since the results of these tasks usually
depend on each other and default/initial values may
be unattainable. System startup and shutdown are no
activities that are executed periodically and cannot
be expressed by languages that support the
description of periodic tasks, only.

Error Detection. Error detection can be
implemented using a system design that includes
model redundancy [14]. Model redundancy has been
found effective against random errors. It uses a
known model that estimates the properties of a
physical system. Error detection identifies
deviations between the model and the physical
system. Task sequences are necessary, since the
model is computed after the physical system has
been controlled and before sensors report the new
state of the system.

3 Related Work

Work on programming languages for control
systems with real-time constraints can be broadly
divided into three categories [9]:

• The scheduled model assigns priorities to tasks.
A scheduler decides on the sequence of the
execution of tasks, to meet all task deadlines,
based on the current priorities of the set of
active tasks.

• The synchronous approach assumes that the
underlying platform is fast enough to execute
all tasks related to an event before the next
event arrives and the set of tasks related to this
event is released.

• The timed model defines a LET for each task
with a release and a termination event for each
task. Other tasks or activities operating on the
environment can use the outputs of a task only
after the termination event of the task has
occurred.

We look at representatives of these categories and
the concepts they use to provide task sequencing.

OSEKWorks [15] is a OSEK/VDX compliant
real-time operating system [16]. It supports tasks
and different scheduling strategies and implements
the scheduled-model approach. In OSEK/VDX each
task must end with callingTerminateTaskor
ChainTask. TerminateTaskends the calling task.
ChainTaskdefines a succeeding task to the calling
task. OSEK/VDX specifies the succeeding task to be
released as soon as the calling task has been
terminated. Yet, the standard does not fully specify
the behavior ofChainTaskwith respect to the
scheduler and task queues. This may result in
non-deterministic behavior of the control
application.

Esterel [17] and Lustre [18] are imperative
synchronous programming languages for
programming hardware and software controllers.
Synchronous languages abstract away the time
required to react to an input and computing an
output. The computing platform is assumed to be
fast enough to react to an event before the next event
arrives. Conceptually, the zero-delay value
propagation (outputs become available as inputs
become available) allows for concurrency and
determinism to coexist. Esterel implements task
sequencing by passing control from one task
instantaneously to the succeeding task. In a
sequence such asp ; q, the task described by the
statementq starts immediately after taskp has
terminated.

XGiotto [10] is an event-triggered programming
language but bases its computation model on the
same abstraction as Giotto. It introduces new
programming constructs that allow for reacting to
synchronous and asynchronous events. The
constructreact {b} until [e] defines a
reaction block with a bodyb and an evente that
terminates the tasks released within the reaction
blockb. A sequence of reaction blocks is processed
sequentially. The body of a reaction block may
declare a LET, determined by the time when the
evente (e.g., a time-triggered event) occurs. The
system scheduler executes the set of tasks in the
body of the reaction block concurrently and it is
impossible to assign a LET to a single task.
However, defining only one task per reaction block
circumvents this limitation.

MetaH[19] is a software-architecture specification
language. It describes how the different elements of
a system (e.g., source, hardware, and
communication) are integrated to form the final
application. The tool chain of MetaH includes tools
for visual editing, schedule or partition modeling,
and analyzing relevant properties such as the timing
behavior. Utilizing this tool chain, MetaH generates
glue code for the interaction of individual elements
of the system and takes care of the annotated
real-time properties. MetaH provides means for
creating task sequences via the concept of undelayed
communication. Undelayed communication is
implemented via precedence-scheduling constraints.
MetaH generates scheduling constraints such that
the source process (information producer) is
dispatched and finishes execution before the target
process (information consumer) is released.
Undelayed communication and thus task sequencing
in MetaH has the following constraints: At least one
of the processes must be aperiodic or both processes
have harmonic periods or the period of one of the
processes is an integer multiple of the other. MetaH
limits undelayed communication to local nodes only,
i.e., two communicating processes must be bound to
the same processor.
Currently, TDL lacks programming constructs to
describe a time-based order of the execution of
sequences of tasks and actuator updates. Possible
solutions to this problem have been discussed in
[20].

