
Software Research Lab
Institut fr Computerwissenschaften

Universitt Salzburg
Jakob-Haringer-Str. 2

A-5020 Salzburg
Austria

Interaction of Device-Independent
User Interfaces with Web Services

Guido Menkhaus Guido.Menkhaus@uni-konstanz.de
Wolfgang Pree pree@acm.org
Philipp Baumeister baumeister@fmi.uni-konstanz.de
Uli Deichsel deichsel@fmi.uni-konstanz.de

TR-C048 April 1, 2002

The Web has evolved from a set of mere static pages to a means for offering appli-
cations through dynamic Web sites. Web services extend this paradigm by providing
application logic via standardized Internet technology. A Web service consists essen-
tially of an interface for accessing black-box functionality over the Internet. A Web
service can be used by end users as well as by other applications or Web services.
If an adequate set of Web services will be available, it should be possible to create
Web-based applications by composing the appropriate Web services, no matter where
they are located or how they are protected.
Another trend has to be considered to cope with the requirements of Web applications
in the future: a variety of devices with different display and processing resources will
offer access to the Web, ranging from cell phones to various handheld devices. Thus,
we see an urgent need to support these different devices no matter which Web services
underlie a particular application. The paper presents the Multiple-User-Interfaces-
Single Application logic (MUSA) architecture and system as an attempt to address
this issue.

�

�

Copyright 2002, Software Research Lab. All rights reserved.



Interaction of Device-Independent
User Interfaces with Web Services

Guido Menkhaus
Software Research Lab, University of Salzburg, A-5020 Salzburg, Austria, and
University of Constance, D-78457 Constance, Germany,
email: guido.menkhaus@uni-konstanz.de, menkhaus@SoftwareResearch.net
Tel: +49 7531 88 2188
Fax: +49 7531 88 3577

Wolfgang Pree
Software Research Lab, University of Salzburg, A-5020 Salzburg, Austria,
email: pree@SoftwareResearch.net

Philipp Baumeister
University of Constance, D-78457 Constance, Germany,
email: philipp.baumeister@uni-konstanz.de

Uli Deichsel
University of Constance, D-78457 Constance, Germany,
email: uli.deichsel@uni-konstanz.de



Interaction of Device-Independent User Interfaces with Web Services

Guido Menkhaus
��� �

, Wolfgang Pree
�
, Philipp Baumeister

�

, Uli Deichsel
�

�

Software Research Lab, University of Salzburg, A-5020 Salzburg, Austria, email:
�
lastname � @SoftwareResearch.net�

University of Constance, D-78457 Constance, Germany,
�
firstname.lastname � @uni-konstanz.de

Abstract. The Web has evolved from a set of mere
static pages to a means for offering applications through
dynamic Web sites. Web services extend this paradigm
by providing application logic via standardized Inter-
net technology. A Web service consists essentially of
an interface for accessing black-box functionality over
the Internet. A Web service can be used by end users
as well as by other applications or Web services. If an
adequate set of Web services will be available, it should
be possible to create Web-based applications by com-
posing the appropriate Web services, no matter where
they are located or how they are protected.

Another trend has to be considered to cope with the
requirements of Web applications in the future: a vari-
ety of devices with different display and processing re-
sources will offer access to the Web, ranging from cell
phones to various handheld devices. Thus, we see an
urgent need to support these different devices no matter
which Web services underlie a particular application.
The paper presents the Multiple-User-Interfaces-Single
Application logic (MUSA) architecture and system as
an attempt to address this issue.

1. Introduction

Web services allow for a fast and smooth creation of
Web-based applications across traditional hardware and
software barriers. They enable organizations to create
applications and services, which run distributed on sev-
eral servers crossing administrative domains protected
by firewalls. In the ideal scenario, the composition and
integration of Web services would make it possible to
offer complete services without ever having to develop
any part of it [14]. The advent of Web services enables
service providers to come a step closer to the vision
of complete dynamic and distributed Internet applica-
tions. At the same time, the trend of Web access is drift-
ing away from the desktop PC as the principal device to
access services and information on the Internet to con-
sumer devices such as mobile phones, handheld com-
puters, and a wide spectrum of Personal Digital As-
sistants (PDAs). The objective of service providers is
the creation of services that are device independent, to
avoid fragmentation of the Web space into spaces that
are solely accessible with specific type of devices, and
make sure that the web related technologies support-
ing various kinds of devices can interoperate with each
other or with the existing web as much as possible [12].
Applications will need to be able to reconfigure their
interfaces to take advantage of whatever modalities are

