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Abstract. This paper describes a new approach towards a companghmit
tecture for hardeal time control applications agound, forexample, in the
automotive domainBased on thearadigm of fixedogical executiontime
(FLET) as introduced by Giotto [1jve develop digher level languageon-
struct, called module, which allows usto organizeand parallelize real time
code inthe large.Our moduleconstruct servesultiple purposes{l) it in-
troduces a namespace for program entidied supports informatiorhiding,
(2) it represents gartitioning of the set of actuatorand control logic
available in a system, (3) it acts as a stapecification of components and
dependencies, (4) it may serve as tmi of dynamicloading of system ex-
tensions and (5) it may serve as the unit of distributiofun€tionality over
a network of electronic control unitg/e describe théndividual usagecases
of modules, introduce thsyntax required tospecify our needsand discuss
various implementation aspects.

1 Introduction

Hard real timecontrol applications, afund for example inthe automotivedomain,
exhibit topologies which may baassified ag1) asingle applicationsplit between
multiple computation nodesr (2) asingle computatiomodesplit between mltiple
applications. The latterase isconsidered to be ofhcreasing importance fduture
systems because of the ever increasing computation power of microcontroitecs,
processorsand the trend towards marosystems consisting ofnultiple logical or
physical processing units on a single chipboard.Such systems will beapable of
executing multiple control applications parallel ona singleelectroniccontrol unit
(ECU). They must, howevepreserve althe timing properties ofthe applications as
if they were performedndependently ornndividual ECUs. Incase ofthe automotive
domain, the consolidation of ECUs is expedteceduce the weigland complexity of
a vehicle and to save money.

This paper describes componenarchitectureaiming at the goabf ECU consoli-
dationwith preservation ohardreal time properties. Ourmpproach isbased on the
fixed logical execution time assumption introduced by Giotto, but expresseahanea
convenient syntax (TDL = Timing Definitiobanguage)5], slightly changedseman-



tics and, most importantly, a wdule concept, whichintroducesthe required abstrac-
tions for running multiple real time control applications om single system. Our
module construct serves multiple purposes: (iftibduces a namespafm program
entities and supports informatidnding, (2) it represents partitioning of the set of
actuators and control logic available in a systgit acts asa staticspecification of
components, (4) it may serve as thet of dynamic loadingf system extensions and
(5) in the future it may servas the unit ofistribution of functionalityacross anet-
work.

2 Key Ingredients of an Embedded Control Software Model

This section summarizes what we regasgreconditions foa solid componenarchi-
tecture for hard real-time applications. The concepts have been invented in the realm of
the Giotto project [2] at the University of California, Berkeley.

Platform-Independent Specification of Computation and
Communication Activities

Figure 1 shows a simplified, visual representation of a TDL program. A Todule
consists of a set of modes. modecontains a set of activities, task invocations, ac-
tuator updatesand modeswitches. A TDL nodule isin one mode at atime. Mode
switch conditions are checked periodically with a specified frequency.

Tasks form theunits of computation. Thegreinvoked periodicallywith a speci-
fied frequency. They delivaresults through task output ports dotuators otto other
tasks,andthey readinput values from sensor porisr from outputports of other
tasks. Thus, a TDImodel specifieghe real-timeinteraction of aset of components
with the physical world, as well as the real-time interaction between the components.

A task’s functionality, that is the control lawsan be implemented iany non-
embedded programming language such as C.
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Fig. 1. Visual Representation of a TDL module




What makes TDL good software model ishe fact that the developer does not
have to worry about platform details, for example: will the applicatioexeeuted on
a single node or on distributedplatform; whichscheduling scheme ensuttee tim-
ing behavior[4]; which devicedriverscopy the values frorsensors otto actuators.
Thus, thesoftware modekemphasizes application-centricansparency(simplicity),
improves reliabilityandenables reuseyhereaghe compiler thatgenerateshe code
from the model emphasizes performance.