4 Task Sequencing with
Micro-Tasks in TDL

Conceptually, TDL bases on Giotto, but it
incorporates extensions such as the concept of a
module, improved language syntax, and clean-house
implementations of the underlying infrastructure on
several hardware platforms [4].
Listing 1 shows a TDL module fragment. A TDL
module consists of one or more TDL modes. A
mode consists of several, possibly concurrently
executed task invocations and actuator updates. A
TDL mode specifies the period, i.e., the length of
one computation cycle (e.g., 1000 ms). A task
period is determined with respect to the execution

period of the mode to which the task is assigned (by
dividing the invocation period of the mode by the
task frequency). The specification of the task
frequency is part of the task declaration in the mode.
Listing 1 shows the modemain, which declares task
mt1 with the frequency ofonce-per-period(i.e.,
period of 1000 ms), taskmt2 with a frequency of
twice-per-period(i.e., period of 500 ms), and an
actuator update with a frequency ofonce-per-period
(i.e., period of 1000 ms).

Listing 1. TDL module fragment.

task m1 [WCET=100 ms] {
i npu t i n t i ;
output i n t o ;
uses f1 (i , o) ;

}

task m2 [WCET=200 ms] {
i npu t i n t i ;
output i n t o ;
uses f2 (i , o) ;

}

s t a r t mode main [1000 ms] {
task

[1] m1 { i := s2} ;
[2] m2 { i := s1} ;
. . .

ac tua to r
[1] a c t := mt1 . o ;

}

4.1 Concept of Micro-Tasks

The underlying concept of micro-tasks is sequential
element composition [21] (see Figure 1). A task is
composed of a sequence of non-concurrent
execution of micro-tasks and actuator updates. The
task to which the micro-tasks are assigned to, is
called parent task. A micro-task itself can be a
parent task to other micro-tasks or so-called child
tasks.
Figure 1 shows the conceptual structure of TDL
including the extension for task sequences. The
TDL language consists of instances of the entities1

1The complete TDL language includes additional entities,
however, they are not relevant for this paper. The language report
[4] provides a complete list.

Actuator, Task, andMode. The new concept of tasks
allows forTasksandModesto include other
groupable elements. Instances ofTaskscan now
contain otherTasks(denoted as micro-tasks) and
Actuators.

Actuator Task Mode

COLLECTION

TIMED ENTITY

GROUPABLE

0 .. *

0 .. *

a
s

 m
ic

ro
-ta

s
k

Figure 1. Structure of the TDL-language exten-
sion for micro-tasks.

Although bothTasksandModesgroup elements
such as tasks and actuators, they differ in syntax and
treatment of the grouped elements.

• Instances ofModeconsist of a set of tasks and
actuators and declare their invocation period.
Modes periodically schedule their set of tasks
and actuators. Instances ofTaskonly specify
tasks and actuators. They do not specify
frequencies for micro-tasks, which is rather
determined by their parent task.

• An arbitrary declaration order of tasks and
actuators in instances ofModedoes not change
the behavior of the control system. However,
the correct declaration order of micro-tasks and
actuators is key for the behavior of the system
in instances ofTasks.

As a consequence of these changes, we can define
sequences of tasks in TDL and have fine-grained
access of execution paths.

4.2 Syntax

Listing 2 is an excerpt of a TDL program using
micro-tasks.

Listing 2. TDL module fragment with micro-
tasks.

task m1 [100 ms] {

i npu t i n t i ;
output i n t o ;
uses f1 (i , o) ;

}

task m2 [200 ms] {
i npu t i n t i ;
output i n t o ;
uses f2 (i , o) ;

}

task t {
i npu t i n t i ;
output i n t o ;

[LET = 200 ms] m1 { i := t h i s . i } ;
ac tua to r a c t := m1 . o ;
[LET = 300 ms] i f g2 () then

m2 { i := m1 . o} ;
}

s t a r t mode main [1000 ms] {
task

[1] t { i := s1} ;
. . . .

