
Visual and interactive development of hard real-time
code

Wolfgang Pree and Gerald Stieglbauer

Software Research Lab, Department of Computer Science
University of Salzburg, A-5020 Salzburg, Austria
{Lastname}@SoftwareResearch.Net

Abstract. The paper first presents the integration options of what we call the
Timing Description Language (TDL) with Mathworks' Simulink tools. Based
on the paradigm of fixed logical execution time (FLET) as introduced by Giotto
[2], TDL enhances Giotto towards a component architecture for real-time
control applications [9]. The challenge is to provide appropriate visual and
interactive modeling capabilities so that the developer can come up with the
TDL timing model in the context of Simulink which has established itself as
defacto modeling standard for control applications. The paper illustrates by
means of a simple case study how we envision an adequate integration of both
the TDL and the Simulink modeling approaches.

1 The power of an appropriate software model

Traditionally, control theory and hardware-based engineering have addressed the
design of robust control applications using continuous-time signals. The permanent
increase of the computing power of microprocessors has been reinforcing the trend to
implement control functionality in software [3]. Software processes however, evolve
in discontinuous time [4]. The distinction between embedded hardware and software
systems lies conceptually in the different treatment of concurrency and the role of
time [6]. As the complexity of embedded control applications increases, it is essential
to introduce means to master the complexity of the software [5] and to define
adequate methods and tools for building such control systems.

The buzz word model-based development has been coined to express that control
and software engineers should use methods and tools that support application-centric
development instead of a platform-centric approach. The key challenge is to identify
the appropriate modeling abstractions and to provide a set of tools that better supports
the process of modeling control applications. Giotto and its successor TDL illustrate
what are the key ingredients of a good software model for control applications:

Application-centric abstractions. Traditionally, a control system is designed
using tools for mathematical modeling and simulation, such as MathWorks' Simulink.
Giotto has introduced the separation of the timing behavior from the functionality
code (control laws). Giotto focuses only on the timing behavior. The functionality
code can be programmed in any non-embedded programming language such as C.

Simulink can be used to model the control laws and to generate the corresponding C
code from these models.

The main abstractions introduced by Giotto are the task and mode constructs. A
task periodically computes a function (typically a control law). A mode contains a set
of activities, task invocations, actuator updates and mode switches. A Giotto program
is in one mode at a time. Mode switch conditions are checked periodically to
determine whether to switch from the current mode to another one.

Tasks form the units of computation. They are invoked periodically with a
specified frequency. They deliver results through task output ports connected to
actuators or to other tasks, and they read input values from sensor ports or from
output ports of other tasks. Thus, a TDL model specifies the real-time interaction of a
set of components with the physical world, as well as the real-time interaction
between the components.

What makes Giotto a good software model is the fact that the developer does not
have to worry about platform details, for example: will the application be executed on
a single node or on a distributed platform; which scheduling scheme ensures the
timing behavior [4]; which device drivers copy the values from sensors or to
actuators. Thus, the software model emphasizes application-centric transparency
(simplicity), improves reliability and enables reuse, whereas the compiler that
generates the code from the model emphasizes performance.

Determinism. The key property of the TDL semantics is the fixed logical
execution time (FLET) assumption, which means that the execution times associated
with all computation and communication activities are fixed and determined by the
model, not by the platform. In TDL, the logical execution time of a task is always
exactly the period of the task, and the logical execution times of all other activities
(mode switching, data transfer across links, etc.) are always zero. According to [2] the
FLET assumption has all concurrent task executions within a TDL mode run logically
in parallel. The logical execution time of a task is an abstract notion which is possibly
very different from the actual, physical execution time of the task on a particular
CPU, which may vary from task invocation to task invocation. The power of the
FLET assumption stems from the fact that logical, not physical execution times
determine when sensors are read, when actuators are written, and when data travels
across links.

