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Abstract. This paper describes a new approach towards a component archi-
tecture for hard real time control applications as found, for example, in the
automotive domain. Based on the paradigm of fixed logical execution time
(FLET) as introduced by Giotto [1], we develop a higher level language con-
struct, called module, which allows us to organize and parallelize real time
code in the large. Our module construct serves multiple purposes: (1) it in-
troduces a namespace for program entities and supports information hiding,
(2) it represents a partitioning of the set of actuators and control logic
available in a system, (3) it acts as a static specification of components and
dependencies, (4) it may serve as the unit of dynamic loading of system ex-
tensions and (5) it may serve as the unit of distribution of functionality over
a network of electronic control units. We describe the individual usage cases
of modules, introduce the syntax required to specify our needs and discuss
various implementation aspects.

1 Introduction

Hard real time control applications, as found for example in the automotive domain,
exhibit topologies which may be classified as (1) a single application split between
multiple computation nodes or (2) a single computation node split between multiple
applications. The latter case is considered to be of increasing importance for future
systems because of the ever increasing computation power of microcontrollers, micro-
processors and the trend towards microsystems consisting of multiple logical or
physical processing units on a single chip or board. Such systems will be capable of
executing multiple control applications in parallel on a single electronic control unit
(ECU). They must, however, preserve all the timing properties of the applications as
if they were performed independently on individual ECUs. In case of the automotive
domain, the consolidation of ECUs is expected to reduce the weight and complexity of
a vehicle and to save money.

This paper describes a component architecture aiming at the goal of ECU consoli-
dation with preservation of hard real time properties. Our approach is based on the
fixed logical execution time assumption introduced by Giotto, but expressed in a more
convenient syntax (TDL = Timing Definition Language) [5], slightly changed seman-



tics and, most importantly, a module concept, which introduces the required abstrac-
tions for running multiple real time control applications on a single system. Our
module construct serves multiple purposes: (1) it introduces a namespace for program
entities and supports information hiding, (2) it represents a partitioning of the set of
actuators and control logic available in a system, (3) it acts as a static specification of
components, (4) it may serve as the unit of dynamic loading of system extensions and
(5) in the future it may serve as the unit of distribution of functionality across a net-
work.

2 Key Ingredients of an Embedded Control Software Model

This section summarizes what we regard as preconditions for a solid component archi-
tecture for hard real-time applications. The concepts have been invented in the realm of
the Giotto project [2] at the University of California, Berkeley.

Platform-Independent Specification of Computation and
Communication Activities

Figure 1 shows a simplified, visual representation of a TDL program. A TDL module
consists of a set of modes. A mode contains a set of activities, task invocations, ac-
tuator updates and mode switches. A TDL module is in one mode at a time. Mode
switch conditions are checked periodically with a specified frequency.

Tasks form the units of computation. They are invoked periodically with a speci-
fied frequency. They deliver results through task output ports to actuators or to other
tasks, and they read input values from sensor ports or from output ports of other
tasks. Thus, a TDL model specifies the real-time interaction of a set of components
with the physical world, as well as the real-time interaction between the components.

A task’s functionality, that is the control laws, can be implemented in any non-
embedded programming language such as C.

SampleModule
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Fig. 1. Visual Representation of a TDL module



What makes TDL a good software model is the fact that the developer does not
have to worry about platform details, for example: will the application be executed on
a single node or on a distributed platform; which scheduling scheme ensures the tim-
ing behavior [4]; which device drivers copy the values from sensors or to actuators.
Thus, the software model emphasizes application-centric transparency (simplicity),
improves reliability and enables reuse, whereas the compiler that generates the code
from the model emphasizes performance.

According to [1] a TDL program supervises the interaction between software proc-
esses and the physical world, but does not itself transform data. All computation is
encapsulated inside the supervised software processes (tasks), which can be written in
any non-embedded programming language. We refer to a TDL program as a timing
program, and to the supervised processes called by the TDL program as functionality
programs. A TDL program specifies only the reactivity of the functionality pro-
grams—that is, when they are invoked, and when their outputs are read—but not their
scheduling.

The Fixed Logical Execution Time (FLET) Assumption and i t s
implications

The key property of the TDL semantics is the fixed logical execution time (FLET)
assumption, which means that the execution times associated with all computation
and communication activities are fixed and determined by the model, not the platform.
In TDL, the logical execution time of a task is always exactly the period of the task,
and the logical execution times of all other activities (mode switching, data transfer
across links, etc.) are always zero. For example, the task labelled Task1 in the Opera-
tionMode in Figure 1 logically executes for 5 micro seconds, which implies that (1) it
reads its input at the beginning of its period, and (2) its output is not available to
other tasks before 5 micro seconds, even if the actual execution of the task on the
CPU finishes earlier.