}

Taskt contains a sequence of two micro-tasksmt1
andmt2 . In between these two micro-tasks, it
updates actuatoract .
The syntax of this example differs from the standard
TDL syntax. The basic declaration of a task is still
compatible with the standard TDL syntax (see the
two tasksmt1 andmt2). The declaration of tasks
has been extended allowing for sequences of tasks
and actuator updates. Taskt uses the extended
syntax, as it consists of a sequence of taskmt1 , one
actuator update, and, conditionally, taskmt2 .
To retain time and value determinism and be able to
specify the exact timing of actuator updates, we
introduce the attributeLET. This attribute specifies
the LET of each micro-task. Actuators do not have a
LET assigned, since they are executed
synchronously in logical zero time. For example, in
Listing 2, the LET of micro-taskmt1 is 200 ms
(which is significantly larger than its WCET of 100
ms). Concluding from the LET of the micro-tasks
and the order of instructions within the taskt , the
actuator will be updated 200 ms after the release of
taskt . The WCET of a parent task is computed
from the LET of its micro-tasks.

4.3 E Code

The TDL compiler [4] compiles TDL source code
and generates E code for the E machine [22]. The E
machine is a virtual machine that executes the
platform-independent E code and calls the
platform-dependent functionality code. The E code
ensures the timing consistency of the task executions
(see Figure 2).

Environment

Driver Code E−Machine Driver Code

Platform

E−Code
Functionality

Code

Program
Functionality

TDL Program

Sensor Actuator

compiles intocompiles into

runs on

callsexecutes

callscalls

Figure 2. TDL system architecture.

Listing 3 presents a textual version of the E code for
the TDL program of Listing 2.

Listing 3. The E code for the TDL pro-
gram of Listing 2.

l b l 1 :
c a l l , d [t]

2 c a l l , d [mt1]
schedule, mt1

4 fu ture , 200 , l b l 2
re turn

6 l b l 2 : c a l l , d [a c t]
i f n , g2 , l b l 3

8 c a l l , d [mt2]
schedule, mt2

10 l b l 3 : fu ture , 800 , l b l 1
re turn

Thecall instruction synchronously executes
drivers of a task. Theschedule instruction
releases a task to be activated by the scheduler of the
operating system. The instructionfuture initiates
the execution of a block E code instructions at some
time in the future and the instructionreturn
finishes the execution of the block of E code of the
current label. For better readability, we added the

instructionifn , which is a conditional branch
operation given the operand evaluates to false.
The E code is presented in assembler-like style:
lbl: opname(, arg1)?(, arg2)? . Labels for
branching operations are declared at the beginning
of a line. The next argument lists the instruction
name. The instruction name defines the operation,
which the E machine executes. The following
elements list arguments passed to the operation.
Depending on the type of operation, we specify zero
to at most two arguments.
The E code starts with the instruction at labellbl1
(Line 1). In the first two instructions, the E machine
calls the drivers of taskt and micro-taskmt1 . This
loads the arguments into the input ports of the tasks.
The order of the driver calls is not arbitrary. As
specified in the TDL example (see Listing 2), task
mt1 is a child-task of taskt and requires as input
the value of porti of taskt . The driver of taskt
executes and terminates before the driver of
micro-taskmt1 . The next instructions (Lines 3 to 5)
prepare the micro-taskmt1 for dispatching, release
a future condition, and hand over control to the
scheduler. In the case study (Section 5), we provide
more details about the E code.
Introducing micro-tasks requires additional blocks
of E code. Each micro-task requires at least one
additional label, additional drivers, and instructions
(schedule andfuture). However, the additional
E code is necessary to ensure determinism when
using micro-tasks.