available on the user’s platform.
It will be increasingly important for service provider

to appropriate means for scalable and flexible presenta-
tion logic and for easy integration and composition of
Web services to form a new entity. The paper presents
the MUSA system and the description language EG-
XML. EG-XML allows the description of service logic
that enables users via a UI and other Web services to
access a Web application. Service providers are put
into the position to rapidly develop Web applications
by composing Web services.

The remainder of the paper is structured as follows:
The motivation of the work is presented in Section 2.
Section 3 describes the architecture of the MUSA sys-
tem. The Web service infrastructure and its application
in the work is discussed in Section 4. Results are pre-
sented in Section 5. Section 6 briefly presents related
work and Section 7 concludes the paper with a discus-
sion of future work.

2. Motivation

In recent years, a wide range of mobile computing de-
vices has emerged. This has led to a diversification
of markup languages for different types of devices [6].
Each class of target devices comes with its typical browser
and has its specific markup language. Among the lan-
guages are HTML, XHMTL, DHTML (the combina-
tion of HTML, CSS and XSL style sheets, the Docu-
ment Object Model, and scripting), XML-based User
Interface Language (XUL) for traditional desktop ap-
plications; the Wireless Markup Language (WML) for
mobile devices such as cell phones; and the Voice Markup
Language (VoxML) for voice-enabled gadgets without
display such as conventional telephones. Each language
aims at a specific platform and is optimized for sup-
porting it. That is, each approach establishes a 1 to
1-relation between the User Interface (UI) description
and the target platform. The explosion of the variety of
gadgets for Internet access with widely differing prop-
erties with regard to UI capacity directed research on
architectures that allow the creation of a single descrip-
tion to serve a multitude of platforms or to make ex-
isting descriptions available to device categories other
than the originally intended class of devices [2, 8, 9].
We argue that the introduction of an abstract descrip-
tion of a UI is an essential component that facilitates
the development of UIs for a variety of computing de-
vices.



Web services reinforce the trend of distributed ap-
plications, where service providers offer applications
composed from a set of services, which are developed
and run by one or more different organizations. The
service provider integrates application-specific Web ser-
vices to implement the service logic. The service fa-
cade exposes the service logic to a user who interacts
with the service logic via a UI or to other Web service
(Figure 1).

Devices
Devices

Devices

Web Service
Web Services

Service 
Facade

Service 
Logic

Application Specific 
Web ServicesApplication Specific 

Web ServicesApplication Specific 
Web Services

Figure 1: Architecture of a Web application composed
of Web services.

3. MUSA

The MUSA project concentrates on device independent
UI description and on the support of the integration and
composition of Web services. The objective is a re-
duction of development time, cost, as well as improved
maintainability and flexibility. Figure 2 illustrates the
high-level architecture of MUSA. The system is con-
ceptually split into four tiers and employs an event-
driven design.

Client. The client environment represents the first tier.
The client is represented either by a device with a UI
or by a Web service. In case of a client with a UI,
no service data is installed on the client side and the
client communicates via wireline or wireless Internet
with the service. Typically, the client is some sort of
browser, but could also be a device with no visualiza-
tion capacity such as a telephone. If the client is a Web
service, it communicates with a Web service gateway,
which itself is implemented as a Web service.

Request Processor and Client Gateways. The re-
quest processor deals with the client’s request. The
communication between the services and the client passes
through the request processor. It forwards the com-
munication stream to the MUSA core system, e.g. to
the EG-XML Interpreter SPU. The request processor is
the link between the MUSA core system and the client
and converts the client requests into events that are used
throughout the MUSA architecture.

The short message service (SMS) gateway is a mod-
ule that is logically located between the client and the
request processor. It receives short messages from the
client. The short messages have a predefined syntax
and semantic and the gateway converts them into events
that are forwarded to the request processor. The request
processor receives the request and returns the answer to
the SMS gateway, which in turn transfers the result to
the client.

