
Software Research Lab, Constance University
Campus PO 188, 78457 Constance, Germany

A Hybrid Approach to Adaptive User In-
terface Generation

Guido Menkhaus Guido.Menkhaus@uni-konstanz.de
Wolfgang Pree pree@acm.org

TR-C049 June 29, 2002

Due to the diversity of display capabilities and input devices, mobile computing gad-
gets have caused a dramatic increase in the development effort of interactive services.
User interface (UI) tailoring and multi platform access represent two promising con-
cepts for coping with this challenge. The article presents a hybrid approach to the
generation of adaptive UIs based on a linking strategy of hierarchies of graphs.
Keywords: User Interface Adaptation, Multi-platform Support

Copyright c
�

2002, Software Research Lab. All rights reserved.

A Hybrid Approach to Adaptive User Interface Generation

Guido Menkhaus � and Wolfgang Pree ��
Software Research Lab, Constance University, D-78457 Constance, Germany, guido.menkhaus@uni-konstanz.de�

Department of Computer Science,University of Salzburg, A-5020 Salzburg, Austria, pree@acm.org

Abstract. Due to the diversity of display capabili-
ties and input devices, mobile computing gadgets have
caused a dramatic increase in the development effort
of interactive services. User interface (UI) tailoring
and multi platform access represent two promising con-
cepts for coping with this challenge. The article presents
a hybrid approach to the generation of adaptive UIs
based on a linking strategy of hierarchies of graphs.

Keywords. User Interface Adaptation, Multi-platform
Support.

1. Introduction

The current trend of Web access and computing
is drifting away from the desktop PC as the princi-
pal device to access services and information on the
Internet to consumer devices such as mobile phones,
handheld computers and a wide spectrum of Personal
Digital Assistants (PDAs). Most of the limitations that
users experience will disappear in future generations of
consumer devices. They will have easier to read dis-
plays, greater storage, and CPUs that are more power-
ful. These changes in design exclude the UI. Although
the devices will have easier to read, higher contrast
color displays, the actual screen size will not change,
since the user demand devices that can easily be car-
ried around and held in one hand. The objective of UI
adaptation is to avoid fragmentation of the web space
into spaces that are solely accessible with specific type
of devices [14].

The article presents an approach to UI adaptation. It
is based on an abstract UI description, which is shared
among the different platforms. The adaptation tech-
nique tailors the UI description to minimize the mis-
match between its presentation and the platform’s ca-
pacity to present it.

The remaining of the article is organized as follows:
The following section presents a short overview of UI
architecture. Section 3 introduces adaptation of pre-
sentation models and related work. The hybrid adapta-
tion technique is discussed in Section 4. We will then
present results and Section 6 concludes the article with
a brief talk about our future work.

2. Short Overview of User Interface Architecture

A large number of layered architectures have been
devised in the context of UI software. Myers for exam-
ple, has identified four general layers: window, widget,

view and model (Figure 1) [12]. Using this terminol-
ogy, the view is a combination of the view and the con-
troller of the Model-View-Controller architecture [11].
The architectural decomposition that we use in the arti-
cle applies a different terminology but is similar to the
one described above and was introduced in [6]. The
three model components relevant to UI description in a
mobile computing environment are: task model, plat-
form model, and presentation model.

Model

View

Widget

Window

User

Figure 1: Common layers for UI software.

1. Task Model. The task model is a formal description
of the service the user accesses. The task model is
hierarchically organized and contains information re-
garding the trigger of a task, the precondition, post-
condition, and the action of the task itself. The task
model corresponds to the model in Myers layered ar-
chitecture.

2. Platform Model. The platform model accounts for
the different devices from which the user may access
a service. The platform model corresponds to the
window and widgets layer in Myers layered architec-
ture. It contains information about the capabilities,
restriction, and limitations of the target platform and
maps conceptual elements of the presentation model
to platform specific elements. This model is usually
exploited dynamically at run-time.

3. Presentation Model. The mapping of the presenta-
tion model to Myers architecture is not smooth. The
presentation model partly corresponds to the view
layer of Myer’s architecture. It is the description of
how the UI is structured that supports the task model.
Since the task model is hierarchically organized, so is
the presentation model. It usually presents windows
consisting of a set of widgets and a set of transisitons,
that allows navigation from one window to the next.