According to [1]Ja TDL programsupervises the interactidretween softwareroc-
essesaandthe physicaworld, but doesnot itself transformdata. All computation is
encapsulated inside the supervised software procéissés), whichcan bewritten in
any non-embeddegrogramming language. Wefer to aTDL programas atiming
program, and to theupervised processealled bythe TDL program adunctionality
programs. A TDLprogram specifieonly the reactivity of the functionality pro-
grams—that is, when they are invoked, and when their oupetsead—butot their
scheduling.

The Fixed Logical Execution Time (FLET) Assumption and its
implications

The keyproperty ofthe TDL semantics is thixed logical execution time (FLET)
assumptionwhich means that thexecutiontimes associatedvith all computation
and communication activities are fixadd determined bthe modelnot the platform.
In TDL, the logical execution time af task isalways exacththe period ofthe task,
andthe logicalexecutiontimes of all other activities (aule switching, datatransfer
across links, etc.) are always zero. For example, thelahskedTaskl in theOpera-
tionMode in Figure 1 logically executes formbcro seconds, whicimplies that (1) it
readsits input at the beginning of itgeriod,and(2) its output is notavailable to
other tasksbefore Smicro secondseven ifthe actual execution ofhe task on the
CPU finishes earlier.

According to [1]a TDL model isenvironment determined; for any givenbehavior
of the physical world seen through the sensorsytbdel computes ainique trace of
actuatorvalues atperiodic time instants.In other words, the only source of non-
determinism in a TDL system is the physical environment. This makeslidation
of the systentonsiderably easieandforms the precondition for real-timecomposi-
tional models.Thus, ourcomponentarchitecturerelies onpreservingthe FLET as-
sumption.

3 FLET-based Components

The subsequent sections present modular architecturéor control applications that
rely on the FLET assumption. The related language constructs are part of TDL.



Introducing Modules

As a first stepowards a modular architectufer hardreal time control systems, we
introducethe notion of anodule as a container of@iotto program.Thus, allcode

belonging toa traditionalGiotto application istextually enclosedinside a module.
The moduleconstructstarts with thekeword'module'followed by the name of the
module and a paof curly brackets, whichliepresenthe namespacétroduced by the
module. The following example shows the skeleton of a module.

nodul e Engi neControl {

// Gotto/ TDL code consisting of sensor, actuator,
//task and node decl arations

}

As a consequence, we arrive @&iotto programs asiamedentities, which may be
handled by arappropriateruntime system on aBCU. Such a runtime systeralso
called anembedded achine (E-machine)nay load and executemultiple modules in
parallel. It should be noted thatradule must onlpe loadednceinto anE-machine
and it staysloadeduntil the E-machineterminates othere issome useiinteraction,
which unloads the module explicitly. It is up to the runtime system hesad on an
ECU if modules are loaded dynamically or if a static configuration has to be provided.

CPU Partitioning

A module mayprovide astart mode, whichis the modethe application isexecuting
after loading the module into &CU. Executing anoduleimplies thereservation of
a percentage ofhe availableCPU timefor execution ofthis module, given that the
CPU isfast enough toexecutethis module in addition to possibly other modules
loadedbefore. A nodulewhich needs tareserve a percentage thie CPU iscalled a
'partition’ and splitting the CPU between multiple partitionsaked'CPU patrtition-
ing'. A module which doesnot provide astart modewill not be executed, which
means, it will not need a CPU patrtition but it may still be meaningful reitbect to
other usage cases as explained in subsequent sections.

Assuming that arfe-machine provideshe means tadynamically load amodule,
this can be usedbr handlingthe usagecase'dynamic partitioning'. At runtime, an
arbitrary module may be loaded upon requeghbyuser, thus leading to a setirde-
pendently loaded modules. Of course, the set of modules lmadedinto a particular
E-machine may beonfigured insomeconfigurationfile, but this is notstandardized
and not known to the E-machine.