The Web service gateway implements the same be-
havior as the SMS gateway but for Web service clients.
It acts as the interface of the overall Web application.
A Web Service interface is defined strictly in terms
of the messages the Web Service accepts and gener-
ates [7]. The incoming messages are dispatched as
events to the MUSA system. The MUSA system trans-
lates the outgoing events into response messages and
forwards them to the client.

MUSA Core System. The MUSA core system con-
sists of specialized processing units (SPU), which re-
flect the separation of concerns of the system.

1. Event graph interpreter SPU. The event-graph in-
terpreter mediates between the client interaction and
the interaction with the Web services. The event-
graph interpreter contains the description of the ser-
vice logic in EG-XML and handles the event process-
ing. The incoming events from the request processor
are sent to individual event handlers that contain the
necessary information to properly respond to the in-
put event. In response to the event processing the
system generates outgoing events for each incoming
event, which are further processed in the MUSA sys-
tem. The request processor sends the processed out-
going events to the appropriate client.

2. Encoding transformer SPU. The transformer SPU
transforms and maps outgoing events of the event
graph to an appropriate presentation form. If the client
is a device with a GUI, the events are mapped to
those concrete UI elements, which are able to im-
plement and trigger the specified events. The SPU
applies a transformation on the event graph depend-
ing on the client’s profile. Figure 2 shows four trans-
formers: a HTML, a WML, a SMS, and a Web ser-
vices transformer.

3. Presentation model integrator SPU. The integra-
tor SPU models the overall presentation layout of the
events, which are transmitted in the course of the
current interaction between the user and the appli-
cation. The integration of the events into a presenta-
tion model (PM) is particularly important for HTML,
since the user has to receive nicely designed HTML
pages. The UI designer creates the PM and submits
them in the PM repository. For Web service clients,
this SPU is not applicable.

Service Proxy. The service logic is the body of code
for which the MUSA system provides the service fa-
cade. The Web services that implement the service
logic are accessible via service proxies, which connect
the MUSA system to other Web services. The Web
services have no knowledge of the event-based inter-
action structure or the presentation issues of the ser-
vice data. They are designed independently from these



Event Graph Interpreter SPU

Encoding 
Transformer SPU

Presentation Model 
Integrator SPU

SMS
Gateway

Request Processor

MUSA Core System

Web 
Service
Gateway

Web 
Service

Application
Specific

Web 
Services

SOAP Service 
Broker

SOAP Service 
Proxy

HTML

WML

SMS

Web Service

Mediator

EG-XML
Event Graph 
Description

Integrator

PM Repository

Application
Specific

Web 
Services

Application
Specific

Web 
Services

Figure 2: High-level architecture of MUSA system.

issues. Section 4 describes the communication mech-
anism between the description of the service logic in
EG-XML and the Web services. The next section presents
the description of the service logic in EG-XML.

The MUSA system allows the description of a ser-
vice in a client-independent way and enables the inte-
gration of Web services from different sources. MUSA
describes an abstract service model in EG-XML that
can be accessed by Web services and a wide range of
different consumer devices. On the one hand, the MUSA
focuses on the delivery of service content to different
clients and on the other hand on the support of the inte-
gration of different Web services. The main three areas
addressed by MUSA are:

1. Semantic preparation of the service logic,

2. Communication between the service logic and client,

3. Communication between the description of the ser-
vice logic and the Web services, which implement
the service logic.

The semantic preparation of the service logic deals
with the capability to adequately associate semantic ob-
jects, carrying application related information, with con-
crete UI interaction objects in case of clients, which
use a device to access the application. For Web service
clients, a Web service proxy, which is an intermedi-
ary between the service logic description and the client
Web service, fulfills this task. The Web service proxy
itself is implemented as a Web service. In an ideal-
ized model, semantic objects represent data and func-
tions as name/value pairs. The semantic objects have to
be communicated, i.e., transferred between the service
logic and the client.