There are a number of approaches for designing and
implementing UI software. They range from the auto-
matic generation of the presentation model from a more
or less formal task model [2] to informal, structured
guidelines on how to build UI software [11]. However,
most recent work has been dedicated to approaches that
can be placed somewhere in the middle of the both
extreme [1, 3, 8]. Common to these approaches is
the introduction of an abstract UI description in a cus-
tom markup language implementing the presentation
model. The description comprises generic and general
UI elements, which are platform-independent. These
elements will be mapped to standard markup languages
(like HTML or WML) or programming languages. This
approach is attractive, since a single custom format serves
a multitude of target platforms. The use of a custom
markup language entails the following benefits [1]:� Natural separation of UI code and non-UI code.� Usable by non-programmers and occasional users.� Facilitates rapid prototyping.� Allows a family of interfaces to be created in which

common feature are factored out.
The introduction of a custom platform-independent

markup language can help to solve the problem of the
”Tower of Babel” [9] in UI languages. Each platform
with its typical browser has its own markup language.
Each language aims at a specific platform and is opti-
mized for supporting it. However, the support of dif-
ferent platforms is only one problem that needs to be
solved.

Another main obstacle to platform-independentcon-
tent authoring is the fact that the growing number of
networking enabled gadgets has a wide variety of UI
capacities. One of the main differences they share is
different screen size. The cardinal question that needs
to be solved is: How to enable content to be adapted to
various screen sizes? The platform model delivers in-
formation about the limitations and restrictions of the
target platform. Is it possible to trade on this informa-
tion?

The presentation model describing the flow of tran-
sition reflects the hierarchical structure of the task model.
However, the internals of a window remains unstruc-
tured. A window is visualized unaltered on each plat-
form, from a compositional point of view, although us-
ing different platform specific widgets. The challenge
is to remodel the widgets of a window into a new com-
position of ”small” windows with a reasonable flow of
transitions between them (Figure 2).

....

Window

Window Window Window

Window

Adaptation

Figure 2: Adaptation of a window into a set of ”small”
windows.

3. Presentation Model Adaptation

The definition of a single presentation model is
still oriented at the ”one device - one functionality”
paradigm, but today we can access mutually any ser-
vice through any device [7]. This requires an appropri-
ate mechanism to dynamically adapt the presentation
model.

We shall view a window as a two-dimensional ma-
trix whose row and column indices identify a widget.

���
	���
������������ ��������� �"!$#&%('�)
*+�����
where ,.-0/ is the size of the window and ��������� �"!1#2%('�)43576�8

, the set of abstract UI elements, which the cus-
tom UI description language allows to use. In this arti-
cle, the size of a window is discretized and the unit is
a widget. Without loss of generality we consider only
the case, where / ��9 .

Presentation model adaptation is the process of group-
ing a window of the presentation model into a set of
non-intersecting regions of widgets, such that each re-
gion satisfies a homogeneity predicate. Non-intersecting
regions of widgets mean that no widget is in two re-
gions. Thus, no redundant information is created, once
the regions will be converted to a set of smaller win-
dows, which will substitute the single original window.
We consider the case, where the current presentation
model was intended to be displayed on a device like
a desktop PC with a monitor and the actual device that
accesses the service is a PDA with a much smaller screen.
This situation is typical for mobile computing: Ser-
vices target primarily desktop PC with a monitor and
migrate than to a wide variety of mobile computing de-
vices. The situation where a service targets small de-
vices and is accessed by a desktop PC with a monitor
is not further discussed here.

Formally the process of adaptation of the presen-
tation model can be defined as follows: If a ���
	��:
��
consists of a set of ��������� �(; and , is a homogene-
ity predicate defined on a group of connected widgets,
then the adaptation of the presentation model is a par-
titioning of ���
	��:
�� into a set of connected regions!=< � %>< � %@?A?@?"%><CB�) , such that:

���
	��:
�� �
BD
EGF �

!1< E
H 	�I�J:�K��I:����
�	2LM���N�O� �(;:!1< E)()
< E�P <�QR� S�%(��T��U

, !1< E)V� true %(�W�X9�%@?A?@?"%(
, !1< EZY <�Q)V� false, if < E is adjacent to <[Q

The adaptation of the presentation model partitions
a window into regions of non-intersecting widgets com-
plying with a homogeneity predicate. A user accessing
a service supported by a presentation model needs to
navigate from one region to the next region. However,
the widgets necessary to navigate are not in the orig-
inally window. Thus, they have to be integrated into

the regions, resulting from the adaptation process. The
set of all widgets in the regions equals the widgets in
the original window plus the integrated new widgets
dedicated to the navigation between the regions, the	�I:J:�=�OI:����
�	2LM�
���O�@�(;:!=< E) .