As a consequence of the FLET assumption, a TDL model is environment
determined: for any given behavior of the physical world seen through the sensors,
the model computes a unique trace of actuator values at periodic time instants [2]. In
other words, the only source of nondeterminism in a TDL system is the physical
environment. Furthermore, TDL represents a real-time process model that lifts
program composition to process composition [10]: processes composed in that model
compute, given a sequence of inputs, the same sequence of outputs (value-
determinism) at the same time (time-determinism) provided the composition preserves
the process timing (time-invariant) and is schedulable (time-safe), and the individual
processes are value- and time-deterministic.

Syntax. The original syntax of both, Giotto and TDL is a textual one. The TDL
language report [8] describes this representation of TDL programs in detail. Though
one might prefer the textual representation of a TDL program, it was a goal from the
beginning to also provide a visual and interactive modeling support for TDL. We aim

at a seamless integration with the Simulink paradigm and tools, in particular its
simulation capabilities. The paper first sketches the integration options of TDL and
Simulink that have seemed to be the natural choices but finally turned out to lead to
dead ends. Based on that experience we present in section 3 what we regard as the
most suitable integration. The paper assumes that the reader has a basic knowledge
about Mathworks’ Matlab/Simulink tools.

2 TDL as part of Simulink

This section describes what have seemed to be the two straight-forward integration
approaches. We explain, why these integration approaches that we have actually
implemented, have lead to a dead end. On the one hand this explains why we regard
the third way, using Simulink as a back-end (section 3), as the most suitable one. On
the other hand this might help to select the appropriate integration with Simulink for
other model-based approaches.

2.1 TDL tasks as Simulink S-function blocks

A Simulink model is composed of blocks and signal lines. Blocks contain either
functionality, which is used to calculate the output value(s) from the input value(s) of
a block, or they contain further Simulink blocks. These container blocks are called
Subsystem blocks and allow an arbitrary nesting. Subsystem blocks are the only
means for structuring a Simulink model. From a programming language perspective,
Subsystem blocks correspond conceptually to a function. Thus, the module construct
is completely missing in Simulink. In other words, the Simulink modeling paradigm
is stuck at function-oriented, top-down design. No module or class constructs which
are nowadays regarded as essential for component-based development, are available
for modeling.

Signal lines connect output ports of blocks with input ports of other ports and
represent visually the data flow in a Simulink model. The common way of extending
the Simulink functionality is through so-called System-function blocks (S-function
blocks). Their functionality is programmed either in C, Ada, Fortran or Matlab. The
program providing the particular S-function block behavior has to adhere to
Simulink's callback architecture. This means that several callback functions have to
be implemented in the chosen programming language. The most important callback
functions are mdlOutputs(...) and mdlUpdate(...). The execution phase
of each Simulink block is an iterative computation of (1) the block outputs (2) block
states and (3) the next time step. The function mdlOutputs(...) calculates the
output of the block, while mdlUpdate(...) updates the block states.

The basic idea of coming up with a periodic task is to harness the subsystem
triggering mechanism. Figure 1 illustrates this Simulink feature. If the triggering S-
function block sends a 1 (true) via the data flow link to the subsystem, the subsystem
is activated. Thus, the S-function block has to trigger the subsystem which represents
a TDL task according to the desired frequency.

Fig. 1. A triggered Subsystem block in Simulink.

Managing a FLET-based task communication requires that the result of a task
execution (output values calculated by the Subsystem block) is communicated to
another task after a fixed time period. Thus we need conceptually another S-function
block that delays the communication of the values that flow between TDL tasks. To
streamline the usage we have implemented the communication and triggering
behavior described above in one S-function block. Figure 2 shows how a simple TDL
program is specified with that S-function block. The S-function block has a clock as
symbol inside. Note that one S-function block instance is used for triggering a
subsystem and another one is used for the output signal line. The two tasks simply
increase their input by one. Task1 (upper Subsystem block in Figure 1) runs twice as
fast as Task2.

Fig. 2. A TDL program with two tasks.