The appropriate infrastructure needs to be available
to bind the service logic to the separate clients with
their specific interaction capability. Since the clients
may be very heterogeneous ranging from Web services,
standard Internet browsers to cellular telephones com-
municating via Short Message Service (SMS), a stan-
dard event mechanism is put in place to allow unified

communication across the MUSA system. The inter-
action between the client and the service logic is im-
plemented using an event-driven approach [13]. There
are two forms of interaction. One involving the Web
services implementing the service logic and the other,
which is resolved without interaction with Web ser-
vices.

1. Local Interaction. Local interaction does not in-
volve communication with Web services that imple-
ment the service logic. Events representing local in-
teraction do not involve interaction with the Web ser-
vices. The event’s target is solely the glue part of
the service logic implemented with EG-XML and it
is processed exclusively by it. E.g., the navigation
of the UI by a client accessing the service via a con-
sumer device like a cellular telephone.

2. Global Interaction. Global interaction is represented
by events that involve interaction with the Web ser-
vice, that are integrated into the service logic. This
type of interaction offers the client to submit an event,
which is transformed into a call of the API of a Web
service. The application processes the event and re-
turns data, which are further processed in the MUSA
system and presented to the client.

The presentation layer determines how the data of
a service are presented to the client. If the client has a
UI, information on how to map content to concrete UI
objects is handled by the local layout. The global lay-
out considers high-level aspects of layout management
and determines the position of concrete UI objects to
each other. A Web service is a special case of a client
having no UI.

The communication between the MUSA system and
the Web service is done using the Simple Object Access
Protocol (SOAP). The service description in EG-XML
mediates between the events dispatched by the client
and the Web services implementing the overall service
logic. EG-XML delivers a mechanism that supports
developers to integrate Web services by offering a stan-
dard way of communication with a Web service. The



communication is based on the assumption that events
carry semantic objects representing data and functions
as name/value pairs.

3.1. Event Graph XML

1..n

1..n

1..n 1..n

1..n

1..n

Service

Dialog

DialogLet

Simple 
Event Handler

Composite 
Event Handler

Figure 3: Structure of the event graph.

The event graph is at the core of the MUSA system.
The introduction of the event graph follows the idea
of the reactive constraint graph described in [1] and
the abstract depiction hierarchy presented in [10]. The
event graph implements an interaction-oriented service
description. It is an abstract description of a service
logic (a service facade to the set of Web services), which
is available for service access to a wide range of clients.
The basic building blocks of the event graphs repre-
sent specific event handlers. The event handlers re-
ceive events from the client dispatched by the request
processor and emit events in response to the event pro-
cessing. In case of a client with a UI, outgoing events
are assigned and eventually mapped in the transformer
SPU to concrete UI elements that are able to trigger the
events. The UI elements trigger the event either on dis-
play of the UI elements or in response to user interac-
tion. The introduction of the event graph as a high-level
abstraction of the service logic/client interaction allows
rapid development of services. This concept facilitates
the implementation and design of services. A set of hi-
erarchical structures that help to divide a service into
smaller parts further promotes the development (Fig-
ure 3).

1. Simple Event Handler. An event handler is an ab-
stract interaction object. It contains the necessary in-
formation on how to handle the event or to delegate
the processing of the event and its associated data.

2. Composite Event Handler. An event handler is com-
posite if it is composed of other event handlers.

3. Dialoglet. A dialoglet consists of a number of events,
which belong to a group logically and semantically.

4. Dialog. A dialog is designed to represent a task or
a sub-task of a specific Web-based service. A dialog
contains one or more dialoglets.

5. Service. A service is composed of a sequence of di-
alogs.

The objective of the concept of the event graph is to
structure the service design by using the abstractions
listed above. In practice, each of these play an im-
portant role in service design. By providing the event
graph for describing these abstractions, the vocabulary
of a designer’s informal design practices can be matched.
This makes it easy for a designer to map its vocabulary
to the abstractions, both in terms of formalizing an in-
formal specification and in terms of communicating the
results to other stakeholders.

4. Integration in the Web Service Environment

The service logic is implemented using the event graph.
The event graph allows the composition of a set of Web
service. The event graph interpreter SPU integrates
the Web services by communicating with them using
SOAP. SOAP is a XML based protocol that transmits
messages and method calls in a distributed comput-
ing environment. It describes a message format for
the application-to-application communication for dis-
tributed applications. A SOAP method call, which calls
a method in a distant object, can be divided in a call and
a response message.

