
Software Research Lab
Institut fr Computerwissenschaften

Universitt Salzburg
Jakob-Haringer-Str. 2

A-5020 Salzburg
Austria

User Interface Tailoring for Multi-
Platform Service Access

Guido Menkhaus Guido.Menkhaus@uni-konstanz.de
Wolfgang Pree pree@acm.org

TR-C047 March 29, 2002

Due to the diversity of display capabilities and input devices, mobile computing gad-
gets have caused a dramatic increase in the development effort of interactive services.
User interface (UI) tailoring and multi platform access represent two promising con-
cepts for coping with this challenge. The paper presents the MUSA (multiple user
interfaces, single application) prototype system that addresses both issues by intro-
ducing an event-graph as basis of a UI tailoring process.
Keywords: User interface adaptation, multi-platform support

Copyright c
�

2002, Software Research Lab. All rights reserved.

User Interface Tailoring for Multi-Platform Service Access

Guido Menkhaus and Wolfgang Pree
Software Research Lab, University of Constance, D-78457 Constance, Germany

firstName.lastName@uni-konstanz.de

Abstract
Due to the diversity of display capabilities and input devices,
mobile computing gadgets have caused a dramatic increase
in the development effort of interactive services. User inter-
face (UI) tailoring and multi platform access represent two
promising concepts for coping with this challenge. The pa-
per presents the MUSA (multiple user interfaces, single ap-
plication) prototype system that addresses both issues by in-
troducing an event-graph as basis of a UI tailoring process.

Keywords
User interface adaptation, multi-platform support

INTRODUCTION
The current trend of Web access and computing is drifting
away from the desktop PC as the principal device to access
services and information on the Internet to consumer devices
such as mobile phones and handheld computers. The new
variety of devices has a profound impact on the way UIs of
Web-based services are built. The aim is to avoid a fragmen-
tation of the Web space into spaces that are solely accessible
with specific types of devices.

The paper presents one solution that helps to avoid this frag-
mentation. At the core is what we call the event structure
code (ESC). ESC is an aggregation adaptation technique that
adapts dynamically the presentation model of an UI, guided
by annotations that are provided by the UI designer. The
ESC adaptation process is based on event graph XML (EG-
XML). EG-XML is our description language that allows Web
service designers to describe dynamic interactive services in
abstract and generic terms. ESC and EG-XML are part of the
adaptive UI system MUSA (multiple UI, single application),
which adapts the presentation structure of its UI dynamically
to different contexts [2].

MOTIVATION
Being aware of the necessity of adaptive UIs the MUSA project
concentrates on two activities: Multi-platform support and
UI tailoring.

� Multi-platform Support. We argue that the introduction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
IUI’02, January 13-16, 2002, San Francisco, California, USA.
Copyright 2002 ACM 1-58113-459-2/02/0001. . . $5.00

of an abstract description of a UI is an essential component
that eases the development of UIs for a variety of comput-
ing devices.

� UI Tailoring. UI tailoring refers to the ability of a system
to adapt to the context in which it is used [3]. Tailoring of
the interface design includes the capability of adaptation
of content delivery to various devices, while preserving
consistency and usability of the service. The MUSA sys-
tem with the description language EG-XML and the ESC
process of dynamic UI adaptation allows users of mobile
computing devices to access a service while the transferred
content is tailored to the capabilities of the user device with
respect to the display size and mapped to the UI language
that corresponds to the device.

MUSA ARCHITECTURE
Figure 1 illustrates the high-level architecture of MUSA. MUSA
is conceptually split into four tiers and employs an event-
driven design.

Enables Events

Request
Processor

Service Logic
Adapter
Service

Transformer
SPU

SPU

Input Events

EG Interpreter

MUSA
ESC

Adaptation

SPU

EG-XML
Event Graph

Core System

Figure 1: MUSA Architecture.

The client environment represents the first tier. No service
data is installed on the client side and the client communi-
cates via wireline or wireless Internet with the service. The
request processor deals with the client’s request. The com-
munication between the services and the client UI passes
through the request processor. The event graph interpreter
mediates between the user interaction and the delivery of ser-
vice data to the user UI through the service adapter. The
event graph interpreter contains the event graph specialized
processing unit (SPU), which manages the event graph, writ-
ten in EG-XML, and handles the processing of elements of
the event graph. The event graph implements the naviga-
tional design and the interaction of the service logic. It ab-
stracts these aspects from the service logic. The ESC adapta-
tion SPU adapts the presentation model by dynamically de-

signing the event graph subject to the device that connects
to the service via the MUSA system. The transformer SPU
assigns and maps the elements of the event graph to concrete
UI objects, which trigger events that are associated with these
elements. The service logic is the body of code for which the
MUSA system provides the multi-platform and adaptation
features.