Benefits and drawbacks. The presented approach is the recommended choice for
extending Simulink. Nevertheless, we decided to discard this integration option for
the following reasons: The generated code (Real-Time Workshop) does not allow the

preemption of TDL tasks. This limitation is a show stopper: First, the time intervals
between two simulation steps have to be as small as determined by the fastest TDL
task. Second, all task computations have to be done within that interval. Thus, the S-
Function integration option results in inefficient code that might be useless in practice
in most situations. Though the code generation could have been adapted, another
reason lead to the decision to not further pursue this approach: The integration
strongly depends on the internal execution mechanism of Simulink. Indeed, the
execution mechanism has changed between a minor version update of Simulink in the
course of implementing the TDL S-function block without any notice in the
documentation. As a consequence, C-code from the callback function mdlOutput
had to be moved to mdlUpdate. Moreover, some subtle differences between
simulation and the real-time versions of the S-function implementations could tamper
the model-based development.

2.2 Integration of TDL tasks and modes through model transformation

The basic idea of this kind of integration is to use standard Simulink blocks to model
the FLET behavior of TDL tasks. The Zero-Order-Hold (ZOH) and Unit-Delay (UD)
blocks allow the modeling of this core TDL property. Figure 3 shows the TDL
program with the same semantics as the one in Figure 2.

Fig. 3. A TDL program with two tasks constrained by ZOH and UD blocks.

From the developer’s point of view the insertion of the ZOH and UD blocks becomes
inconvenient for more complex programs. With several tasks and numerous input and
output lines it is tedious to place the ZOH and UD blocks and to define their
parameters so that they correspond to the desired task periods. Above all, this would
only suffice for simulation. To benefit from TDL, the compilable textual TDL
program would have to be written by hand after the model simulation leads to
satisfying results. This is why we have defined a TDL task block that is used to
specify the model. The model then can be transformed by the S/TDL translator tool
for simulation (the ZOH and UD blocks are inserted automatically by the S/TDL
translator). The S/TDL translator also generates the TDL textual program from the
model. That can be compiled for a specific execution platform. Below we model a
simple throttle control system to illustrate this approach. This sample application only
comprises TDL tasks in one mode. So no modes and no mode switches have to be
modeled.

Fig. 4. Top level view of the throttle control model.

Developer’s perspective. We use the Simulink editor to define both, the TDL
program (timing aspects) and the functionality (control laws corresponding to the task
functions) of the throttle controller. On the top level subsystem, we define the TDL
controller and the plant, that is, the model of the throttle, which interacts with the

controller during the simulation. To model the plant, we use standard Simulink blocks
and put them into a subsystem block. To define the TDL controller, we use the so-
called TDL program block from a library. Figure 4 shows the top level view of the
model.

A TDL program block contains TDL task blocks, which are also in the TDL
library. In our case study, only one task is needed for controlling the throttle (see
Figure 5). In a dialog box the developer defines the task frequency relative to the
period of the TDL program block and its initial output values. The initial output
values are set to 0, while we configure the relative task frequency to 1, which means a
task execution period of 25ms (hyper period defined for the TDL program block).

Fig. 5. Definition of a TDL task.

Finally, we model the functionality of the task inside that subsystem block with the
appropriate Simulink blocks (see Figure 6).

Fig. 6. Definition of the functionality (control law) of the TDL task that controls the throttle.

Simulation of a TDL program. After modeling the controller in Simulink, the
developer typically simulates it. For that purpose, the S/TDL tanslator tool translates
the model to one which has the ZOH and UD blocks inserted so that the model
exhibits the TDL semantics.

The translation results in a new Simulink model file. The developer loads that
model into Simulink and starts the simulation. The user analyses the simulation
results and decides if modifications have to be done to the original model. In this case,
the developer changes the original model, repeats the translation step and starts the
simulation again.

Code generation. Once the model exhibits the desired behavior the code for the
target platform has to be generated. We refrain from describing the details of the code
generation process and refer the interested reader to [7]. The S/TDL translator
generates on the one hand the textual TDL program which is then compiled with the
TDL compiler. On the other hand glue code is generated that allows the linking of the
TDL executable (timing code) with the functionality code, which is the C code
generated from the tasks by means of one of the Simulink_to_C generator tools such
as the Real-Time Workshop (RTW) or TargetLink. We have shown the feasibility of
that code generation process in the realm of the throttle control example for the
MPC555 platform, with the OSEK operating system and the RTW.