Unlike current component standard, Web Services
are not accessed via object-model-specific protocols,
such as the distributed Component Object Model (DCOM),
Remote Method Invocation (RMI), or Internet Inter-
ORB Protocol (IIOP) [7]. Web Services are usually ac-
cessed with standard Internet technologies, such as Hy-
pertext Transfer Protocol (HTTP) and Extensible Markup
Language (XML). These characteristics guarantee in-
teroperability, which forms the basis of method calls
across over hardware and software boundaries.

If a set of Web services is offered over the Internet
by means of SOAP, the question arises, whether to as-
sign an own URL to each service, to each instance of
a services, or whether to use only a single URL for all
services, and to add suitable arguments in the SOAP
method call, which identify a specific service. The fol-
lowing variations are at disposal:

1. A communication end point for each service,

2. An end point per service (all instances of a services
share the same communication end point),

3. A single communication end point for all services.

The use of a single URL per service appears seman-
tically correct. However, this means that clients, which
access a Web service, must implement and use a spe-
cific interface for each service. At first, this appears to
be no problem. Yet, many applications use a multiplic-
ity of interfaces, and thus their management becomes
unwieldy. In order to master the management and use
of interfaces for a multitude of Web services and to



handle calls to Web services transparently, we decided
to implement a single communication end point for all
Web services of a administrative domain. The result of
this consideration is the design of an architecture based
on the structural design patterns Proxy, Facade [5] and
on the Broker architecture pattern [3]. These patterns
help to represent a variety of structures by a central ab-
straction.

4.1. The SOAP Infrastructure

The main concern is to enable the implementation of a
Web service method call on the client-side as uniformly
as possible and thus to keep the writing of services as
comfortable as possible. A SOAP broker, which of-
fers a uniform interface by means of the Facade pattern
for all services, manages the services, for which it of-
fers the uniform interface. A client-side proxy adopts
the SOAP based communication with the Web service
(Figure 4).

SOAP
Client Proxy

Web Server 
and

SOAP Framework

SOAP
Broker

Web 
Service

SOAP
Service Proxy

Calls
Web 

Service

Register
Web 

Service

Register
Web 

Service
Calls
Web 

Service

Figure 4: SOAP proxy and broker infrastructure.

The SOAP broker is a Web service that registers
with the SOAP framework. Services register themselves
with the SOAP broker over the SOAP service proxy.
Clients use services, which have registered before with
the SOAP broker. The SOAP broker implements a fa-
cade, which offers a uniform interface. The following
paragraph describes in detail the SOAP infrastructure.

4.2. SOAP Client Proxy

On the client side, the client communicates over a SOAP
client proxy with the service. The Proxy pattern serves
as means to hide from the client the communication de-
tails with the communication end point [3]. Tools exist
already, which create based on the Web Service De-
scription Language (WSDL) a Web service as a proxy.
The proxy created from WSDL acts as a local repre-
sentative for the distant Web services. This solution be-
comes inefficient and the administration of the proxies
unwieldy if a large number of proxies is used. Instead,
the Facade pattern offers a uniform interface for a set
of Web services. This results in a single proxy offering
a single interface for a set of services. Fewer interfaces
must be managed.

4.3. SOAP Broker

The SOAP broker implements the Facade pattern. The
SOAP broker is the only service, which is registered

with the SOAP frameworks of the Web Server. It rep-
resents the only communication end point for all Web
services. Unlike the SOAP broker, all Web services
register with the SOAP broker and not with the SOAP
framework. Client applications call a Web service via
the SOAP broker. The SOAP broker transfers the call
to the target Web service.