Module Import

In order toallow the decomposition oflarge applicationsinto smallerparts and to
allow expressinglependenciebetweenmodulesstatically, themodule conceppro-
vides an import mechanism, which allows a client module to specify thadépend-
ent from a service module atmlaccespublic elements of themportedmodule. The
import relationship forms directedacyclic graph(DAG) betweenclient and service
modules.

nodul e AdvancedCar {

i mport Engi neControl;
i mport BrakeByWre;

i mport ...;

// Gotto/ TDL code consisting of sensor, actuator,
//task and node decl arations.
/1 May access public el ements of inmported nodul es

}

Loading aclient noduleinto anE-machineimplies loading of all imported service
modules unless they have béeaded before. Each @fie modulesmay haveits own
start mode, thusnultiple partitionsmay berequired in order tgerform loading of a
client module.n this case, however, it iknown staticallywhich modulesmust be
loaded due to the static import relationship. Thus, the usage case 'static partitioning' is
dealt with by means of module imports.

While it is obvious that using imported constants, typedsensorsdoesnot pose
any semantic difficulties, it is not a priaiear how totreat constructs such asisks,
modes and actuators.

Multiple applications may read the sasensors, for example, buthat happens if
multiple applications write to the sanaetuatorsNote that anyof the parallel run-
ning applications may be in one of several modes and it is not statiefifigdwhich
actuatorsare undercontrol of which applicatiorat whichtime. Therefore itmust be
prevented that multiple applications writettee same actuator. Theodule construct
comes inhandy, tosolve this problem. Wesimply restrict actuatorupdate to the
module the actuator is declared in. Thus,nteglule construct acts aspartitioning of
the set of actuators. Inlarge application, sensorsould bedeclared in acommon
servicemodule, fromwherethey can be used imny client module. A client adule
declares a subset of the actuatorthefcomplete system apdovides the functionality
and timing to set their values. Reading &élcéuator value is permissibley any client
module if an actuator is made visible.



Information Hiding

According to popular programminganguages waise thekeyword 'public’ to mark
program elements as being publicly visible. There isxeed(so far) for a correspon-
ding keyword'private’, as this is thdefaultanywayandthere is no furthetevel of
visibility.
nodul e Engi neController {
public const maxRpm = 6500;

//... nore code

}

As mentioned above, package or assembly level visibility of names povided by

our module concept. There is, however, a simple way of magpiegnal functional-

ity code topackages (Java) arame spacefC++, C#). Weallow to use structured
module names, i.e. module names are allowed to contain ".". All module name parts up
to the rightmost ".are mapped tgackages inJavaand namspaces inC++ or C#.

Within the TDL module structured rodule namesare references bysing theright-

most name part only. Thaetailedmapping rulesare definedfor every individuallan-

guage mapping and cannot be specifiedeneral. Amapping to ANSIC, for exam-

ple, mightreplacethe '." by ' ' inorder to get unique and valid names forexternal
functions.

Mode Extension

Mode extension isan experimentaleature we areurrentlyworking on. It means to
add or even override activities of a particutende specified in separate modulé&uch
a feature may, foexample, be useful fdrot deploymentof new functionality or for
fixing errors of a modavithout making anychanges inthe erroneousmodule. An
extended mode inherits the mode period from its base mode.



nodul e Ext endedEngi neControl {
i mport Engi neControl;

actuator int newActuator uses set NewAct uator;

task newTask ...; //provides output variable 'res
node nornmal extends Engi neControl.normal {

task [1] newTask(...);

actuator [1l] newActuator := newTlask.res;

}

This example adds a task invocation and an actuator updaiedenormal of module
EngineControl. The extensions get into effect only when modteendedEngineCon-
trol is loaded into an E-machine.

A particular problem arises if aade isextendednultiple times.Since allactivi-
ties of a mode (task invocation, actuator update, and mode switch) mdstebainis-
tic, i.e. there must for example be only anedeswitch guardthat evaluates tdrue,
there must not be an arbitrary sémode extensionavailable in asystem.Therefore
we limit mode extensions to a single extended mode, which maxteededtself by
another single mode, thus leading to a sequence of extensions rather than a tree.