Hitting the wall—providing TDL modes in addition to TDL tasks. The semantics
of TDL modes implies a significant increase in the complexity of the transformed
model. As TDL mode switches correspond to constrained state transitions in state
flow diagrams, the idea was to use Simulink’s StateFlow editor for specifying a TDL
mode switch. (The TDL mode switches are so far constrained as the mode switch
conditions are checked periodically, thus complying with the FLET assumption.
Furthermore TDL currently does not support nested modes.) Figures 7 and 8 show a
sample model with two modes. The modes are modeled in the Simulink editor (Figure
7). We do not explain here the nasty detail that a merge block is required. The chart
block represents a link to another editor, the StateFlow editor that is part of the

Simulink tool suite. Figure 8 shows the modeling of the transition between the two
modes in the StateFlow editor. Note that the variables used in the switch conditions,
such as NormalMode_out1 have to adhere to a naming convention so that the two
diagrams are connected. The number 2 separated by a bar (|) from the condition
specifies the relative frequency how often the switch condition is going to be checked.

Fig. 7. Modeling a TDL program with modes in Simulink.

Fig. 8. Modeling mode switch conditions with the StateFlow editor.

Though the simple example seems to be manageable from a developer’s perspective,
Figure 9 corroborates that this is not the case any longer in a slightly more complex
example: a TDL program with three modes and several input and output signal lines.
Note that this is still the simplified modeling view the developer has. Even the usage
of Multiplexer/Demultiplexer blocks and GoTo blocks does not help to simplify the
model.

Fig. 9. Three modes already result in complex models that cannot easily be understood.

Benefits and Drawbacks. If modeling TDL programs without mode switching, the
presented approach is the most straightforward one. A Simulink user can easily
accomplish that. It leads to better structured Simulink models where the timing and
functionality behavior is separated. However, if modes are required, which typically
is the case in practice, the model becomes too cluttered and thus barely
understandable. In addition, the developer has to obey to several guidelines and
naming conventions. The Simulink model editor does not provide means to give
feedback about modeling rule violations. Potential violations could only be caught by
the S/TDL translator tool when the model is processed. All the disadvantages of this
approach compared to the separate TDL editor suite are discussed in section 3.2.

3 Separate TDL editor suite with Simulink as back-end

Analogous to the fact that StateFlow is a separate editor focused on state transition
diagrams and integrated in the Simulink tool suite, a separate TDL editor suite can
best support the developer in modeling the timing behavior of an application. (Though
the TDL editor suite is not yet part of the Mathworks tool suite. The TDL editor suite
is in the process of being implemented in Java with the JGraph framework.) This
section describes the tool chain with the TDL editor suite from the developer’s
perspective. The enhanced throttle control case study, that now comprises two modes,

illustrates the modeling of a sample application. A discussion of the advantages of
this integration solution rounds out the paper.

Fig. 10. An overview about the TDL/Simulink tool chain

3.1 The tool chain with the TDL editor suite

Figure 10 shows schematically how the tools interact. The TDL editor suite offers the
developer a convenient developing environment that is adjusted to the needs of TDL,
without sacrificing the advantages of Simulink for modeling the functionality (control
laws). The main aspects of the tool chain are separated by vertical dotted lines into the
following three areas:

1. Description of the timing aspects of a control system corresponding to a
TDL program

2. Implementation of the functionality (control laws) of a control system using
Simulink

3. Linking of the timing and the functionality parts of the control system.
The horizontal lines separate the development process into the modeling/simulation
phase and the execution phase on a specific platform. In the following, we discuss the
three modeling and development steps in more detail.

TDL-Based visual and interactive modeling: Separation of timing and
functionality. The functionality, that is the implementation of the TDL tasks, is
modeled in Simulink with the available Simulink blocks. The functionality, for
example. a PID controller, is then provided as a Simulink subsystem.

The definition of the timing behavior and of the time-triggered mode switches is
accomplished with the TDL editor suite. The TDL editor suite is a collection of the
following tightly coupled editors:

1. Task and mode editor: This editor allows the definition of TDL tasks, their
interaction and the assignment of the tasks to modes. The developer specifies
which Simulink models are used for providing the functionality of the tasks.

