
Evaluating the Security Of Three Java-Based Mobile
Agent Systems

Sebastian Fischmeister, Giovanni Vigna, Richard A. Kemmerer

Department of Computer Science
University of California Santa Barbara

{sfischme,vigna,kemm}@cs.ucsb.edu

Abstract. The goal of mobile agent systems is to provide a distributed comput-
ing infrastructure supporting applications whose components can move between
different execution environments. The design and implementation of mechanisms
to relocate computations requires a careful assessment of security issues. If these
issues are not addressed properly, mobile agent technology cannot be used to
implement real-world applications. This paper describes the initial steps of a
research effort to design and implement security middleware for mobile code
systems in general and mobile agent systems in particular. This initial phase fo-
cused on understanding and evaluating the security mechanisms of existing mo-
bile agent systems. The evaluation was performed by deploying several mobile
agents systems in a testbed network, implementing attacks on the systems, and
evaluating the results. The long term goal for this research is to develop guide-
lines for the security analysis of mobile agent systems and to determine if exist-
ing systems provide the security abstractions and mechanisms needed to develop
real-world applications.

Keywords: Mobile agent systems, computer security, security testing.

1 Introduction

Recently mobile code has attracted a great deal of interest from both industry and
academia. The ability to dynamically deploy application components across the net-
work is a powerful mechanism to improve the flexibility and customizability of appli-
cations.

Mobile code is a general concept that encompasses a number of different approaches
to reconfigure the location of the components of a distributed application [7]. The most
common form of code mobility iscode on demand,which is the download of exe-
cutable content in a client environment as the result of a client request to a server. A
well-known example of this approach is the download of Java applets or Javascript code
in a WWW browser. A different form of code mobility is represented by the upload of
code to a server. The uploaded code is executed by the server and possibly the results
of the computation are sent back to the client. This form of mobility, also known asre-
mote evaluation[13], allows the client to execute a computation close to the resources
located at the server’s side so that network interaction can be reduced. Common exam-
ples are represented by the use of SQL to perform queries on a remote database or the



upload of PostScript code to a remote printer. A third form of code mobility is repre-
sented by themobile agentparadigm. In this case, mobile components can explicitly
relocate themselves across the network, usually preserving their execution state (or part
thereof) across migrations. Examples of systems supporting this type of mobility are
Telescript [17] and D’Agents [8].

Past research on mobile code security has mainly focused on code on demand and
remote evaluation [6]. These forms of mobility are easier to deal with because they en-
compass a single interaction in the transfer of a code component. Some of the results
achieved in these areas have been applied to the mobile agent approach, but the prob-
lem of creating a distributed computing infrastructure where agent-based applications
belonging to different (usually untrusted) users can execute concurrently has not been
solved yet [15]. In most cases, mobile agent systems (MASs) are proof-of-concept pro-
totypes whose focus is on sophisticated mobility mechanisms; security is left as future
work. Other systems provide some basic security mechanisms and primitive support
for the definition of security policies, but the provided mechanisms are far from be-
ing a sound, comprehensive security solution. If the security problem is not solved in
a reliable way, the applicability of mobile agent technology in the real world will be
impossible.

This paper describes the first steps of a research effort aimed at the development of
secure mobile agent systems. As a preliminary phase in this research effort, it was de-
cided to assess the security provided by existing MASs. In this phase a number of MASs
that provide security mechanisms were installed on a testbed network in the Reliable
Software Lab at UCSB. The network is composed of hosts running various operating
systems, such as Sun Solaris 2.x running Sun’s reference implementation of the Java
Development Kit (JDK) 1.1.8, Linux 2.x running the JDK 1.1.7, and Microsoft’s Win-
dows NT 4.0 with JDK 1.1.7. Attacks were launched against the MASs under exam,
and the results were analyzed.

The results of the security analysis for a subset of the MASs that were collected
and installed are presented in this paper. The subset includes Aglets SDK 1.1, Jump-
ing Beans 1.1, and Grasshopper 1.2.2.3. The remainder of this paper is organized as
follows. Section 2 presents some terminology by describing an abstract mobile agent
system, and it also reviews some basic security terminology. Sections 3, 4, and 5 present
the results of instantiating attacks against the authorization mechanisms of the systems
under analysis. Section 6 draws some conclusions and outlines future work.

2 General Framework for the Analysis

Before discussing each of the mobile agent systems it is important to define some com-
mon concepts, abstractions, and terminology. This framework will then be used to de-
fine some general attack classes, which can then be instantiated on particular systems.
The definitions presented in this section were obtained by the analysis of a number
of existing systems and their security models [8, 9, 12, 14], as well as by the OMG’s
MASIF specification [10].