The application of the Facade pattern results in a
significant reduction of the interfaces. A disadvantage
of this solution is the loss flexibility. The SOAP bro-
ker represents a facade for a set of services. Since the
facade offers a uniform interface, this may lead to a
loss of flexibility. The consequence is that a service
must adapt its interface to comply with the SOAP bro-
ker facade. The advantages are various. With the help
of the Facade pattern a uniform interface is offered for
a set of services. This simplifies the use of Web ser-
vices. Additionally, the Facade pattern reduces depen-
dency between client and Web service. It decouples the
use from its implementation so that both can vary inde-
pendently. The Broker pattern is used to implement
distributed software systems with decoupled compo-
nents [3]. The SOAP broker is responsible for the co-
ordination of communication with the SOAP client and
manages the registered services. Clients specify the
service, which they would like to use in the method
call as parameter. The SOAP broker passes the call of
the clients to the specified Web service and transmits
the response to the client.

5. Results

As a sample application scenario, we have implemented
Web Office; a set of services related to the well-known
office application domain. The objective is to offer typ-
ical office tasks such as email, address books, personal
documents, etc. on the Web so that they are easily
accessible and manageable by a multitude of Internet
clients in a heterogeneous environment. Our applica-
tion relies on Web service technology where each task
is implemented as a Web service. We used Sun Mi-
crosystem’s Web Services Developer Pack (WSDP) as
underlying infrastructure for developing the Web ser-
vices, where SOAP serves as middleware for Web ser-
vice communication and Apache Tomcat as Web server
to deploy services on the Internet. The client side of
our application is a Web front end that represents the
online office system using Servlet technology for the
mediation between services and client interaction.

5.1. The Web Office Application

The Web Office application is service-oriented and re-
lies on the composition of distributed services using
EG-XML. The functionality of our office application
consists of five services.

1. Authentification Web service. The Authentification
web service is responsible for the user administra-



Figure 5: Address Book Web Service.

Figure 6: Email Web Service.

tion. New online office users register with the au-
thentification server submitting username and pass-
word. This Web service is invoked by all other web
services, which need to check for user permission
and user data before any other transaction takes place.

2. AddressBook Web service. The AddressBook Web
service offers the storage of addresses in a database
on the server. It offers querying and updating of ad-
dress data, consisting of name, street, city, email etc.
An update or query of the address book is only possi-
ble after the Authentification service grants permis-
sion. (Figure 5)

3. Email Web service. The Email Web service allows
users to write emails without having to configure their
own email client. The service uses a SMTP server for
the sending process. The recipient of the mail can be
either a full email address, a name or the username of
another online office user. If the Email Web service
notices that the recipient is not a valid address, it will
query the AddressBook Web service for the recipi-
ent’s email address. The Authentification server will
ask for the user’s permissions in advance and serves
as logging mechanism for security issues. (Figure 6)

4. MessageBoard Web service. The MessageBoard

Figure 7: Message Board Web Service.

Web service enables users to post messages and read
messages from other users. Messages are stored lo-
cally in a database on the server and can be either
readable for all users or all users within the same
group. (Figure 7)

5. Printing Web service The Printing Web service sup-
ports the printing of text documents in a LAN. This
service also queries the Authentification service for
user permissions. Since for printing a physical printer
is required, dynamic discovery using registries will
be available in future versions.

6. DocumentManagement Web service The Document-
Management Web service enables the user to store
documents and request them from a personal folder
on the server. This way, documents are available
from anywhere and on any device. The Authentifi-
cation service checks the permissions.

5.2. Protocols and Future Work

In the case of Web services, all procedure calls and
its parameters are translated into XML documents by
SOAP serializers, which are sent back and forth be-
tween client and server using the HTTP protocol. In
order to access a web service, a client needs knowledge
about the service structure - that is, its parameters and
return types. This information is exploited at compile
time. This way of communicating with a web service
is the ”static web service” usage. The client needs an
a priori detailed knowledge about the web service to
be used and the connection has to be hardcoded in the
client’s source. However, this may lead to errors once
a web service’s interface changes or when it is moved
to another communication end point. In future versions
of MUSA, the Web service interface may be dynami-
cally discovered. This is especially interesting for the
Printing Web service since printing depends on a phys-
ical printer, which might not be available in the user’s
current environment. Once the WSDL document of a
Web service has been retrieved, information about the



services’ endpoint, its namespace, its parameters, and
return types are available and the client can start using
the service. This type of web service usage is often
described as ”dynamic web services”. In our office ex-
ample, all services use the Authentication service. The
Email service also may use the AddressBook service to
retrieve email addresses from real persons’ names. The
binding between the services was implemented stati-
cally, because the dynamic discovery of the Authen-
tication service each time it is needed would be too
much of an overhead. Even if dynamic discovery of
services was designed to be achieved purely machine-
based, the quality of a service is very hard to assess by
software only and the completely dynamic discovery
without human interaction is less likely.