Scheduling Issues

In order to preserve the timing behavior of all concurreexigcutedapplications, it is
required to adaphe schedulingstrategy tothis requirement. Were currently experi-
menting with a simpldime sharingstrategybased onpreemptive scheduling. The
basic idea is as follows.
The GCD of all activityperiods ofall modes ofall partitions must bealculated.
This is called the 'hyper period' and has the obvious property that no event (task invo-
cation, actuator updatenodeswitch) happensluring this period. The hyperperiod
definesthe period oftime, which will be shared byall partitions according totheir
needs. A CPU intensive partition will geethigher percentage the hypermeriodthan
a less CPU intensive partition. The percentagededor a partition is determined by
the mostCPU intensivemode ofthe partitionand may beregarded as #ixed slot
insidethe hyperperiod. Wthin the slot of thenyperperiod assigned to a particular
partition, this partition may perform any calculation and it reagcute inany mode.
Due to the calculated size of the slot, there is litte waste of CPU time. Wheartall
tions execute their most CPU intensive mode, the CPU will be allocated up to 100%.
When loading and scheduling a new partitionmitist bechecked ifthe former hy-
per period needs to be changed becautieedadctivity periods athe newpartition will
not be a multiple of theld hyper period. Ithere is a changell partitions must be



rescheduled fothe newhyper period, otherwise it suffices schedulehe newparti-
tion only and check if theris a slot within thehyper periodavailable for itwhich is
large enough to execute the most CPU intensive mode of the new patrtition.

In practice, there arenly afew periods comnonly in use (e.g500, 1000,10000
usecs)andthesetendnot to be prime numbers. base ofprimes, thehyper period
would get as small as 1 tienunit, which is 1 microsecond inour implementation.
This would producelarge schedulingablesandwould not allow splitting the hyper
period into several slots.

Since scheduling must not be considerebetalone in logicatero time theremust
be a mechanism tperform scheduling during reime execution ofthe previously
started partitions. This can be done easily by using a thread whichughamever the
ECU would be idle anyway. Only after finishing the scheduling€echedulingthere
may be an update tie runtime datatructures, buthis is avery sinple stepwhich
can be regarded as executing in logical zero time.

Implementation Status

We have implemented a variant®iotto called TDLby usingthe compilergenerator

tool Coco [6]. An experimental runtime systdrased onJava threadsyhich are not

strictly real timebut servewell as a testbed for our architecture has been imple-
mented. Execution of parallphrtitions is possiblend schedulingworks asdescribed
above. In addition wareworking on animplementation of ouarchitecturebased on
industry standar@peratingsystems such as OSE¥dOSEK/Time to get aletailed
knowledge about what is really possible under these platforms and what is not. We are
currently considering to port our Java based E-machine to 'realtime' Java.

4 Distributed TDL Components—Outlook and Related
Work

During the course of the development of our modatahitecturefor control systems,
it became cleathat nodules mayserve anothepurpose, namely asnit of distribu-
tion. In ananalogy togeneral-purpos@rogramming languages, a TDL taskirre-
sponds to a function and a TDL moduatgresponds to emodule in languagesuch as
Oberon or Ada. A TDL module is supposed to encapsulate the functionality that is put
on one ECU in current automotive system designs, such adlthbeel-drivecontrol
system or theengine controbystem. This implies that TDL edulesexhibit weak
dependencies omach other, corresponding to weakoupling between modules,
whereas one TDL module hasarrow interface anstrongcohesion.This means that
TDL modulesare a perfecthoice asunits of distribution of functionalityacross a
network of ECUs in casethat the CPU or I/O of a singleode isnot capable of
handlingall the controltasks. In the followingve sketch thedevelopmentscenario
that illustrates how the complexity dfstributedsystem implementation is signifi-
cantly reduced compared to state-of-the-art approaches.
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Application-centric Development

The key benefibf the development mthodologythat results from the TDlcompo-
nent architecture isthat adeveloper doesiot have to worry from the beginning
whether the overalbystem is going to bexecuted on aingle ECU or alistributed
platform. The distribution of th& DL modules is eithegeneratedautomatically or
specifiedlater in thedevelopment procegseebelow). Figure 2 shows what veall
the V-Cluster-Life-Cycle: Modules adeveloped independentdf eachother. Each V-
Life-Cycle delivers amodule. TheTDL modulesare separateunits of compilation.
The behaviol(timing andfunctionality) of themodules isunchanged naenatter how
they are distributed on a specific platform. A time-safety check ensures thahiheg
requirements can be met.