Approaches exploring presentation model adapta-
tion can broadly be divided into two categories. The
first category uses non-contextual information to re-
model the presentation model. The other category is
contextual, task-model based.� Non-Contextual. This approach groups widgets into

regions regardless of any semantic dependencies be-
tween them. For example, textual information ex-
plaining the use of a button and the button itself are
modeled as two distinct widgets. If these two wid-
gets were grouped into two different regions after the
adaptation process, the adapted presentation model
had low usability. In the non-contextual approach,
the single criterion for grouping widgets is their pre-
sentation size. I.e., in default of semantic, contextual
information, widgets are remodeled into regions as
long as they can be reasonably visualized on the tar-
get platform [4]. The result is a set of regions, which
can be navigated in a linear, sequential way. To ac-
cess the last widget of the original window, each new
”small” window has to be traversed.� Contextual. Global techniques depend very much
on the detailed specification of a task model. Here,
adaptation is the process of mapping the task model
onto different presentation models, under consider-
ation of the platform model. However, by its very
nature, a detailed task model might be as complex to
produce as the actual implementation of a set of pre-
sentation models. Any simplification or abstraction
may hide details that are critical to successful adap-
tation. Another obstacle is that in most commercial
software systems, there is no detailed or formal spec-
ification of a task model. However, Eisenstein and
Rich have developed first promising techniques [5].

The disadvantage of the contextual approach results
from the fact that building the task model is an in-
herently difficult process. This might also be the rea-
son why this technology has not yet been widely ac-
cepted. The non-contextual approach has the drawback
of working only on local information. We propose a
hybrid approach that combines the advantages of the
non-contextual approach (fast, non need to produce a
task model) and the contextual approach (integration
of task model information).

4. Hybrid Approach to Presentation Model
Adaptation

The two main challenges of the hybrid approach to
presentation model adaptation are:

1. How to incorporate low-level task model information
into the presentation model?

2. How to adapt the presentation model respecting task
model information?

No current markup language supports the feature of in-
tegrating low-level task model information that could
guide the adaptation process. We have developed Event
Graph XML. A markup language that allows adding in-
formation to each element stating the semantic relation
to its neighboring elements. For more information on
Event-Graph XML, please refer to [8]. In the next sec-
tion, we introduce the presentation model adaptation
process.

4.1. Presentation Model Adaptation

The adaptation technique is based on a linking strat-
egy of two hierarchies of graphs [13, 10]. The approach
allows remodeling a window of the presentation model
into regions of connected widgets and the use of low-
level task model information.

The set of widgets of a window is placed into a
stack of regular grids, as illustrated in Figure 3. In
the lowest level of the stack, each cell of the grid cor-
responds to a single widget. Each cell of level �]\^9
represents a group of cells of level � . The cells form a
linear structure of _`- 9 cells. The cells overlap in such
a way that the outer cells on level � belong to two cells
of level �W\^9 . The cells in a group of level � , repre-
sented by a cell of level ��\a9 , are called the subcells or
the children of this cell. The representing cell is called
the parent of its children.

WidgetWidget Widget Widget Widget

....CellCell

Cell

Figure 3: Stack of a regular grid of cells that places a
structure on a window and its widgets. Three widgets
form a cell on the lowest level. Cells on a lower level are
candidates for cells on a higher level.

The grouping of widgets of a window into a set of
regions is done within the boundaries of the induced
stack of cells. To come to the set of regions we dynami-
cally build up a stack of regions. A widget corresponds
to a region on the lowest level. Adaptation of a win-
dow is performed by grouping regions of level � into
regions of level �]\�9 . However, regions can only be
grouped within the boundaries of a cell in which they
reside, as illustrated in Figure 4, and if they satisfy the
homogeneity predicate.

The framework to describe the adaptation technique
is the description as a hierarchy of graphs. A graph is
denoted as b �c!=d0% 8) , where d is the set of vertices
of the graph and

8
is the set of edges. The stack of

cells can be described as follows: A hierarchy of cells
is a sequence of graphs b E �e!Kf E % 8 E)g%(�h�ji�%@?A?A?@%(
and a sequence of mappings:

!1k � %A?A?@?"%(k B�l �)g%mk Eon f Eqper !=f EGsut)
!=v � %@?A?@?A%wv B)g%xv Eyn f Eqper !=f E l t)
!$z � %@?A?@?A%(z B)g%xz E{n f Eqper !1< E)

r !(|) is the Powerset. r !=< E) is a set of regions of level� . The description of the hierarchy of regions is given
shortly. Each graph of the hierarchy b E �}!=f E % 8 E)
corresponds to a grid, which is considered as a linear
graph, where each vertice is connected with a prede-
cessor and a successor (Figure 3).

