
A Giotto-based Helicopter Control System�

Christoph M. Kirsch1, Marco A.A. Sanvido1,
Thomas A. Henzinger1, and Wolfgang Pree2

1 Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, USA

{cm,msanvido,tah}@eecs.berkeley.edu
2 Software Research Lab

University of Salzburg, Austria
pree@SoftwareResearch.net

Abstract. We demonstrate the feasibility and benefits of Giotto-based control
software development by reimplementing the autopilot system of an autonomous-
ly flying model helicopter. Giotto offers a clean separation between the platform-
independent concerns of software functionality and I/O timing, and the platform-
dependent concerns of software scheduling and execution. Functionality code
such as code computing control laws can be generated automatically from Simu-
link models or, as in the case of this project, inherited from a legacy system.
I/O timing code is generated automatically from Giotto models that specify real-
time requirements such as task frequencies and actuator update rates. We extend
Simulink to support the design of Giotto models, and from these models, the
automatic generation of Giotto code that supervises the interaction of the func-
tionality code with the physical environment. The Giotto compiler performs a
schedulability analysis on the Giotto code, and generates timing code for the he-
licopter platform. The Giotto methodology guarantees the stringent hard real-time
requirements of the autopilot system, and at the same time supports the automa-
tion of the software development process in a way that produces a transparent
software architecture with predictable behavior and reusable components.

1 Introduction

We present a methodology for control software development based on the embedded
programming language Giotto [3], by implementing the controller for an autonomously
flying model helicopter. A Giotto program specifies the real-time interaction of func-
tional components with the physical world as well as among the components them-
selves. For the helicopter, we isolated the functional components from existing code,
specified the timing of the component interaction using a Simulink model and automat-
ically transformed it into a Giotto program. The actual timing code was then generated
automatically by the Giotto compiler. The original helicopter system [1] was devel-
oped at the ETH Zürich as a customized system based on the programming language
Oberon [9, 10] and the real-time operating system HelyOS [7]. The reengineering in

� This research was supported in part by the DARPA SEC grant F33615-C-98-3614, the
MARCO GSRC grant 98-DT-660, and the AFOSR MURI grant F49620-00-1-0327.



Giotto introduces a negligible overhead, and at the same time increases the reusability
and reliability of the software. We started from a system that already met the desired ob-
jectives, i.e., a fully working system with a well-modularized software architecture. By
reimplementing the system using Giotto we inductively proved that the Giotto concept
is suited for complex control problems and automates the design and implementation of
well-engineered control software. This shows that the implementation of difficult con-
trol tasks can be significantly simplified by adequate tools and programming languages.

This article begins with a conceptual overview of the Giotto methodology and
discusses how Giotto helps to automate control software development. Then, a brief
overview of the helicopter system is given. Next, the helicopter control software is pre-
sented in two steps. We first introduce Giotto’s core constructs by means of Simulink’s
visual syntax, and then give their translation into Giotto’s textual syntax. Finally, the
paper discusses the compilation and execution of the resulting Giotto control system.

2 Overview of the Giotto Methodology

The goal of Giotto is to provide the high-level, domain-specific abstractions that allow
control engineers and control software developers to focus on the control system aspects
instead of the platform. By platform, we mean the specific hardware and operating sys-
tem on which the control system runs. A Giotto program specifies the control system’s
reactivity, which is checked for its schedulability by the compiler. The term reactivity
expresses what we mean by control system aspects: the system’s functionality, in par-
ticular, the control laws, and the system’s timing requirements. The term schedulability
expresses what we mean by platform-dependent aspects, such as platform performance,
platform utilization (scheduling), and fault tolerance. The Giotto programmer specifies
reactivity; the Giotto compiler checks schedulability for a specific platform, and gener-
ates timing code for the platform. Timing code determines when a sensor is read or an
actuator is updated as well as when a control law computation is invoked. Functionality
code implements the actual sensor reading, actuator update, and control law compu-
tation. Functionality code must be written in a programming language such as C or
Oberon. Timing and functionality code are executed on a runtime system that consists
of a virtual machine called the Embedded Machine [4] and a real-time operating system.
The timing code, also called E code, is interpreted by the Embedded Machine whereas
the functionality code is scheduled for execution by the operating system’s scheduler.
The scheduling scheme of the operating system and the schedulability test of the Giotto
compiler must be compatible.