An abstract mobile agent system is shown in Figure 1. The main components are
mobile agents, places, agent systems, regions, and principals. Amobile agentis a com-



Fig. 1.A mobile agent system.

putational unit and it consists of acode space,anexecution state,and adata space.The
code space contains a set of references to code fragments that can be invoked during the
execution of the agent. The code space includes both references to fragments that are
owned by the agent (e.g., the code that specifies the behavior of the application compo-
nent implemented by the agent) and references to external classes that can be part of a
place, system, or region (e.g., the code of procedures that implement system services).
The execution state contains all the information related to the evolution of the agent,
e.g., the execution stack, the code fragment currently being executed, and the program
counter. The data space contains references to external resources that can be accessed
by the agent, e.g., a reference to an open file.

The execution of agents is supported byplaces.Each place provides a local infras-
tructure to a visiting mobile agent. The place infrastructure supports the execution of
particular procedures as defined in the associatedcode repositoryand provides access
to local resources(e.g., a database or a local printer). Access to local resources is reg-
ulated by the place’ssecurity system.The security system comprises three subsystems
whose tasks are authentication, authorization, and accounting. Each subsystem contains
apolicy that specifies how the security functionality is configured (e.g., the CPU quotas
to be assigned to incoming agents in the case of the accounting subsystems), a set ofse-
curity resourcesthat represent dynamic information about the state of the system, (e.g.,
the current credentials for a visiting agent in the case of the authentication system), and
a code repositorythat contains the definition of the procedures used to implement the
security subsystem mechanisms.



Several places may be grouped within anagent system.Places inside an agent sys-
tem may share resources, code, or security mechanisms and, in general, have a privi-
leged relationship with each other. Moving an agent between places in the same agent
system and interaction among agents within the same agent system is considered less
expensive than interaction or mobility between different agent systems. Usually an
agent system is implemented on a single host. An agent system has a structure that
is similar to the structure of a place. Its resources, code repository, and security sys-
tem are shared by the contained places. For example, the authentication system of a
place may define its authentication procedures on the basis of those defined at the agent
system level.

Agent systems may be grouped inregions.A region represents a security domain
where network-wide resources are accessed following a uniform policy. Like places,
and agent systems, a region is defined in terms of code repository, resources, and se-
curity systems. For example the accessible nodes within the region may be specified
as resources at the region level. As another example, role-based access control policies
may be specified at the region level and then enforced locally by the agent systems.

Agents, places, systems, and regions are associated with a number ofprincipalsthat
represent real-world entities such as a person, an organization, or a company. Principals
are responsible for the definition or the actions of a specific component of a region
(e.g., see [9]). Principals may be associated with particular tasks or responsibilities and
their definition may span a place, a system, or a region. For example, a principal may
be responsible for the definition of the code fragments used to check the identity of a
moving agent inside a region, or it may identify the owner of a resource available at a
place.

Traditionally security mechanisms have been classified into authentication mech-
anisms, authorization mechanisms, and accounting (or resource control) mechanisms.
Authentication mechanisms determine who the principal(s) associated with a particular
component in a system is (are). Authorization mechanisms determine the acceptable
actions of a component on the basis of its associated principal, as determined by the
authentication process. The set of possible actions is specified by a policy that given
a subject, an object, and the action to be performed, specifies if the requested access
should be granted or not. Accounting mechanisms regulate the amount of resources
that can be accessed by a component and may be used as a basis for billing procedures.
In this paper the analysis is limited to authorization mechanisms.

Authorization mechanisms are analyzed by means of anaccess matrix.Intuitively,
the access matrix helps to determine what the possibleaccess spacefor a component is:
that is, what other components in the model can be accessed, e.g., by means of an object
reference or a file descriptor. The access matrix contains rows and columns labeled
with the components of the model. Each cell in the matrix holds the type of access
that the component referenced in the corresponding row is allowed for the component
referenced in the column. The type of access can bedirect, indirect,or non existent.
Direct access implies that access can be performed through a direct reference, e.g.,
through an object reference. An indirect reference specifies that access to the object
is implicit by means of a system/subsystem relation or some other association. For
example, the execution state of an agent may be indirectly accessible by the agent itself,



even though the agent has no means to access a representation of its stack directly. This
could be accomplished, for example, by having the agent access it indirectly by means
of diagnostic and exception handling routines.

An access matrix can belocal, remote,or external.A local access matrix describes
access to elements in the same place or system. A remote access matrix specifies access
to components in different systems of the same region. An external matrix describes the
case where access can cross protection domain boundaries.

The analysis of a system is performed by analyzing the different access matrices and
filling in the types of access allowed between components implemented in the particular
system. For each possible access, one must determine what are the possible operations
and what subset of these operations would actually be permitted. Then each operation
is exercised and the outcome is verified against the defined policy.