The mapping k E assigns to each cell of level � two
parent cells at level �~\�9 . To be precise, the outer
cell have two parent cells whereas the inner cell of the_�- 9 grid has a single parent: k E !=�A)��}� I�%w����%>��3f E and I�%w�.3�f EGs � . The mapping v E assigns to each
cell ��3�f E its children � I.3�f E l ��� ��3�k E l � !1IO)�� . The
mapping z E assigns to each cell those regions, which
have been formed in the adaptation process within its
boundaries.

The cells form a rigid stack of grids, which is built
independent of the underlying content of the window.
It serves to control the grouping process by forcing it
into a hierarchical structure. The hierarchy of graphs
that helps describing the grouping of widgets into re-
gions is of primary interest. A hierarchy of regions is a
sequence of graphs b E ��!=< E % 8 E)g%>�4��iZ%A?@?A?"%>	 and a
sequence of mappings:

!1k � %A?@?A?"%>k�B�l �)"%�k E n < E per !1< E�sWt)
!Kv � %A?A?@?A%�vZB�)"%�v E n < E per !1< E l t)
!=� � %A?@?A?"%�� B)"%�� E�n < Eqper !=f E)

The mapping k E assigns to each region at most two par-
ent regions. The parent region is in the parent cell of
the cell where the child regions reside. Regions can
have two parent regions, since there are regions be-
longing to two neighboring and overlapping cells. A
hierarchy of regions is built up by applying a group-
ing process to each cell while moving up the stack of
cells. The grouping process stops at the boundary of
each cell and therefore some regions take part in two
cell-based groupings. The mapping v E assigns to each
regions � 3�< E its children ��;�3�< E l ��� � 3�k E l � !=;�)g� .
The link between the hierarchy of regions and the hi-
erarchy of cells is established by the mapping � E . � E
assigns to each region the cell(s) where it is located.
The receptive field <`� of a region � 3�< E is defined
as the set of all regions of the lowest level, which form
the region � . I.e., <`��! �)0��v � |@|A|>v E ! �) .

The adaptation process adapts dynamically the pre-
sentation model by composing and decomposing wid-
gets of a window into a set of regions, which result into
a hierarchical structure of linked windows. The tech-
nique consists of the building and the transformation
phase.

Building Phase: This phase is also called the ”Win-
dow to Region” phase. The window from the original
presentation model is grouped into a set of regions. It
consists of four processes:� Grouping. Regions of level � are grouped into regions

of level ��\�9 within the boundaries of their cell and
satisfying a predicate , .� Separating. Regions that fail to group are separated.� Splitting. Large-sized regions, especially when they
contain a single widget, are split.� Relinking. The user should be able to navigate from
one region to the next region. To ensure usability,
regions are relinked by integrating additional naviga-
tion widgets.

Transformation Phase: This phase is also called the
”Region to Windows” phase. The resulting regions are
transformed into a set of ”small” windows.

4.2. Grouping

The grouping process determines the set of con-
nected regions of level � of a specific cell and groups
them. In order to form a new region � EGs � (the sub-
script indicates the level) in a cell � E�s � , the set of sub-
cells � f of � EGs � are determined: � f��Mv E�s � !1� E�s �)����I�3�f E � � EGs � 3ck E !1IO)�� . Each subcell has a set of
regions associated � ��� E !1IO)g%wI�3 � f that are candi-
dates for grouping into � E�s � . A region ; E groups into
the region � EGs � if it satisfies the homogeneity predicate, ! � EGs � Y ; E)]� true.

Two regions ; E %>� E are connected, if there is an edge!K; E %>� E)�3 8 E between them, i.e., they have a common
subregion � E l � ��v E !=; E)(Wv E !$� E)g%w; E %(� E 3 � and � E l � 3< E l � . Regions of the lowest level are connected with
their neighboring regions. The overlapping structure of
the stack of cells guarantees that the grouping process
considers only those regions, which are connected or
have a path of connected regions on the lowest level,
the widget level. The grouping process is illustrated in
Figure 4.

WidgetWidget Widget Widget

....Region s Region t

Region r

Widget u

Level i+1

Level i

Level i-1

Cells

Figure 4: Grouping process. Regions are grouped within
the boundary of a cell.