5 Case Study

In the following section, we present a case study of a
control system utilizing micro-tasks for error
detection.

5.1 Development Environment

The target platform of the research prototype of the
E machine is the Motorola PowerPC 603 RISC
processor. On this hardware, we run the Real-Time
operating system for Embedded multi-processor
Systems (RTEMS) [23, 24]. The selected compiler
suite is the GNU compiler collection 3.2.3 [25] with

a set of patches specific to the target platform and
the RTEMS operating system.
Using the PSIM application bundled with the GNU
debugger suite [26], we simulate the Motorola
PowerPC 603 RISC processor. Within this
simulator, we run and debug PowerPC machine code
that is equivalent to machine code that would be
executed by a hardware processor. We chose the
PowerPC platform for our research prototypes, for
we later port the system to boards hosting a
Motorola PC 555.
RTEMS is an operating system especially tailored to
multi-processor systems and POSIX compliance. It
is open-source, so we can tailor it to our needs.
Similar to other real-time operating system, RTEMS
provides basic services such as timers, scheduling,
and communication. It includes a POSIX API that
bases on the POSIX 1003.1b and supports a single
process, multi-threaded environment. Regarding
processes, RTEMS supports routines referred to as
single user, single process.

5.2 Implementation Details of the E
Machine

The E machine implementation in RTEMS uses the
POSIX API to a large extent. Most functionality
required by the E machine are standard services
such as timers & clock, alarms, and scheduling. So,
the implementation of the E machine can easily be
ported to other POSIX-compliant platforms such as
RT-Linux.
In the current design of the E machine research
prototype, the E code is not statically linked to the E
machine, the driver, and the functionality code.
Instead, the E code is dynamically loaded at boot
time. It uses the in-memory file system (IMFS) that
RTEMS provides. The IMFS provides full POSIX
filesystem functionality, yet it is RAM based. The E
code is stored in the root directory of the IMFS. To
provide the data at boot time, we build an image file
of the IMFS that is statically linked to the.data
section of the final executable. At boot time,
RTEMS uses this image file to initialize the IMFS.
In the case study, we use the standard scheduler
provided by RTEMS. The RTEMS scheduler
allocates the processor using a priority-based,
preemptive algorithm augmented to provide

round-robin characteristics within individual priority
groups. The goal of this algorithm is to guarantee
that the task, which is executing on the processor at
any point in time is the one with the highest priority
among all tasks in the ready state [24].
Most instructions of the E machine are trivial.
Instructions such asifn , call , or return are
implemented straightforwardly. We look into the
implementation of the two instructionsschedule
andfuture in more detail. The instruction
schedule dispatches a task. In the
implementation, we initialize a data stack and create
a new task using the POSIX callpthreadcreate. The
new task is immediately dispatched. In the
configuration of the RTEMS application, we must
specify the maximum number of active tasks.
Currently, this number is determined by the
maximum count of schedule operations within one
period of a mode. The instructionfuture is
equivalent to a branch instruction that is evaluated at
a specific point in time. The E machine implements
this instruction via suspend operations and task
preemption. Thefuture instruction specifies the
time span until the predicate associated to the
future instruction evaluates to true. The E
machine is suspended for this time span and wakes
up at the specified point in time and preempts all
tasks.

5.3 Splitting Control into Micro-Tasks

Defining task sequences is necessary, for example,
for the design of controls laws using a current or
predictive state estimation, when either the state
elements of the system are inaccurate or they are not
measured. It is possible to split the calculation for
the estimation in a part before reading a sensor and a
part after reading a sensor. In the case study in
Section 5.4, we use a similar approach for
model-based error detection.
Figure 3 shows the logical execution of a taskt
computing the estimator and the control law. The
LET of taskt and thus its invocation period equals
T. When the task is released the estimator calculates
state element estimations and the control law
computes actuator update values. The actuator
values are made accessible to the actuator only when
the termination event of the task occurs, i.e., at the

Suspend Resume Suspend ResumeStart Stop

Release Terminate Release Terminate Release

Logical Execution Time

Sensor

reading

Actuator

update

Sensor

reading

Actuator

update

Plant

t t +T t +2T

Logical Execution Time

Stop

Task t Task t

Start

Sensor

reading

Figure 3. Execution of a task in time-triggered processing systems.