The separation of reactivity and schedulability implies a shift in control software
development away from low-level, platform-dependent implementation details towards
high-level, domain-specific issues. This is analogous to high-level general-purpose pro-
gramming languages, which abstract from the details of the underlying hardware. In
this sense Giotto represents a high-level programming language for embedded control
systems. Developers of such systems benefit from the separation of concerns in several
ways. First, the development effort is significantly reduced, as the tedious programming
of the timing code is handed over to the compiler. Also, the automation of the timing
code implementation eliminates a common source of errors. Second, a Giotto program



Modeling Tools

Application

Code
FunctionalityGiotto

Giotto

Program

Control Problem

Compilation Scheduling

Control Software

Code Generation

O
pt

im
iz

at
io

n/
D

eb
ug

gi
ng

S
im

ul
at

io
n/

V
al

id
at

io
n

Implementation Tools

Embedded System

Simulink Model

Fig. 1. The Giotto-based development process

Model

Simulink

Translator

Giotto Simulink

Oberon Compiler/Linker

Functionality
Wrappers

(in Oberon)

Object Code

Giotto

GeneratedHandcodedCodeLegend: ModelTool

generated

handcoded

Giotto Autopilot

Program

Giotto

Compiler

E code

(in Oberon)

Oberon

Tasks+Drivers

Program

Fig. 2. The Giotto tool chain

specifies reactivity in a modular fashion, which facilitates the exchange and addition
of functionality. Also, functionality code can be packaged as software components and
reused. Third, the system can easily be ported to other platforms for which an imple-
mentation of the Embedded Machine is available. Fourth, the reactive properties of a
control system specified by a Giotto program (functionality and timing) can be subject
to formal verification.

2.1 Giotto-based control-systems development

The traditional and the Giotto-based development of control systems is aided by mod-
eling tools and implementation tools as shown in Figure 1. A modeling tool such as
MathWorks’ Simulink supports the development of a controller model that solves a
given control problem. The controller model can be simulated and validated with re-
spect to the requirements of the control problem. In this step the platform constraints
such as CPU performance and code size are ignored. The design at this step is therefore
solution-oriented and platform-independent. Once a controller model has been vali-
dated, a controller program that implements the model is generated. The functionality
code of the controller program may be generated automatically by code generators for
Simulink. The timing code, on the other hand, is typically hand-written. Then, im-
plementation tools such as compilers and debuggers support the implementation and
optimization of the controller program under platform-dependent constraints. Due to
restricted platform performance, a controller program often needs to be optimized with
respect to platform-dependent properties such as execution speed or size in order to
implement the controller model correctly. Without Giotto the close correspondence be-
tween the controller model and program is typically lost in the optimization step, in par-
ticular, if it is done by hand: functionality code and timing code are often not reusable



Fig. 3. The OLGA helicopter

PilotAutopilot

Rangefinder Servos

(StrongARM)

Computer

Receiver

Multiplexer

3 Acc. sensors

3 Gyroscopes

Temperature

GPS

Revolution Compass

Datalink

Remote Control

Datalink

Ground Computer

(PC)

GPS

Joystick

Ground System Human Pilot

Helicopter

Fig. 4. The OLGA ECS structure

on a different platform or for a modified model. With Giotto the correspondence is
maintained because timing aspects such as the real-time frequencies of controller tasks
are specified in a platform-independent way already in the controller model: Giotto de-
creases the gap between model and program. Then, a Giotto program is automatically
generated from the model. In a final step, the Giotto compiler generates the timing code
from the Giotto program for a given platform.

2.2 The Giotto tool chain

Figure 2 shows the Giotto tool chain used for the reengineering of the helicopter au-
topilot system. The developer starts by specifying a control model using the Giotto
constructs made available in Simulink. The control model specifies the I/O timing and
the timing of the interaction between functional units such as tasks, which perform
computation, and drivers, which interface tasks with the hardware. Tasks and drivers
are functionality code written in Oberon that we have reused from the original autopilot
implementation. In principle, most of the functionality code could have been generated
automatically by a Simulink code generator. From the control model in Simulink, we
obtain executable code in two steps. First, a Giotto translator tool generates a Giotto
program from the model. Second, the Giotto compiler checks the schedulability of the
Giotto program on a given platform based on worst-case execution times for tasks and
drivers, and then generates two Oberon programs: the E code (timing code), and so-
called functionality wrappers that interface tasks and drivers with E code. Finally, the
Oberon code is compiled and linked into an executable that is guaranteed to exhibit the
same timing behavior as the original controller model. The same tool chain can be used
if Oberon is replaced by another programming language and HelyOS by another RTOS.
For example, the Giotto tools also support C and OSEKWorks [19].

3 The Helicopter System

The original helicopter system [1] was developed at ETH Zürich as part of an interdisci-
plinary project to build an autonomously flying model helicopter for research purposes.



The helicopter is a custom-crafted model with a single-CPU (StrongARM-based) con-
trol platform that was also developed at ETH Zürich [1]. All functional components
are implemented in the programming language Oberon [9, 10] on top of the custom-
designed real-time operating system HelyOS [7].