4.3. Separating

If the grouping process fails, because a region ; E
does not satisfy the homogeneity predicate , , the re-
gion needs to be separated from its connected region

� E . They are separated since they have a common sub-
region � E l � , which needs to be assigned to a single par-
ent region. The separation process assigns the common
subregion to the region, which is the smaller parent re-
gion, from a size point of view. That means that � E l �
is removed from the set of subregions of the larger re-
gion v2!1J E)¡�¢�@�¢3£< E l � � J E 3�k E l � !$�C)�� H � E l � , withJ E �}¤.I�#q!=;@��¥���!=<C��!K; E)()"%w;@��¥���!1<`��!1� E)()>) . The pro-
cess is recursively applied down to the lowest level.
For level �]¦M9 it would be applied to � E l � , the com-
mon subregion of ; E and � E , and to those subregions ofJ E , which have a common subregion with � E l � , sinceS�T��v E l � ! � E l �)� .v E l � !Kv E !$J E)() .
4.4. Splitting

If a region’s size dominates a window and there are
other regions, which could, from the task’s model point
of view, group with that region, it can be split into a
sequence of smaller, linked regions. E.g., a lengthy text
message is split into a sequence of regions containing
each a part of the text message. Only the head of the
sequence continues to take part in the grouping process.

4.5. Relinking

A region that cannot further be grouped with other
regions into a region of a higher level is called com-
plete. A complete region that has reached the threshold
of maximal allowed size does not drop out of the group-
ing process. Instead, a new region is created containing
a single navigation widget pointing to the complete re-
gion. The new region takes the place of the complete
region and continues the grouping process on behalf of
it. The process is illustrated in Figure 5.

Region Region

Complete
Region Region

Region Region

Complete
Region

Region
with

Navigation
Widget

RegionRelinking

Figure 5: A region containing a single navigation widget
will replace a complete region. The new region takes part
in the building phase on behalf of the complete region.

The effect of the relinking phase is that the adap-
tation process creates a linked tree-structure. The re-
gions representing the leaves of that tree-structure con-
tain the widgets of the original window. The interme-
diate nodes of the tree-structure are regions including
the navigation widgets that have been created in the re-
linking process.

4.6. Transformation

After the building phase has stopped at the top of
the stack of the cells, the complete regions are trans-
formed into ”small” windows and integrated into the

presentation model. The last created region forms the
entry window of the new part of the hierarchical pre-
sentation model. The new set of windows minimizes
the mismatch between the presentation model and the
platform model.

4.7. Homogeneity Predicate

The homogeneity predicate is employed to decide
if regions can be grouped together or not. The predicate
consists of two parts, which both have to evaluate to
true; , ! �)0� � ��¥���! �)¨§.f`
�	¨�©� #Z�"! �)g% � 3.< E .� Size. A window will be displayed on different plat-

forms with varying features, where screen size is of
crucial importance. If the size of two regions and
their parent region is lower than a predefined thresh-
old (e.g., three times of the screen size) the regions
are grouped, otherwise they are separated. The size
of a region is the sum of the size of the widgets of its
receptive field.� Context. The designer of the original presentation
model integrates in it task model related information
(context information). The information deals with
the semantic relation of a widget with its neighbor-
ing widgets.
A region ; E , having different semantic intent than its
tentative parent region � E�s � , is not grouped. If its
semantic intent is similar or the difference does not
exceed a predefined threshold ��!=; E % � E�s �)4ª�« , it can
be grouped. In a first version of the adaptation pro-
cess, we simply assign integer values to widgets, to
indicate semantic similarity. ��!©|G%A|¬) is a distance mea-
sure like the Euclidian distance. The context infor-
mation value of a region is the average value of its
receptive field.

5. Results

To illustrate the adaptation technique of a presen-
tation model we have implemented a location-based
message board (LBMB) [8]. The message board con-
tains location specific information and users can read
and store messages on the message board. A mobile
user moving from location to location accesses differ-
ent message boards depending on her geographical po-
sition. Different users use different devices to access
the message board such as laptops, PDAs, and mo-
bile phones relying on Wireless Application Protocol
(WAP) or Short Message Services (SMS).

Figure 6a shows the UI of the LBMB on a HTML
browser. This browser is a powerful tool, so that the
presentation model does not perform any adaptation.
The same application logic, this time with a UI adapted
to the small screen of a mobile phone, can be seen in
Figure 7. The menu is divided into a two level menu,
with a main menu containing links to each menu item,
which are presented on their distinct screen. The main
menu is inserted during the relinking process of the

Figure 6: (a) HTML-Browser showing the LBMB ”Main
Menu” and (b) the ”Read Message UI”.