Release Terminate Release Terminate Release

Sensor

reading

Actuator

update

Sensor

reading

Plant

t
t +T t +2T

Logical Execution Time of task t, LET
t

Logical Execution Time of task t, LET
t

Actuator

update

Sensor

reading

 Task t (idle)
Micro-Task

mt2

Micro-Task

mt3

LET
mt1

LET
mt2

LET
mt3

Micro-Task

mt1
 Task t (idle)

Micro-Task

mt2

Micro-Task

mt3

LET
mt1

LET
mt2

LET
mt3

Micro-Task

mt1

Figure 4. Execution of a task in time-triggered processing systems with micro-tasks.

end of the LET. When taskt reads the sensor value
at time t, it reacts on the plant only at time t+T. It
logically reads again the sensor value at time t+T,
i.e., immediately after it has updated the actuator. It
computes the estimation and control law on the basis
of the new sensor value. Then, it updates the
actuator value at time t+2T. This means that it senses
only at time t+2T the impact of the control law
output, based on the sensor input at time t, i.e., two
sampling periods later.

Figure 4 shows the same scenario and how the
logical execution would be described using
micro-tasks. The taskt is split into three
micro-tasks. Micro-taskm3computes the part of the
estimation that can be calculated before reading the
sensor value, whereas micro-taskmt1 calculates the
final state estimation using the current sensor value.
Micro-taskmt2 computes the control law. Taskt
hasLETt and each micro-task has assigned its own

LET, LETmt1 for micro-taskmt1 , LETmt2 for
micro-taskmt2 , andLETm3 for micro-taskm3,
respectively. Actuator inputs can be made available
at the end of the LET of the computation control law
atLETmt2 and before theLETt of taskt has
expired. Consequently, the impact of the sensor
reading at timet can be sensed at time t+T. The
advantage is an improvement of the systems
reactivity.

5.4 Case Study Details

In the case study, we use task sequencing for error
detection. The concept was outlined in Section 2.
We employ the same structure of micro-tasks as it
was applied in the estimator-based control system.
To compute the expected output value of the plant
we use a known model and check the computed
valueexpy against the actual plant outputy,

reported by a sensor. If the difference between the
values exceeds a certain threshold, we assume that a
failure has been detected and an error has occurred.

Listing 4. TDL program with micro-tasks for
error detection.

task e r r o r d e t e c t i o n [5 ms] {
i npu t double exp y ;
i npu t double y ;
output i n t a larm ;
uses pe r fo rm check (expy , y , a la rm) ;

}

task p l a n t c o n t r o l l e r [5 ms] {
i npu t double y ;
i npu t double r ;
output double u ;
uses c o m p u t e c o n t r o l (y , r , u) ;

}

task p l a n t m o d e l [20 ms] {
i npu t double u ;
output double exp y ;
uses compute model (u , expy) ;

}

task c t l w s a n i t y {
i npu t double r , y ;
output i n t a larm ;
s t a t e double s t e x p y := 0 ;

[LET = 10 ms]
e r r o r d e t e c t i o n {y := t h i s . y ;

exp y := s t e x p y , a la rm} ;

[LET = 10 ms]
i f n o t a l a r m (a la rm) then

p l a n t c o n t r o l l e r {y := t h i s . y ;
r := t h i s . r} ;

i f n o t a l a r m (a la rm) then
ac tua to r u := p l a n t c o n t r o l l e r . u ;

[LET = 30 ms]
i f n o t a l a r m (a la rm) then

p l a n t m o d e l {u := p l a n t c o n t r o l l e r . u} ;
}

s t a r t mode main [100 ms] {
task

[1] c t l w s a n i t y { r := s1 ; y := s2} ;
. . . .