According to [1] a TDL model is environment determined: for any given behavior
of the physical world seen through the sensors, the model computes a unique trace of
actuator values at periodic time instants. In other words, the only source of non-
determinism in a TDL system is the physical environment. This makes the validation
of the system considerably easier and forms the precondition for real-time composi-
tional models. Thus, our component architecture relies on preserving the FLET as-
sumption.

3 FLET-based Components

The subsequent sections present our modular architecture for control applications that
rely on the FLET assumption. The related language constructs are part of TDL.



Introducing Modules

As a first step towards a modular architecture for hard real time control systems, we
introduce the notion of a module as a container of a Giotto program. Thus, all code
belonging to a traditional Giotto application is textually enclosed inside a module.
The module construct starts with the keword 'module' followed by the name of the
module and a pair of curly brackets, which represent the namespace introduced by the
module. The following example shows the skeleton of a module.

module EngineControl {

  //Giotto/TDL code consisting of sensor, actuator,
  //task and mode declarations

}

As a consequence, we arrive at Giotto programs as named entities, which may be
handled by an appropriate runtime system on an ECU. Such a runtime system, also
called an embedded machine (E-machine), may load and execute multiple modules in
parallel. It should be noted that a module must only be loaded once into an E-machine
and it stays loaded until the E-machine terminates or there is some user interaction,
which unloads the module explicitly. It is up to the runtime system being used on an
ECU if modules are loaded dynamically or if a static configuration has to be provided.

CPU Partitioning

A module may provide a start mode, which is the mode the application is executing
after loading the module into an ECU. Executing a module implies the reservation of
a percentage of the available CPU time for execution of this module, given that the
CPU is fast enough to execute this module in addition to possibly other modules
loaded before. A module which needs to reserve a percentage of the CPU is called a
'partition' and splitting the CPU between multiple partitions is called 'CPU partition-
ing'. A module which does not provide a start mode will not be executed, which
means, it will not need a CPU partition but it may still be meaningful with respect to
other usage cases as explained in subsequent sections.

Assuming that an E-machine provides the means to dynamically load a module,
this can be used for handling the usage case 'dynamic partitioning'. At runtime, an
arbitrary module may be loaded upon request by the user, thus leading to a set of inde-
pendently loaded modules. Of course, the set of modules to be loaded into a particular
E-machine may be configured in some configuration file, but this is not standardized
and not known to the E-machine.



Module Import

In order to allow the decomposition of large applications into smaller parts and to
allow expressing dependencies between modules statically, the module concept pro-
vides an import mechanism, which allows a client module to specify that it is depend-
ent from a service module and to access public elements of the imported module. The
import relationship forms a directed acyclic graph (DAG) between client and service
modules.

module AdvancedCar{

  import EngineControl;
  import BrakeByWire;
  import ...;

  //Giotto/TDL code consisting of sensor, actuator,
  //task and mode declarations.
  //May access public elements of imported modules

}

Loading a client module into an E-machine implies loading of all imported service
modules unless they have been loaded before. Each of the modules may have its own
start mode, thus multiple partitions may be required in order to perform loading of a
client module. In this case, however, it is known statically which modules must be
loaded due to the static import relationship. Thus, the usage case 'static partitioning' is
dealt with by means of module imports.

While it is obvious that using imported constants, types and sensors does not pose
any semantic difficulties, it is not a priori clear how to treat constructs such as tasks,
modes and actuators.

Multiple applications may read the same sensors, for example, but what happens if
multiple applications write to the same actuators? Note that any of the parallel run-
ning applications may be in one of several modes and it is not statically defined which
actuators are under control of which application at which time. Therefore it must be
prevented that multiple applications write to the same actuator. The module construct
comes in handy, to solve this problem. We simply restrict actuator update to the
module the actuator is declared in. Thus, the module construct acts as a partitioning of
the set of actuators. In a large application, sensors could be declared in a common
service module, from where they can be used in any client module. A client module
declares a subset of the actuators of the complete system and provides the functionality
and timing to set their values. Reading the actuator value is permissible by any client
module if an actuator is made visible.