If the modules should be executed atisributed platform, the moduldsgve to be
assigned to ECUs on thparticularplatform. We mightfind heuristics that allow an
automatic assignment of modules to ECUs. For exampleagpectthat needs to be
considered irthe distribution isthat thenetworktraffic betweenthe ECUs is mini-
mized. Thus modules should belose to their sensondactuators ifpossible. The
idea isthat a toolproposes a distribution of the modules, if a@n be foundhat
satisfies thetiming requirements.The proposeddistribution can then bechanged
manually if necessaryBasically, the distribution isdescribed in aable like that:



module @

M1 ECU1
M2 ECU2
M3 ECU1

A visual/interactive editor coulchore convenienthsupport theediting ofthe assign-
ments. Thedevelopercould also view thecurrentCPU usagethat would be updated
according to the modules assigned to one ECU.

Model-based Development

Besidesthe TDL programthe developerhas to come umvith the functionalitycode.
Figure 3 shows a sampirodel-basedool chain thatassumes that Sufink is used
for modeling thefunctionality (controllaws). TheSimulink simulationenvironment
can be usetb validatethe behavior ofthe modulesand their interactionbefore the

code is generated from the models.

Task1Impl
Task2Impl

—>
Simulink-Editor

'

— N

mod

N

C-Code
Generator

|

C Compiler

N

Linker

TDL-Editor
— N
functionality timing
el — | model
Simulink
Simulation
Environment
A /
TDL
Compiler

Fig. 3. Model-based development with the Simulink and TDL tool chain.



Software-Bus Abstraction

Besidesthe TDL programandthe functionality codethe developerhas to come up
with getterandsetterfunctions, which copyalues from the environment &ensors
and from actuators back to thavironment. To simplifghe implementation ofetter
andsetter functions irthe realmof a distributedsystem, we aim aproviding the
abstraction of aet of globallyavailablesensorsandactuators, which we call soft-
ware bus. The implementation of the softwaras forcommonnetworks in theauto-
motive domain, such as (TT-)CAN, FlexRay ahd TTA, along with the distribution
of modules as sketched above will be our next major steyerds afull-fledged com-
ponent architecture for control applications.

Related work

Various methods and tools aim at tthevelopment of distributedontrol applications.
For example,DaVinci (Vector Informatik) and SysDesign(Cadence)represent the
state-of-the-art methoand tool support.Both have incommon that they help the
developer to simulate the behavior of the control system(s) distributedplatform.
The important difference tthe TDL componenarchitecture ighat thesemethods do
not abstract from the distributed platform so that the developer still haerfrm the
activities in a platform-centric manner. That is, the developer has to builbfiiea-
tion with the selected distributed platform in mind.

Neverthelesssome of theools could be used tsimplify the implementation of
the TDL componentarchitectureFor exampleDaVinci could provide asuitable im-
plementation of thesoftwarebus abstractionThis has to beevaluated.SysDesign
could be used ttest the finallydistributedTDL modulesand tovalidatethat the be-
havior of thesimulated TDLprogram(s) is equivalent tthe executablesSysDesign
would have to beheckedwhether it carindeedprovide the necessargranularity for
such virtual prototypes.

Figure 4 showghe abstractiotevels of the variouspproachesBesidesthe plat-
form-centric approacistate-of-the-arimethodsand tools imply a non-deterministic
behavior of (composed)control applications. For example, boaVinci and Sys-
Designdealwith task priorities. The coposition of tasksets could, for example,
result in race conditions. In othewords, with suchools thedeveloperhas thechance
to detectandfix anomalies, hopefullypeforethe system islelivered tothe real plat-
form. But the methods and tools do mprbvide the appropriateabstractions sthat a
straight-forward, error-free composition is guaranteed.
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