6. Related Work

The Web Services Flow Language (WSFL) [4] is an
XML-based language for the description of Web Ser-
vice compositions as part of a business process defini-
tion. It was designed by IBM to be part of the Web
service technology framework and relies and comple-
ments existing technologies such as SOAP, WSDL, XMLP
and UDDI. WSFL concentrates on the description how
to compose the functionality provided by a set of Web
services to implement a particular application and how
a set of Web services interact with each other.

XLANG is a XML based language for automation
of business processes based on web services. It focuses
on the message exchange behavior [11].

MUSA and the event graph EG-XML were origi-
nally designed for device-independent service access.
EG-XML was extended to support Web services. In
contrast to XLANG and WSFL, EG-XML does not yet
integrate dynamic discovery of Web services and re-
lies on a simple proxy mechanism to use Web service.
This may result in a loss of flexibility, but makes the
language very simple and easy to use.

7. Conclusion

The technology is available that allows the develop-
ment and deployment of Web services. However, ser-
vice providers need mechanisms that allow workflow
automation. We have presented the MUSA system,
whose target is to enable service provider to integrate
and compose Web services for device independent ser-
vice access. The implementation of the Web Office ap-
plication shows that the concept of the MUSA system
is a first step towards a flexible and viable solution to
Web application development.

Future work will be directed towards the integration
of Web service registries into the MUSA system and
dynamic exploration and automatic adaptation of Web
services.

References

[1] T. Ball, P. Danielson, L. Jagadeesan, R. Ja-
gadeesan, K. Laeufer, P. Mataga, and K. Rehor.
Sisl: Several Interfaces, Single Logic. ”Interna-
tional Journal of Speech Technology”, 3:93–108,
June 2000.

[2] K.H. Britton, R.Case, A.Citron, R. Floyed, Y. Li,
C. Seekamp, B. Topol, and K. Tracey. Transcod-
ing. Extending e-business to new environments.
IBM Systems Journal, 40(1):153–178, 2001.

[3] Frank Buschmann et al. Pattern-Oriented Soft-
ware Architecture: A System of Patterns. ”John
Wiely and Sons”, West Sussex, England, 1996.

[4] IBM Software Group Frank Leymann. Web Ser-
vices Flow Language (WSFL 1.0), May 2001.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
”Design Patterns - Elements of Resuable Object-
Oriented Software”. ”Addison Wesley”, Reading,
Mass., 1995.

[6] K.M. Goeschka and R. Smeikal. Interaction
Markup Language - An Open Interface for De-
vice Independent Interaction with E-Commerce
Applications. In Proceedings of the 34th Hawaii
International Conference on Systems Sciences.
IEEE Computer Society, 2001.

[7] Mary Kirtland. A Platform for Web Services. Mi-
crosoft Developer Network, January 2001.

[8] G. Menkhaus. Architecture for client-
independent web applications. In Tools Europe,
pages 32–40, Zuerich, Switzerland, March 2001.

[9] Oracle. Oracle mobile online studio, developer’s
guide, 2001.

[10] Richard Taylor, Kari A. Nies, Gregory A. Bolcer,
Craig A. Macfarlane, and Kenneth M. Anderson.
Chiron-1: A software architecture for user in-
terface development, maintenance, and run-time
support. ACM Transaction on Computer-Human
Interaction, 2(2):105–144, June 1995.

[11] Satish Thattle. XLANG - Web Service For Busi-
ness Process Design, 2001.

[12] W3C. Device Independence Working Group
Charter, 2001.

[13] K. Wang. An event driven model for dialogue
systems. Proceedings of the International Confer-
ence of Spoken Language Processing, 2:393–396,
1998.

[14] Yoram Wind. The Challenge of Customerization
in Financial Services. Communications of the
ACM, 44(6), 2001.