2. Mode transition editor: This editor is used to specify when to switch
between modes.

3. Mode communication editor: The developer defines how values are copied
between modes if a mode switch occurs.

In the following, we illustrate how the different editor types are used to define a TDL
program according to our needs in the throttle control case study:

The task and mode editor. The throttle control system can be in two modes, in the
normal operation mode and in a failure mode. Figure 11 shows which tasks the two
modes contain. The functionality of both tasks has been modeled in Simulink. The
TDL task etc_controller is the same controller as the one presented before. The
task failure_checker calculates the difference between the two measurements
of the throttle position. The tasks are connected to the corresponding sensor, actuator
and mode ports.

The DegradedMode contains only the task constant_0. The task has no input
parameters and the output value of this task is constantly set to 0. Therefore, the
throttle will be closed upon activation of this mode.

Fig. 11. Two sample modes with their tasks.

The mode transition editor. Figure 12 shows how the transition between the two
modes in the case study is modeled. The editor mimicks a state diagram editor and
does not allow the nesting of states. The NormalMode is marked as the start mode.
The directed line connecting the NormalMode with the DegradedMode denotes that a
mode switch can occur from the NormalMode to the DegradedMode if the mode
switch condition becomes true. There is no connection between the modes in the other
direction. This means that if the mode DegradedMode is entered, the TDL program
cannot switch back into NormalMode until the program is restarted. The switch
condistion [NormalMode.mp1 ≥ 10] means that a mode switch occurs if the value of
the mode port mp1 of mode NormalMode is greater or equal to 10. The mode port
mp1 stores the difference of two measurements of the angle of the throttle. The 2
(separated with a bar from the switch condition) means that the mode switch
condition is checked twice during the hyperperiod of a mode.

Fig.12. Specification of mode switches.

The mode communication editor. Finally, we have to define how values are copied
from one mode to another during a mode switch. Both mode input and mode output
ports are a subset of the task output ports of the tasks contained in a mode. The mode
communication editor is opened by a double-click on a connection line in the mode
transition editor. In the case study, the output value of the task etc_controller
should go to the output port of task constant_0, though this has no effect on the
behavior of the DegradedMode.

Fig.13. Definition of how values are copied in case of a mode switch.

Simulink as back-end. In order to simulate the TDL program specified in the TDL
editor suite, we generate a Simulink model with the corresponding semantics. This
model is again loaded into the Simulink tool suite for simulation purposes. In this
sense, Simulink serves as back-end of the TDL editor suite. It extends the TDL editor
suite with simulation capabilities. Once the simulation leads to satisfying results, the
TDL program code and the C code for the functionality are generated.

3.2 Why is a separate TDL editor suite significantly more intuitive than the
TDL-in-Simulink approach?

In the TDL-in-Simulink approach as described in section 2, we use two editors: the
default Simulink editor and the StateFlow editor. The visual editing of TDL programs
becomes more tedious as the two editors, which are proprietary implementations by
Mathworks, cannot be coupled with each other. As a consequence, changes such as
the renaming of a mode port, have to be made manually by the developer in two

places. Another example is the definition of a mode switching condition in the
StateFlow editor. The developer has to look up the port names in the default Simulink
editor, while the TDL editor suite can provide the available names in pop-up menus.
In addition to a tedious model update, potentially inconsistent updates might mislead
the developer when simulating models. In case of the TDL-in-Simulink approach,
changes in one editor are automatically updated in all the others. Thus the
development environment is more robust against modeling errors.

As updates have to be accomplished manually if we go for the TDL-in-Simulink
approach, the number of editors has to be kept to a minimum. Thus, we offer two
editors (default Simulink editor and StateFlow editor) and intertwine the data flow
between modes in case of mode switches (mode communication) with the data flow
from the sensors and to the actuators. The dilemma is that this leads to diagrams that
are difficult to understand. The best solution is a further editor together with the
automatic update as provided by the separate TDL editor suite.

The necessity of introducing Merge blocks is one detail that further increases the
complexity of the visual representation of the TDL-in-Simulink approach: two
different source modes may copy to the same mode port of their common target
mode. In the TDL editor suite, we model mode communication separately for each
mode switch.