}

Listing 4 shows the TDL module fragment that
implements the behavior of the case study. It
specifies three micro-tasks:error detection ,
plant controller , andplant model . These
three micro-tasks are declared in their parent task
ctl w sanity . Mapping the set of micro-tasks of
Figure 4 to the task of Listing 4, micro-task
error detection corresponds to micro-task
mt1 , micro-taskplant controller to
micro-taskmt2 , and micro-taskplant model to
micro-taskm3.

Listing 5. The E code generated from Listing 4.
l b l 1 : c a l l , d [c t l w s a n i t y]

2 c a l l , d [e r r o r d e t e c t i o n]
schedule, e r r o r d e t e c t i o n

4 fu ture , 10 , l b l 2
re turn

6 l b l 2 : i f n , no t a la rm , l b l 3
c a l l , d [p l a n t c o n t r o l l e r]

8 schedule, p l a n t c o n t r o l l e r
l b l 3 : fu ture , 10 , l b l 4

10 re turn
l b l 4 : i f n , no t a la rm , l b l 5

12 c a l l , d [u]
c a l l , d [p l a n t m o d e l]

14 schedule, p l a n t m o d e l
l b l 5 : fu ture , 80 , l b l 1

16 re turn

Listing 5 shows the E code resulting from the case
study. The mode period starts atlbl1 (Line 1). The
driver of taskctl w sanity is executed, which
updates the input portsr andy . The E machine
executes the sanity check (Lines 2 to 5) by releasing
the micro-taskerror detection . The driver of
the micro-task copies the value of the sensor reading
to input porty and the calculated output value of
taskplant model (stored in the state variable
st exp y) to input portexp y . As the LET of task
error detection equals 10 ms, the E machine
passes control to the scheduler and resume after 10
ms (Line 4). At Labellbl2 , the E machine checks,
if an alarm has been set (by the micro-task
error detection). If the alarm has been set, the
E machine immediately jumps to Labellbl3 ,
waiting for 10 ms, and then continues at Label
lbl4 . This behavior is repeated at the beginning of
each task-release sequence (Lines 6 and 11). In Line
6, if no alarm has been set, the E machine releases

the micro-taskplant controller (Lines 7 to
10) and eventually reaches Labellbl4 (Line 11).
In this section (between Labellbl4 and Label
lbl5), the E machine calls the driver of actuatoru
(updating the actuator value) and releases the
micro-taskplant model , which calculates the
expected valueexpy of the next sensor reading.
Finally at Labellbl5 , the E machine returns
control to the scheduler and resumes its operation
from the beginning of the E code at Labellbl1 .

6 Conclusion

The timing definition language (TDL) implements a
timed computation model for hard real-time control
systems. The timed computation model favors
system determinism and predictability over code
efficiency and system reactivity.

In this paper, we introduced the notion of
micro-tasks and task sequencing to the programming
model of TDL that prior to this work only supported
periodic precedence-free execution of tasks.
Micro-tasks and task sequencing are useful in
reducing timing delays between sensor readings and
actuator updates (e.g., for estimator-based control
systems), managing startup and shutdown phases of
control systems, and providing mechanisms for
error-detection in fault tolerant systems (as
presented in the case-study).

In our future work, we will extend the concept of
micro-tasks to support the sequential execution of
arbitrary patterns of micro-tasks, such as micro-task
mt1 and micro-taskmt2 are executed concurrently
after micro-taskm0has terminated.

7 Acknowledgments

We thank Klemens Winkler for his help in porting
the E machine from RTLinux to RTEMS and the
team of the Software Research Lab of the University
of Salzburg for the lively and long discussions on
the micro-task topic.

References

[1] G. Berry, 2000,Proof, Language and
Interaction: Essays in Honour of Robin
Milner, chapter The Foundations of Esterel.
MIT Press .