The OLGA system (for Oberon Language Goes Airborne) consists of an aircraft,
i.e., the model helicopter and a ground system. Figure 3 shows a picture of the heli-
copter; Figure 4 shows the system structure. The ground system (bottom of Figure 4)
supports mission planning, flight command activation, and flight monitoring. As this
part of the system is not relevant for the implementation of the autopilot system, it is
not discussed here. All sensors for navigation purposes (except the GPS receiver used
for the differential GPS) and the computational power needed for navigation and flight
control are airborne. The sensors used on the helicopter are a GPS receiver, a compass,
a revolution sensor, a laser altimeter (range finder), three accelerometers, three gyro-
scopes, and a temperature sensor. Note that the arrow on the right of Figure 4 labeled
Pilot, which connects the boxes Receiver and Servos, represents the alternative control
by a human pilot. It is required as a back-up for safety reasons. A human pilot is able
to remotely switch to fully manual mode at any time during operation, short-cutting
OLGA in case of any malfunctions.

The complexity of helicopter flight control results from the number of different sen-
sors and actuators the system has to handle concurrently, the difficulty in flying the
helicopter, and the limitations of the autopilot system (electrical consumption, limited
computational power, vibrations, jitter, etc.). Moreover, the helicopter is a dangerous
and expensive platform, where a trial-and-error approach cannot be used. The con-
trol and navigation algorithms are based on hard real-time assumptions that have to
be guaranteed under all circumstances by the implementation. In our specific autopi-
lot example, the controller and navigation frequency were chosen to run at 40 Hz. The
computational power required for each step was in the worst case 12 ms, which gave
a CPU utilization for control and navigation of more then 45%, leaving not much for
the housekeeping activities such as background and monitoring. The complexity of the
problem is evidenced by the fail/success rate, i.e., the number of research projects on au-
tonomously flying helicopters, and the number of such projects that have not managed
to implement a fully working system. In most cases the failure was not due to financial
or human-resource constraints, but due to the complexity of the implementation itself.
Simulating an autopilot system is relatively easy (look at the number of master’s theses
on this subject), but turning it into a working system is not. And turning it into a clean,
structured, and well-engineered system (both hardware and software) is even harder.
The references [11–18] are well-known ongoing academic helicopter projects. In [2] an
overview of all major autonomous model helicopter projects is given.

4 The Autopilot Software

The autopilot system has six different modes of operation (see Figure 5). In each mode
different tasks are active. The modes are Init, Idle, Motor, TakeOff,
ControlOff, and ControlOn. The first three modes are needed in order to cor-
rectly handle the initialization procedure. The Motor and TakeOff modes handle the



NavInit

Idle

ADFilter

NavPilot

ADFilter

NavRotorUp

Motor

TakeOff

ControlOff

NavPilot

ADFilter

ControlOn

NavControl 40Hz

TakeOff

ADFilter

NavTakeOff

200HzADFilter

Mode 4:

isStartMotor

isStopMotor

isInitDone

isEndTakeOff

isControlOff

isControlOn

isStopM
otorisS

to
pM

ot
or

isRotorUp&
isStopMotor

Mode 1:

200Hz

40Hz

40Hz

Mode 6:

200Hz

40Hz

Mode 2:

200Hz

40Hz

Mode 5:

200Hz

40Hz

Mode 3:

200Hz

Init

ADFilter

Fig. 5. The operating modes of the controller

transition from a 0 rpm rotor speed to a safe speed of 300 rpm. At this speed the heli-
copter is guaranteed not to take off, and only an active command from the ground station
allows the transition to mode TakeOff. When the take-off procedure is finished, the
helicopter is in mode ControlOff. In this mode, the rotor is at a nominal speed of
1200 rpm and the pilot has full control over the helicopter. At this point, the pilot is able
to switch, at any time, to the ControlOn mode, activating the autopilot. For simplic-
ity, we will henceforth focus only on the two modes ControlOff and ControlOn.
In the ControlOff mode, a human pilot controls the helicopter, whereas in the
ControlOn mode, the helicopter operates autonomously. The ControlOff mode
consists of the 200 Hz task ADFilter and the 40 Hz task NavPilot. The ADFilter
task decodes and preprocesses sensor values. The NavPilot task keeps track of the
helicopter’s position and velocity using the preprocessed data from the ADFilter
task, and translates pilot commands received via the wireless link into servo commands.
The ControlOff mode switches to the ControlOn mode if the pilot pushes a but-
ton on the remote control. Besides the 200 Hz task ADFilter, the ControlOnmode
has the 40 Hz task NavControl, which replaces the NavPilot task. Besides keep-
ing track of position and velocity this task implements the controller that stabilizes the
helicopter autonomously. The ControlOn mode switches back to the ControlOff
mode if the pilot pushes a take-over button on the remote control.