During a mode switch, values are copied between mode ports. Only task output
ports can become mode ports. But in Simulink, it is not possible to connect two output
ports. As a consequence, in the TDL-in-Simulink approach we have to connect output
ports of the source mode block with Simulink input ports of the target mode block (by
using the De/Multiplexer and Goto/From blocks; see Figure 9), though the input ports
are semantically output ports. The ‘input ports’ are not used inside the mode block.
They are only used for the specification of the model. This is, of course, extremely
difficult to understand and a nightmare from the human-computer-interaction point of
view. In contrast, in the TDL editor suite we simply connect the mode ports directly
in the separate mode communication editor.

Finally, the Simulink editor is not TDL-syntax-sensitive so that no feedback can be
provided if some aspects of the edited model are not correct. Only the S/TDL
translator can detect errors in the model. This reduces the interactivity of the
modeling process.

4 Conclusion

Overall, the combination of TDL and Simulink has several benefits. As TDL allows
the time-safe, deterministic distribution of TDL components [9], the developer can
easily come up with control systems that exhibit these properties that state-of-the-art
tools do not support directly. In other words, the TDL component architecture frees
the developer from targeting a specific single-node or distributed platform. He or she
can focus on the application aspects, in particular the control problems. Furthermore,
the resulting model is well structured into the timing and the functionality behavior.

The integration of TDL and Simulink modeling provides a powerful simulation
environment. Experienced Simulink developers should grasp the combination with

TDL quickly. In other words, the learning curve for experienced Simulink developers
is supposed to be flat.

5 Acknowledgements

We thank Christoph Kirsch for his active support of the research described in this
paper. He provided many useful hints for integrating Giotto and later TDL with
Simulink as well as for the throttle control case study. Sebastian Fischmeister and
Guido Menkhaus helped us to investigate the integration of TDL modes in the
transformation-based approach. Andreas Werner has suggested ideas for the design
and implementation of the TDL editor suite.

This research was supported in part by the FIT-IT Embedded Systems grant
807144 provided by the Austrian government through the ‘Bundesminsterium für
Verkehr, Innovation und Technologie’.

References

[1] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto: A Time-
Triggered Language for Embedded Programming. Lecture Notes in Computer Science,
2211:166-184, 2001.

[2] Thomas A. Henzinger, Christoph M. Kirsch, Wolfgang Pree, and Marco A. A. Sanvido.
From Control Models to Real-Time Code using Giotto. IEEE Control Systems Magazine,
23(1):50–64, February 2003.

[3] B. Horowitz, J. Liebman, C. Ma, T. John Koo, A. Sangiovanni-Vincentelli, and S. Sastry.
Platform-Based Embedded Software Design and System Integration for Autonomous
Vehicles. IEEE Transactions, 91(1):100 – 111, 2003.

[4] Christoph M. Kirsch. Principles of Real-Time Programming. LNCS, 2491, 2002.
[5] Hermann Kopetz and Gunther Bauer. The Time-Triggered Architecture. IEEE Special Issue

on Modeling and Design of Embedded Software, 23(1), 2002.
[6] Edward A. Lee, Stephan Neuendorfer, and Michael J. Wirthlin. Actor-oriented design of

embedded hardware and software systems. Journal of Circuits, Systems, and Computers,
12(3):231 – 260, 2003.

[7] Gerald Stieglbauer. Model-based Development of Embedded Control Systems with Giotto
and Simulink. Master thesis, University of Salzburg, April 2003.

[8] Josef Templ. TDL Specification and Report. Technical report, Software Research Lab,
University of Salzburg, Austria, October 2003.
http://www.SoftwareResearch.net/site/publications/C055.pdf

[9] Wolfgang Pree and Josef Templ. Towards a Component Architecture for Hard Real Time
Control Applications, Automotive Software Workshop, San Diego, CA 10-12 January 2004.

[10] Thomas A. Henzinger, Christoph M. Kirsch, Slobodan Matic: Schedule Carrying Code,
EmSoft03 conference, Philadelphia, PA, October 2003