[2] N. Halbwachs, 1997,Synchronous
Programming of Reactive Systems. Kluwer.

[3] E. Coste-Maniere and N. Turro, 1997, The
MAESTRO language and its environment:
Specification, validation and control of robotic
missions. InIEEE/RSJ International
Conference on Intelligent Robots and Systems,
IROS97, volume 2.

[4] J. Templ, 2004, TDL Specification and Report.
Technical Report, Computer Science,
University of Salzburg.

[5] B. Horowitz T. A. Henzinger, C. Kirsch, 2001,
Giotto: A time-triggered language for
embedded programming. In C. Kirsch, editor,
Proceedings of EMSOFT 2001, volume 221 of
LNCS. Springer.

[6] B. Horowitz, J. Liebman, C. Ma, T. John Koo,
A. Sangiovanni-Vincentelli, and S. Sastry,
2003, Platform-Based Embedded Software
Design and System Integration for
Autonomous Vehicles.IEEE Transactions,
91(1):100 – 111.

[7] C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger,
and W. Pree, 2002, A Giotto-based helicopter
control system. InProc. International
Workshop on Embedded Software (EMSOFT),
volume 2491 ofLNCS, pages 46–60. Springer.

[8] B. Horowitz T.A. Henzinger and C.M. Kirsch,
2003Software-Enabled Control: Information
Technology for Dynamical Systems, pages
123–146. IEEE Press and Wiley-Interscience.

[9] Christoph M. Kirsch, 2002, Principles of
Real-Time Programming.LNCS, 2491.

[10] A. Ghosal, T.A. Henzinger, C.M. Kirsch, and
M.A.A. Sanvido, 2004, Event-driven
programming with logical execution times. In

International Workshop on Hybrid Systems:
Computational and Control, number 2993 in
Springer LNCS, pages 357 – 371.

[11] Gene F. Franklin, David J. Powell, and
Michael L. Workman, 1997,Digital Control of
Dynamic Systems. Prentice Hall.

[12] H. Kopetz and R. Nosssal, 1997, Temporal
Firewalls in Large Distributed Real-Time
Systems. InProceedings of IEEE Workshop on
Future Trends in Distributed Computing.

[13] H. Kopetz, 1998, The Time-Triggered Model
of Computation.Proceedings of the 19th IEEE
Systems Symposium (RTSS98), December
1998.

[14] N.G. Leveson, 1995,Safeware System, Safety
and Computers. Addison Wesley.

[15] Windriver web site, 2004,
http://www.windriver.com/ .

[16] OSEK/VDX Operating System Sepcification
2.2, 2001. Version 2.2.

[17] G. Berry, 1999,The Constructive Semantics of
Esterel. Number 3.0.

[18] P. Caspi, C. Mazuet, R. Salem, and D. Weber,
1999, Formal Design of Distributed Control
Systems with Lustre. In M. Felici, K. Kanoun,
and A. Pasquini, editors,SAFECOMP99,
Springer LNCS 1698, pages 396 – 409.

[19] S. Vestal.MetaH Users Manual. Honeywell
Technology Center, 3660 Technology Drive,
Minneapolis, MN 55418, version 1.27 edition.

[20] W. Pree and J. Templ, 2004, On Digital
Controllers and the Giotto Programming
Model. Technical report, Department of
Computer Science, University of Salzburg,
Austria.

[21] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides, 1995,Design Patterns, Elements
of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing
Series.

[22] C. Kirsch T. A. Henzinger, 2002, The
embedded machine: Predictable, portable
real-time code. InProceedings of the ACM
SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

[23] RTEMS official web site, 2004,
http://www.rtems.com .

[24] OAR Corporation, 2004,RTEMS On-Line
Library, 4.6.1 edition.

[25] GNU compiler collection - official web site,
2004,http://gcc.gnu.org/ .

[26] GNU debugger - official web site, 2004,
http://www.gnu.org/software/
gdb/gdb.html .