4.1 A Simulink specification of the Giotto model

We have extended Simulink with the capability of expressing Giotto models. A Giotto
model in Simulink specifies the real-time interaction of its components with the phys-
ical world. All components of a Giotto model execute periodically. A Giotto model
has a single parameter that specifies the hyper-period of the components. The hyper-
period is the least common multiple period of all component periods. As an example
consider Figure 6, which shows the Simulink specification of a Giotto model called
helicopter controller, which is connected to a continuous-time model of the
helicopter dynamics. The dynamics block contains only standard continuous-time
Simulink blocks, whereas the controller block is a so-called Giotto model block, and



helicopter controllerhelicopter dynamics

In1In1 Out1 Out1

Fig. 6. The Giotto helicopter model in Simulink

1

Out1

NavPilot OR NavControl

ADFilter

1

In1

In1 Out1

In1 Out1

Fig. 7. The Giotto tasks in Simulink

1

In1 Out1

1

isControlOff/On

NavControl

NavPilot

NavPilot

NavControl
OutputPort

Action

Action

Out1

Out1

In1

In1

In1

In2

Out1

In1

Fig. 8. The Giotto case block in Simulink

exhibits Giotto semantics. The controller block contains a Giotto model that has two
modes of operation: human control (ControlOff) and autonomous flight
(ControlOn). The helicopter controller has a hyper-period of 25 ms.

Figure 7 shows the contents of the helicopter controller block. The block
labeled ADFilter is a Giotto task block, which represents a single Giotto task —
the basic functional unit in Giotto. A Giotto task is a periodically executed piece of
Oberon code. In the example, the ADFilter block contains only standard discrete-
time Simulink blocks that implement the decoding and preprocessing of sensor values.
The second block in the Giotto model is an example of a Giotto case block, which
may contain multiple Giotto tasks. Upon each invocation a case block picks exactly one
of its tasks to execute. In the example, the case block contains the Giotto task blocks
NavPilot and NavControl. The NavPilot task computes the helicopter position
and velocity, and reads pilot commands from which it produces the correct servo values.
Thus, every time the NavPilot task executes, the human pilot has full control of the
helicopter. The NavControl task, by contrast, implements autonomous flight: it also
computes position and velocity, but produces the servo values based on a control law
computation. Each case block has a frequency given as an integer value relative to the
hyper-period of the Giotto model. Here the case block has a frequency of 1, i.e., it
executes with a period of 25ms. Both tasks in the case block inherit that frequency.
Note that the ADFilter task block in the Giotto model is actually an abbreviation for
a case block containing a single task. In fact, Giotto model blocks may contain case
blocks only. The virtual case block around the ADFilter task has a frequency of 5,
which means that the task runs five times per 25 ms, i.e., with a period of 5 ms.

Figure 8 shows the contents of the case block. Besides the two task blocks, there
is a Giotto switch block, labeled isControlOff/On. A Giotto switch block may
contain any standard discrete-time Simulink blocks in order to determine, based on its



input port values, at least one task that gets to execute. If no task is chosen to execute
all previous output port values are held. The isControlOff/On block reads a pilot
command to switch from manual to autonomous mode and back. In our example, it
always chooses between the NavPilot task and the NavControl task. The switch
block is evaluated once for each invocation of the surrounding case block at the begin-
ning of its period. Thus it is evaluated once every 25 ms. Note that the block labeled
OutputPort is necessary only for connecting the outputs of the two tasks to a single
output port. Moreover, the tasks and the switch block in a case block may only read
from the input ports of the case block but not from any task output ports in that block.
In order to do this one has to establish a link outside of the case block from an output
port to an input port.

The time-triggered semantics of Giotto enables efficient reasoning about the timing
behavior of a Giotto model, in particular, whether it conforms to the timing require-
ments of the control design. Moreover, Giotto models are compositional in the sense
that any number of Giotto models may be added side by side without changing their in-
dividual semantics. For example, additional functionality can be added to the helicopter
controller without changing the real-time behavior of the controller. This, of course,
assumes the provision of sufficient computational resources, which is checked by the
Giotto compiler for a specified platform. In order to simulate Giotto models in Simulink
we have developed a translator that reads Simulink specifications of Giotto models and
transforms them into standard discrete-time multi-rate Simulink models. The tool also
generates the corresponding Giotto programs in textual form, which can then be pro-
cessed by the Giotto compiler for schedulability analysis and to generate code.