Figure 7: WAP/WML browser showing the ”Main Menu
UI”.

Figure 8: WAP/WML browser showing the ”Read Mes-
sages UI”.

adaptation and is not present in the original presenta-
tion model. Figure 6b shows the UI, where users spec-
ify the number of message they want to read. The same
UI on a mobile phone is divided into the input fields
and the description, where the first part of the descrip-
tion is visible. Navigation to the second part is done
using the ”continue” link to another screen (Figure 8).

6. Conclusion and Future Work

The article has presented a new approach to dy-
namic UI adaptation. The presentation model adapta-
tion process is based on a linking strategy of two hier-
archies of graphs. The adaptation process consists of
the building and the transformation phases. The build-
ing phase forms a hierarchical structure of windows by
grouping, separating, splitting and relinking regions.
The building phase is guided by low-level task model
related information provided by the designer of the pre-
sentation model at design time. The construction phase
transforms the resulting complete regions into windows.
The adaptation process remodels dynamically a pre-
sentation model to better fit it to the current platform
model.

The first experiments with the presentation model
adaptation technique are promising and show that the
concept is sound. The use of the hierarchy of graph has
been proven flexible and is a viable concept for future
UI development. Future work will focus on conduct-
ing experiments with more complex presentation mod-

els. The integration of task model related information
into the presentation model is somehow simple. Ex-
ploration of more powerful but equally simple methods
needs to be carried out. Simplicity is an important ob-
jective to encourage use of this design technique.

References

[1] M. Abrams, C. Phanouriou, A. Batongbacal,
S. Williams, and J. Shuster. UIML: An
Appliance-Independent XML User Interface Lan-
guage. WWW8 / Computer Networks, 31(11-
16):1695–1708, 1999.

[2] D. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl:
A domain specific language for form-based ser-
vices. IEEE Transaction on Software Engineer-
ing, 25(3):334–346, 1999.

[3] T. Ball, P. Danielson, L. Jagadeesan, R. Ja-
gadeesan, K. Laeufer, P. Mataga, and K. Rehor.
Sisl: Several Interfaces, Single Logic. ”Interna-
tional Journal of Speech Technology”, 3:93–108,
June 2000.

[4] K.H. Britton, R.Case, A.Citron, R. Floyed, Y. Li,
C. Seekamp, B. Topol, and K. Tracey. Transcod-
ing. Extending e-business to new environments.
IBM Systems Journal, 40(1):153–178, 2001.

[5] J. Eisenstein and Charles Rich. Agents and GUI
from Task Modles. In ACM IUI, San Fransisco,
California, USA, January 2002.

[6] J. Eisenstein, J. Vanderdonckt, and A. Puerta. Ap-
plying Model-Based Techniques to the Develop-
ment of UIs for Mobile Computers. In ACM IUI,
Santa Fee, New Mexico, USA, January 2001.

[7] Christian Elting, Jan Zwickel, and Rainer Malaka.
Device-Dependant Modality Selection for User
Interfaces – An Emprical Study. In ACM IUI, San
Fransisco, California, USA, January 2002.

[8] S. Fischmeister, G. Menkhaus, and W. Pree.
MUSA-Shadow: A Location-Based Service Sup-
porting Multiple Devices. In Proceedings of Pa-
cific TOOLS, 2002.

[9] K.M. Goeschka and R. Smeikal. Interaction
Markup Language. In Proceedings of the 34th
Hawaii International Conference on Systems Sci-
ences. IEEE Computer Society, 2001.

[10] G. Hartmann. Recognition of Hierarchically En-
coded Images by Technical and Biological Sys-
tems. Biological Cybernetics, 57:73–84, 1987.

[11] Glenn E. Krasner and Stephen T. Pope. A cook-
book for using the model-view-controller user
interface paradigm in smalltalk-80. ”Journal
of Object-Oriented Programming”, 1(3):26–49,
August/September 1988.

[12] Brad Myers. User Interface Software Tools.
ACM Transaction on Computer-Human Interac-
tion, 2(1):64–103, March 1995.

[13] Peter Nacken. Image Segmentation By Connec-
tivity Preserving Relinking in Hierarchical Graph

Structures. Pattern Recognition, 28(6):907–920,
1995.

[14] W3C. Device Independence Working Group
Charter, 2001.