Information Hiding

According to popular programming languages we use the keyword 'public' to mark
program elements as being publicly visible. There is no need (so far) for a correspon-
ding keyword 'private', as this is the default anyway and there is no further level of
visibility.

module EngineController {

  public const maxRpm = 6500;

  //... more code

}

As mentioned above, package or assembly level visibility of names is not provided by
our module concept. There is, however, a simple way of mapping external functional-
ity code to packages (Java) or name spaces (C++, C#). We allow to use structured
module names, i.e. module names are allowed to contain '.'. All module name parts up
to the rightmost '.' are mapped to packages in Java and namespaces in C++ or C#.
Within the TDL module, structured module names are references by using the right-
most name part only. The detailed mapping rules are defined for every individual lan-
guage mapping and cannot be specified in general. A mapping to ANSI C, for exam-
ple, might replace the '.' by '_' in order to get unique and valid names for external
functions.

Mode Extension

Mode extension is an experimental feature we are currently working on. It means to
add or even override activities of a particular mode specified in a separate module. Such
a feature may, for example, be useful for hot deployment of new functionality or for
fixing errors of a mode without making any changes in the erroneous module. An
extended mode inherits the mode period from its base mode.



module ExtendedEngineControl {

  import EngineControl;

  actuator int newActuator uses setNewActuator;

  task newTask ...; //provides output variable 'res'

  mode normal extends EngineControl.normal {
    task [1] newTask(...);
    actuator [1] newActuator := newTask.res;
  }

}

This example adds a task invocation and an actuator update to mode normal of module
EngineControl. The extensions get into effect only when module ExtendedEngineCon-
trol is loaded into an E-machine.

A particular problem arises if a mode is extended multiple times. Since all activi-
ties of a mode (task invocation, actuator update, and mode switch) must be determinis-
tic, i.e. there must for example be only one mode switch guard that evaluates to true,
there must not be an arbitrary set of mode extensions available in a system. Therefore
we limit mode extensions to a single extended mode, which may be extended itself by
another single mode, thus leading to a sequence of extensions rather than a tree.

Scheduling Issues

In order to preserve the timing behavior of all concurrently executed applications, it is
required to adapt the scheduling strategy to this requirement. We are currently experi-
menting with a simple time sharing strategy based on preemptive scheduling. The
basic idea is as follows.

The GCD of all activity periods of all modes of all partitions must be calculated.
This is called the 'hyper period' and has the obvious property that no event (task invo-
cation, actuator update, mode switch) happens during this period. The hyper period
defines the period of time, which will be shared by all partitions according to their
needs. A CPU intensive partition will get a higher percentage of the hyper period than
a less CPU intensive partition. The percentage needed for a partition is determined by
the most CPU intensive mode of the partition and may be regarded as a fixed slot
inside the hyper period. Within the slot of the hyper period assigned to a particular
partition, this partition may perform any calculation and it may execute in any mode.
Due to the calculated size of the slot, there is litte waste of CPU time. When all parti-
tions execute their most CPU intensive mode, the CPU will be allocated up to 100%.

When loading and scheduling a new partition, it must be checked if the former hy-
per period needs to be changed because of the activity periods of the new partition will
not be a multiple of the old hyper period. If there is a change, all partitions must be



rescheduled for the new hyper period, otherwise it suffices to schedule the new parti-
tion only and check if there is a slot within the hyper period available for it which is
large enough to execute the most CPU intensive mode of the new partition.

In practice, there are only a few periods commonly in use (e.g. 500, 1000, 10000
usecs) and these tend not to be prime numbers. In case of primes, the hyper period
would get as small as 1 time unit, which is 1 microsecond in our implementation.
This would produce large scheduling tables and would not allow splitting the hyper
period into several slots.

Since scheduling must not be considered to be done in logical zero time, there must
be a mechanism to perform scheduling during real time execution of the previously
started partitions. This can be done easily by using a thread which is run whenever the
ECU would be idle anyway. Only after finishing the scheduling (or rescheduling) there
may be an update of the runtime data structures, but this is a very simple step which
can be regarded as executing in logical zero time.

Implementation Status

We have implemented a variant of Giotto called TDL by using the compiler generator
tool Coco [6]. An experimental runtime system based on Java threads, which are not
strictly real time but serve well as a test bed for our architecture, has been imple-
mented. Execution of parallel partitions is possible and scheduling works as described
above. In addition we are working on an implementation of our architecture based on
industry standard operating systems such as OSEK and OSEK/Time to get a detailed
knowledge about what is really possible under these platforms and what is not. We are
currently considering to port our Java based E-machine to 'realtime' Java.