4.2 The Giotto program

Giotto defines the exact timing and communication between a Giotto program and its
environment as well as among Giotto tasks. For this purpose, a Giotto program needs
to make explicit semantical details that are left implicit or unspecified in the Simulink
specification of a Giotto model. In order to transport values between ports, Giotto uses
the concept of drivers. We distinguish Giotto task, actuator, and mode drivers from
Giotto device drivers. The purpose of a Giotto task and actuator driver is to transport
values from sensors and task output ports to task input ports and actuators, respectively;
a Giotto mode driver evaluates a mode-switch condition and, if it evaluates to true,
transports initial values to task output ports of the target mode; a Giotto device driver
transports values from a hardware device or a non-Giotto task to a port or vice versa.
In the Simulink specification of a Giotto model task and actuator drivers exist only
implicitly as links, while Giotto device drivers are absent entirely. However, device
drivers are required in a complete implementation of a Giotto program to link it to
the hardware or non-Giotto tasks such as low-level event-triggered or non-time-critical
tasks.

From a Giotto model block in Simulink, we generate a Giotto program, which
is a collection of Giotto modes. Each Giotto mode has a hyper-period, a set of task
invocations with specified frequencies, a set of actuator updates with specified fre-
quencies, and a set of mode switches with specified frequencies. A task invocation



��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

������������
������������
�����������
�����������
�����������
�����������

������������
������������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Time(ms)

data data

filter

control

50 10 15 20 25

Tasks/Drivers

gps
laser

compass
pilot

rpm

accelerometers
gyroscopes
temperature

filter

Giotto tasks Giotto drivers

ADFilter

NavControl

Sensor update

Mode switch
ServoUpdate
DatapoolUpdate

Task input

Fig. 9. The logical execution of the Giotto program in the ControlOn mode

executes the task driver followed by the task, an actuator update executes the actua-
tor driver, and a mode switch evaluates a mode driver, possibly followed by a switch
to the target mode. The following example shows the Giotto program helicopter
controller, which specifies the ControlOff and ControlOn modes:

mode ControlOff() period 25 {
actfreq 1 do ServoUpdate;
actfreq 1 do DataPoolUpdate;
exitfreq 1 do ControlOn;
taskfreq 5 do ADFilter;
taskfreq 1 do NavPilot;}

mode ControlOn() period 25 {
actfreq 1 do ServoUpdate;
actfreq 1 do DataPoolUpdate;
exitfreq 1 do ControlOff;
taskfreq 5 do ADFilter;
taskfreq 1 do NavControl;}

The hyper-period of both modes is 25 ms. The frequency of the tasks, mode switches,
and actuator updates is specified relative to this period. For example, the ADFilter
task runs in both modes five times per 25 ms, i.e., at 200 Hz. The helicopter servos
and the datapool, which contains messages that are sent to the ground station, are
updated once every 25 ms by invocations of the Giotto actuator drivers ServoUpdate
and DataPoolUpdate, respectively. Figure 9 shows the logical execution of a single
hyper-period of the ControlOn mode (the actual execution is shown in Figure 11 and
will be discussed later). Logically, the ADFilter task runs five times exactly for 5 ms,
while the NavControl task runs once exactly for 25 ms. Note that all Giotto drivers
are executed in logical zero time. While a Giotto task represents scheduled computation
on the application level and consumes logical time, a Giotto driver is synchronous,
bounded code, which is executed logically instantaneously on the system level (since
drivers cannot depend on each other, no issues of fixed-point semantics arise).



Intertask communication as well as communication from and to sensors and actu-
ators works through Giotto ports. In the Giotto program we declare all sensor ports
globally as follows:

sensor
GPSPort gps uses GPSGet;
LaserPort laser uses LaserGet;
CompassPort compass uses CompassGet;
RPMPort rpm uses RotorGet;
ServoPort pilot uses ServoGet;
AnalogPort accelerometers uses AccGet;
AnalogPort gyroscopes uses GyrosGet;
AnalogPort temperature uses TempGet;
BoolPort startswitch uses StartSwitchGet;
BoolPort stopswitch uses StopSwitchGet;

Besides a type name, we declare a Giotto device driver for each sensor port. For ex-
ample, the sensor port gps has the type GPSPort and uses the Giotto device driver
GPSGet to get new sensor values from the GPS device. Types and device drivers are
implemented externally to Giotto. Here they are Oberon types and procedures. In Fig-
ure 9, at the 0 ms instant, the first action is to read the latest sensor values by calling
the Giotto device drivers for all Giotto sensor ports. Subsequently, every 5 ms until the
end of the hyper-period, the device drivers are called only for the sensor ports that are
read by the ADFilter task. Giotto device drivers are always called in a time-triggered
fashion. However, some devices require immediate attention using an event-triggered
(interrupt-driven) driver. For example, the GPSGet device driver does not access di-
rectly the GPS device but a buffer in which an interrupt handler that is bound to the
GPS device places the latest GPS readings. The interrupt handler is external to the
Giotto program. The opposite direction for communication from a port to a device is
done in a similar way and will be discussed below. At the 0 ms instant right after exe-
cuting the Giotto device drivers for the sensor ports, the Giotto mode driver is called to
determine whether to switch into the ControlOffmode or not. The driver is declared
as follows:

driver ControlOff(stopswitch) output () {
switch isControlOff(stopswitch)}

The driver has a single driver input port stopswitch, which is a globally declared
sensor or task output port. In this case it is a sensor port whose Giotto device driver
StopSwitchGet has just been called. The device driver reads the pilot switch
AutopilotOn/Off from an FPGA, which decodes the pilot switch position trans-
mitted via the wireless link from the remote control to the airborne system. Based on the
value of the stopswitch port, the Oberon implementation of the isControlOff
predicate returns true or false determining whether to switch to the ControlOffmode
or not. Suppose that we stay in the ControlOn mode. The next step is to load the task
input ports of the ADFilter and NavControl tasks with the latest values of the
sensor and task output ports to which the tasks are connected as specified in the task
declarations below. Before declaring the tasks all task output ports are declared globally
as follows:

output
AnalogPort filter := FilterInit;
ServoPort control := ServoInit;
DataPoolPort data := DataPoolInit;



The filter port is the only task output port of the ADFilter task. The control
and data ports are the task output ports of the NavControl task. For each task output
port, in addition to the type, an initialization driver is specified, which is invoked once
at start-up time to initialize the port. Here the initialization drivers are implemented by
Oberon procedures. Initial values for all task output ports sufficiently describe a unique
start configuration of a Giotto program. Then, for a given behavior of the sensors, a
Giotto program computes a deterministic trace of actuator values, provided all tasks
meet their deadlines [3]. The ADFilter and NavControl tasks are declared as fol-
lows:

task ADFilter(accelerometers, gyroscopes, temperature, filter)
output (filter) {
schedule ADFilterImplementation(accelerometers, gyroscopes,

temperature, filter)}
task NavControl(gps, laser, compass, filter, rpm, pilot, data)

output (control, data) {
schedule NavControlImplementation(gps, laser, compass, filter,

rpm, pilot, control, data)}

The ADFilter task reads from the accelerometers, gyroscopes,
temperature, and filter ports. The filter port is also a task output port, which
makes the port a state variable of the task. Prior to the invocation of the task, the val-
ues of all four ports are copied by a task driver to some local memory, which is only
accessible to the task itself. The task driver does not have to be declared explicitly.
The Oberon ADFilterImplementation corresponds to the functional part of the
ADFilter implementation in the original OLGA system. The NavControl task is
declared in a similar way. Now, the Giotto program is ready to invoke the ADFilter
and NavControl tasks. The NavControl task runs logically for 25 ms, while the
ADFilter task finishes after 5 ms. Then, new sensor values are read and the task
input ports of the ADFilter task are loaded, before invoking the task again. This
process repeats until the 25 ms time instant is reached. At that time instant new val-
ues in the control and data ports of the NavControl task are available. The
new values are now transferred by the Giotto actuator drivers ServoUpdate and
DataPoolUpdate to the servos and datapool actuator ports, respectively. In
order to declare the actuator drivers we first need to declare the actuator ports globally
as follows:

actuator
ServoPort servos uses ServoPut;
DataPoolPort datapool uses DataPoolPut;

Besides a type name, we declare a Giotto device driver for each actuator port. For ex-
ample, the actuator port servos has the type ServoPort and uses the Giotto device
driver ServoPut to transfer new actuator values to the helicopter servos. Again, types
and device drivers are implemented externally to Giotto. Before the device drivers are
called, the actuator drivers ServoUpdate and DataPoolUpdate are executed. The
actuator drivers are declared as follows:

driver ServoUpdate(control) output (servos) {
call ServoUpdateImplementation(control, servos)}

driver DataPoolUpdate(data) output (datapool) {
call DataPoolUpdateImplementation(data, datapool)}



In Figure 9, at the 25 ms instant after the NavControl task finished, the helicopter
servos and datapool are updated by first executing the Oberon
ServoUpdateImplementation and DataPoolUpdateImplementation,
which transport the values from the control and data ports to the servos and
datapool ports, respectively. Then, the ServoPut device driver is called, which
takes the new value from the servos port and then directly updates the servo devices.
The DataPoolPut device driver is also called but instead of accessing a device it
puts the value from the datapool port into a buffer, which gets transmitted over the
wireless link as soon as the Giotto system becomes idle. The actual transmission is done
by the asynchronous message handler task of the original OLGA system. This task is
external to the Giotto program. The 25 ms hyper-period is now finished. In the next
section, we will discuss the execution of the Giotto program and present the actual task
schedule of the program.