EVENT GRAPH
The event graph (EG-XML) is an abstract description of a
service, which is presented to the user who interacts with it
through a UI. Elements in the event graph do not specifically
define UI objects. However, they are assigned and eventually
mapped to UI objects that are able to trigger the associated
events. The UI objects trigger an event either when the UI
objects are displayed or in response to user interaction. The
event graph is designed with the following concepts:

� Events. An event is assigned to a concrete interaction ob-
ject from the presentational and the behavioral point of
view.

� Dialoglet. A dialoglet consists of a number of events,
which belong logically to a specific subtask.

� Dialog Profile. A dialog profile represents a dialog adapted
to a specific device profile.

� Dialog. A dialog consists of a set of dialoglets and is de-
signed to represent a task or a subtask of a specific Web-
based service.

� Service. A service is composed of a sequence of dialogs.

EVENT STRUCTURE CODE
The ESC adaptation can be classified as aggregation adapta-
tion [1]. ESC adaptation creates dynamically a presentation
model for a UI by constructing a dialog profile and clustering
events into a set of dialoglets, which form the resulting dia-
log profile. Instead of clustering events of a dialoglet into a
difficult to navigate, linked list of small dialoglets (Figure 2),
the ESC builds a hierarchical structure (Figure 3).

Dialoglet DialogletDialoglet

Dialog

Process of
ESC Adaptation

Dialog Profile

Dialoglet

Figure 2: Linear structure of dialoglets.

Main
Dialoglet

Dialoglet Dialoglet Dialoglet

ESC Adaptation
Process of

Dialog Dialog Profile

Dialoglet

Figure 3: ESC hierarchical structure of dialoglets.

The process is guided by annotations provided by the EG-
XML designer. The ESC adaptation consists of the building

and the construction phase:
Building Phase: The building phase consists of three steps:

� Clustering. Event clusters are clustered into a hierarchi-
cally linked structure. At the beginning of the clustering
process, each event cluster contains a single event.

� Separation. Event clusters that cannot be clustered are
separated.

� Linking. Distinct event clusters that belong logically to-
gether are mutually linked. This linking phase creates ad-
ditional main dialoglets (Figure 3), which are the building
blocks for the hierarchical structure. The linking step oc-
curs concurrently with the clustering and separation step.

Construction: The final step of the clustering process con-
sists of transforming event clusters into dialoglets and the
creation of a dialog profile.

The ESC is a technique that builds pyramidal structures by
clustering event clusters. If a new event cluster that has ten-
tatively been built does not satisfy a specific clustering cri-
teria, it is separated into two event clusters. The clustering
and separation process depend on the device profile and is
different for each class of device. The result of the clustering
process is a presentation model that is individually adapted
to a device. In contrast to model-based approaches, the de-
signer does not determine the presentation model of a UI for
different platforms during design time, nor does the designer
explicitly need to represent possible adaptations in the pre-
sentation modle. Rather the presentation model is dynami-
cally created at run-time.

CONCLUDING REMARKS
MUSA supports multi platform service access and UI tailor-
ing. The ESC adaptation is based on EG-XML, an abstract
description language. The ESC adaptation process consists
of the building and the construction phases. The building
phase forms a hierarchical structure by clustering, separat-
ing and linking event clusters. The construction phase trans-
forms the resulting event cluster into a dialog profile. A set
of dialoglets presents a dialog, specific to a device profile.
The ESC adaptation process builds dynamically a presenta-
tion model of a dialog.

REFERENCES
1. D. C. Bulterman. User-centered abstractions for adaptive

hypermedia presentations. In Proceedings of the sixth
ACM interbational conference of Multimedia, pages
247–256, Bristol, United Kingdom, September 1998.

2. G. Menkhaus. Architecture for client-independent web
applications. In Tools Europe, pages 32–40, Zuerich,
Switzerland, March 2001.

3. P. Szekely. Retrospective and challenges for model-
based interface development. In F. Bodart and J. Van-
derdonckt, editors, Design, Specification and Verifica-
tion of Interactive Systems ’96, pages 1–27, Wien, 1996.
Springer-Verlag.