4 Distributed TDL Components—Outlook and Related
Work

During the course of the development of our modular architecture for control systems,
it became clear that modules may serve another purpose, namely as unit of distribu-
tion. In an analogy to general-purpose programming languages, a TDL task corre-
sponds to a function and a TDL module corresponds to a module in languages such as
Oberon or Ada. A TDL module is supposed to encapsulate the functionality that is put
on one ECU in current automotive system designs, such as the all-wheel-drive control
system or the engine control system. This implies that TDL modules exhibit weak
dependencies on each other, corresponding to weak coupling between modules,
whereas one TDL module has a narrow interface and strong cohesion. This means that
TDL modules are a perfect choice as units of distribution of functionality across a
network of ECUs in case that the CPU or I/O of a single node is not capable of
handling all the control tasks. In the following we sketch the development scenario
that illustrates how the complexity of distributed system implementation is signifi-
cantly reduced compared to state-of-the-art approaches.
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Fig. 2. V-Cluster-Life-Cycle

Application-centric Development

The key benefit of the development methodology that results from the TDL compo-
nent architecture is that a developer does not have to worry from the beginning
whether the overall system is going to be executed on a single ECU or a distributed
platform. The distribution of the TDL modules is either generated automatically or
specified later in the development process (see below). Figure 2 shows what we call
the V-Cluster-Life-Cycle: Modules are developed independently of each other. Each V-
Life-Cycle delivers a module. The TDL modules are separate units of compilation.
The behavior (timing and functionality) of the modules is unchanged no matter how
they are distributed on a specific platform. A time-safety check ensures that the timing
requirements can be met.

If the modules should be executed on a distributed platform, the modules have to be
assigned to ECUs on the particular platform. We might find heuristics that allow an
automatic assignment of modules to ECUs. For example, one aspect that needs to be
considered in the distribution is that the network traffic between the ECUs is mini-
mized. Thus modules should be close to their sensors and actuators if possible. The
idea is that a tool proposes a distribution of the modules, if one can be found that
satisfies the timing requirements. The proposed distribution can then be changed
manually if necessary. Basically, the distribution is described in a table like that:



module @
M1 ECU1
M2 ECU2
M3 ECU1

A visual/interactive editor could more conveniently support the editing of the assign-
ments. The developer could also view the current CPU usage that would be updated
according to the modules assigned to one ECU.

Model-based Development

Besides the TDL program the developer has to come up with the functionality code.
Figure 3 shows a sample model-based tool chain that assumes that Simulink is used
for modeling the functionality (control laws). The Simulink simulation environment
can be used to validate the behavior of the modules and their interaction before the
code is generated from the models.

Task1Impl

Task2Impl

. . .

M1

M2

M3

Simulink-Editor TDL-Editor

functionality
model

timing
model

Simulink
Simulation

Environment

C-Code
Generator

C Compiler

TDL
Compiler

Linker

Fig. 3. Model-based development with the Simulink and TDL tool chain.



Software-Bus Abstraction

Besides the TDL program and the functionality code the developer has to come up
with getter and setter functions, which copy values from the environment to sensors
and from actuators back to the environment. To simplify the implementation of getter
and setter functions in the realm of a distributed system, we aim at providing the
abstraction of a set of globally available sensors and actuators, which we call a soft-
ware bus. The implementation of the software bus for common networks in the auto-
motive domain, such as (TT-)CAN, FlexRay and the TTA, along with the distribution
of modules as sketched above will be our next major steps towards a full-fledged com-
ponent architecture for control applications.

Related work

Various methods and tools aim at the development of distributed control applications.
For example, DaVinci (Vector Informatik) and SysDesign (Cadence) represent the
state-of-the-art method and tool support. Both have in common that they help the
developer to simulate the behavior of the control system(s) on a distributed platform.
The important difference to the TDL component architecture is that these methods do
not abstract from the distributed platform so that the developer still has to perform the
activities in a platform-centric manner. That is, the developer has to build the applica-
tion with the selected distributed platform in mind.

Nevertheless, some of the tools could be used to simplify the implementation of
the TDL component architecture. For example, DaVinci could provide a suitable im-
plementation of the software bus abstraction. This has to be evaluated. SysDesign
could be used to test the finally distributed TDL modules and to validate that the be-
havior of the simulated TDL program(s) is equivalent to the executables. SysDesign
would have to be checked whether it can indeed provide the necessary granularity for
such virtual prototypes.

Figure 4 shows the abstraction levels of the various approaches. Besides the plat-
form-centric approach state-of-the-art methods and tools imply a non-deterministic
behavior of (composed) control applications. For example, both DaVinci and Sys-
Design deal with task priorities. The composition of task sets could, for example,
result in race conditions. In other words, with such tools the developer has the chance
to detect and fix anomalies, hopefully before the system is delivered to the real plat-
form. But the methods and tools do not provide the appropriate abstractions so that a
straight-forward, error-free composition is guaranteed.
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