5 The Giotto Compiler and Execution Environment

The Giotto-based implementation of the autopilot system has the same functionality as
the original system but uses the Giotto programming language for the explicit specifica-
tion of real-time requirements and inter-task communication. The autopilot functions,
i.e., the navigation and control tasks, are released from any timing or scheduling code
but otherwise correspond to their original OLGA implementations. The system archi-
tecture of the Giotto-based system is shown in Figure 10. The upper left portion shows
the Giotto program, including the Oberon implementation of the Giotto device drivers
as well as the Giotto tasks and drivers. The non-Giotto tasks shown in the upper right
portion of Figure 10 implement event-triggered or non-time-critical tasks, which are in-
terfaced to the Giotto system through Giotto device drivers. Event-triggered tasks must
be taken into account by the schedulability analysis performed by the Giotto compiler;
background tasks are performed only when the Giotto system is idle. In the middle of
Figure 10, the original OLGA software system is shown extended by an implementation
of the Embedded Machine [4] in the kernel of the HelyOS real-time operating system.
The software system runs on the OLGA computer system.

A Giotto program does not specify where, how, and when tasks are scheduled. For
example, the helicopter-control program can be compiled on platforms that have a sin-
gle CPU (by time sharing the tasks) as well as on platforms with two CPUs (by par-
allelism); it can be compiled on platforms with preemptive priority scheduling (such
as most real-time operating systems) as well as on truly time-triggered platforms. The
mapping from the Giotto program to executable code for the helicopter platform is per-
formed by the Giotto compiler. The Giotto compiler needs to ensure that the logical
semantics of Giotto —functionality and timing— is preserved. The compiler targets the
Embedded Machine, which interprets the generated E code in real-time. The E code
instructions provide a portable API to the underlying RTOS. There are E code instruc-
tions to call or schedule the native implementation of tasks and drivers, respectively, as
well as instructions to invoke the Embedded Machine at specific time instants or occur-
rences of events. The generated E code implements the logical semantics of the Giotto
program provided the E code is time-safe [4], which intuitively means that all tasks



Tasks

HelyOS Real−Time Operating System

Computer System

Event−
Triggered

Tasks

Giotto Giotto
Drivers

Asynchronous/Non−Critical SoftwareGiotto Control Software

Actuators Sensors

Device
Drivers

Device 

Giotto Autopilot Program

E Code

OLGA System

Embedded
MachineDrivers

and Tasks

Background

Fig. 10. The Giotto-based autopilot system

meet their deadlines. The compiler performs a schedulability analysis by checking time
safety of the given Giotto program [5] for given worst-case execution times of the tasks
and drivers. Time-safe E code programs are environment-determined [4], which means
that, for any given behavior of the physical world seen through the sensors, the E code
computes a deterministic trace of actuator values at deterministic time instants. In other
words, a Giotto system exhibits no internal race conditions, which makes the behavior
of Giotto systems predictable and verifiable.

Figure 11 shows the actual execution of the Giotto program from the previous sec-
tion, as specified by the generated E code. The top row shows the execution of the
ADFilter task and the drivers from the top row in Figure 9. The middle row shows
the execution of the NavControl task and the drivers from the bottom row in Fig-
ure 9; note that the NavControl task is physically preempted. The bottom row shows
the execution of background tasks. The Giotto compiler generates E code that accesses
sensors and actuators as close as possible to the specified time instants in order to re-
duce I/O jitter. The existing I/O behavior of the system would not change if we were to
add more Giotto tasks, provided the compiler succeeds in showing the resulting E code
to be time-safe despite the additional load.

6 Conclusion

The successful reengineering of the OLGA system using Giotto shows the feasibility of
the Giotto approach for high-performance, hard real-time embedded control systems.
The Giotto compiler automatically generates timing code for a system with multiple
modes of operation, multiple levels of task priorities, and time-triggered as well as
event-triggered task activation. Giotto implies an overhead through predicate checks,



�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

A
D

F
ilt

er
A

D
F

ilt
er

A
D

F
ilt

er

A
D

F
ilt

er

A
D

F
ilt

er

N
av

C
on

tr
ol

N
av

C
on

tr
ol

Tasks/Drivers

0 5 10 15 20 25 Time(ms)

CPU executing:

Giotto driver Giotto task non−Giotto tasks

A
D

F
ilt

er

Fig. 11. The actual execution of the Giotto program in the ControlOn mode based on rate-
monotonic scheduling

calls of wrapper functions, and the copying of ports. Measurements have shown that this
amounts to less than 2% of the 25 ms period, which is easily acceptable for helicopter
flight control. The implementation of the Embedded Machine on top of HelyOS was ac-
complished in one week, and its source code is only 6 KB. Embedded control systems
that are based on Giotto can expect a high degree of modularization. In particular, in
the helicopter control system, the timing concerns and the inter-process communication
are decoupled from the navigation and control algorithms. The Giotto-based autopilot
system is nonetheless functionally comparable to systems that use considerably more
complex software architectures [8]. The functionality and reliability of the original ETH
Zürich helicopter system has been proven by many flight tests. The Giotto-based reim-
plementation inherits the same functionality but with increased software reusability,
flexibility, and transparency. The reimplementation was shown to be correct and work-
ing by means of on-the-ground tests. No actual on-flight tests have been done, not for
technical reasons but for reasons outside our control. A similar reengineering approach
has been used to assess the feasibility of other methodologies, for example, Meta-H has
been applied to embedded missile control systems [6].

The case study has had substantial impact on the ongoing development of the Giotto
concept. In particular, it has guided the refinement of Giotto from a theoretical to a prac-
tical language for embedded control software. For example, the precise interaction be-
tween Giotto ports (a concept of the formal Giotto semantics) and actual devices (such
as sensors and actuators) needed much elaboration and is made concrete through the
concept of Giotto device drivers. Second, while the formal Giotto semantics is purely
time-triggered, the helicopter system shows how Giotto can, within its semantical re-
quirements, interact with asynchronous events, such as communication from the ground
station. On the other hand, the helicopter system has only a single CPU, and our future
focus is therefore on extending the Giotto approach to distributed platforms.



Acknowledgments. We thank Niklaus Wirth and Walter Schaufelberger for their ad-
vice and support of the reengineering effort of the ETH Zürich helicopter system using
Giotto.

References

1. J. Chapuis, C. Eck, M. Kottmann, M. Sanvido, and O. Tanner. Control of helicopters. In
Control of Complex Systems, pages 359–392. Springer Verlag, 1999.

2. C. Eck. Navigation Algorithms with Applications to Unmanned Helicopters. PhD thesis
14402, ETH Zürich, 2001.

3. T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered language for embed-
ded programming. In Proc. First International Workshop on Embedded Software (EMSOFT),
LNCS 2211, pages 166–184. Springer Verlag, 2001.

4. T.A. Henzinger and C.M. Kirsch. The Embedded Machine: predictable, portable real-time
code. In Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 315–326. ACM Press, 2002.

5. T.A. Henzinger, C.M. Kirsch, R. Majumdar, and S. Matic. Time safety checking for embed-
ded programs. In Proc. Second International Workshop on Embedded Software (EMSOFT),
LNCS. Springer Verlag, 2002.

6. D.J. McConnel, B. Lewis, and L. Gray. Reengineering a single-threaded embedded missile
application onto a parallel processing platform using MetaH. Real-Time Systems, 14:7–20,
1998.

7. M. Sanvido. A Computer System for Model Helicopter Flight Control; Technical Memo 3:
The Software Core. Technical Report 317, Institute for Computer Systems, ETH Zürich,
1999.

8. L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck, V.D. Prasad, D. Schrage, and G. Vacht-
sevanos. An open platform for reconfigurable control. IEEE Control Systems Magazine,
21:49–64, 2001.

9. N. Wirth. A Computer System for Model Helicopter Flight Control; Technical Memo 6:
The Oberon Compiler for the StrongARM Processor. Technical Report 314, Institute for
Computer Systems, ETH Zürich, 1999.

10. N. Wirth and J. Gutknecht. Projekt Oberon: The Design of an Operating System and Com-
piler. ACM Press, 1992.

11. http://www.cs.cmu.edu/afs/cs/project/chopper/www/heli_project.html. The Robotics Insti-
tute, Carnegie Mellon University.

12. http://controls.ae.gatech.edu/labs/uavrf/. The UAV Lab, Georgia Institute of Technology.
13. Aerial Robotics. http://gewurtz.mit.edu/research/heli.htm. Laboratory for Information and

Decision Systems, Massachusetts Institute of Technology.
14. Autonomous Flying Vehicles. http://www-robotics.usc.edu/~avatar. Robotics Research Lab-

oratory, University of Southern California.
15. Autonomous Helicopter Project. http://www.heli.ethz.ch. Measurement and Control Labo-

ratory, ETH Zürich.
16. BEAR: Berkeley Aerobot. http://robotics.eecs.berkeley.edu/bear. Electronic Research Labo-

ratory, University of California at Berkeley.
17. The Hummingbird Helicopter. http://sun-valley.stanford.edu/~heli. Aerospace Robotics Lab-

oratory, Stanford University.
18. Marvin. http://pdv.cs.tu-berlin.de/MARVIN. Institute for Technical Computer Science,

Technische Universität Berlin.
19. OSEKWorks Operating System. http://www.windriver.com/products/html/osekworks.html

WindRiver.