In the following, we present the results of analyzing the authorization security for
three Java-Based systems. All three of these systems use access control lists (ACLs) to
implement the access matrix.

3 Aglets

The Aglets Software Development Kit [2] (Aglets SDK) is a Java-based mobile agent
system developed by IBM Tokyo Research Laboratory in Japan. The version analyzed
and evaluated in this paper is the beta version, 1.1 beta2. Recently, Aglets became an
open source project. Its current release is 2.0b.

3.1 The Aglets Model

In the Aglets SDK mobile agents are called “aglets”. The code space of an aglet contains
a set of private Java classes (the implementation of the aglet) and references to classes
in the runtime system. Aglets are implemented as threads in a Java Virtual Machine
and their execution state is represented by the thread’s stack and the corresponding pro-
gram counter. The data space of an aglet contains references to system resources (e.g.,
sockets and files) and references to other aglets or to local objects that act as wrappers
to provide access to particular resources (e.g., a database). Although the Aglets model
does distinguish between places and agent systems, the software that is shipped with
the system does not support multiple contexts. A single place inside a single agent sys-
tem is mapped to a component called the“Tahiti” server. Regions are not present in the
Aglets’ systems. The mapping from our abstract model to Aglets is shown in Table 1.

The Tahiti server supports agent execution, provides mechanisms for agent mobility,
and implements the security mechanisms. The code repository for the Tahiti component
is a set of Java classes that implement the runtime system. Local resources are imple-
mented as stationary agents or object wrappers. The Aglets agent system provides a
simple authentication subsystem based on host identifiers and no accounting or resource
control system is provided. Authorization is enforced by an implementation of the Java
Security Manager interface. The Aglets system defines a policy description language
to define access control lists for resources such as files, sockets, and runtime objects.
These ACLs can be configured depending on the agent’s source host. For details about
available permissions see the Aglets white paper [11].



Model Aglets

Mobile AgentAglet
PlaceContext

Place ResourcesInternal objects and Aglets
Agent SystemTahiti

Agent System ResourcesInternal objects and Aglets
Regionmissing

Table 1.Realization of the Abstract Model in Aglets

3.2 Authorization Attacks in Aglets

Some attacks have already been identified by developers [11] or have been theoretically
shown in research papers [16]. So this paper only describes attacks that were novel at
the time of the tests.

Code repository attacks.Starting with the access control list, an attack to obtain a
reference to the code repository of the Aglets system was attempted. The code repos-
itory is not directly accessible by the agent through a reference, and, therefore, it was
necessary to obtain the associated information indirectly. We found that by using the
Java reflection classes it was possible to disclose information about the system’s code
repository. To perform the attack, the agent first throws an exception. The exception
stores a snapshot of the current execution stack trace. The stack trace stored in the ex-
ception is then analyzed and all the class names referenced in the stack are stored for
further processing. Once a number of classes have been identified, the Java reflection
classes are used to obtain the constructor, attributes, methods, interfaces, and superclass
of the class. By examining the signatures of the methods, more classes are found. These
classes are added to the ones found in the first phase. The discovery process stops after
each class has been analyzed and stored. At this point portions of the code have been
revealed. In the final phase the classes are examined to find if there are any static meth-
ods or attributes. These are particularly useful because they allow an agent to perform
operations without the need for an object reference.

Security policy attacks.The access gained with the previous attack established the basis
for an attack against the security policy component. More precisely, we found that the
policy database can be accessed by using a static method. This means that it is possible
to access the policy database even without having any reference to the policy object.
This is not a problem per se, but when write access to the policy object was attempted,
it was found that modifications to the policy database are not checked by the Security
Manager. So it is possible to add or modify all policies without getting any security
exceptions, effectively compromising the security of the system.

Graphic user interface attacks.Part of the analysis focused on the possibility of an
agent accessing the graphic system of the Aglets platform. In fact, access to the graphic
interface allows an agent to interact with the user sitting at the host graphic console.



In principle, the Aglets system only allows agents to create windows with a warning
banner. This is to prevent a malicious agent from spoofing legitimate applications (e.g.,
a login prompt) that may be used to induce the user to insert sensitive information. We
found that, due to a bug in the implementation, the permission“showWindowWithout-
WarningBanner”is completely useless. Although an agent is not granted the permis-
sion, the agent is able to open frames and dialogs (neither of them includes a warning
label). This vulnerability was exploited by creating a spoofed login prompt that simu-
lated an operating system request for user authentication. The agent would then obtain
username and password and mail them back to the user.

4 Jumping Beans

Jumping Beans [4], developed by AdAstra Engineering, is a commercial framework for
implementing mobile agent applications. The analysis in this paper is based on version
1.1. The current version is 2.1.1.

4.1 The Jumping Beans Model

In the Jumping Beans framework mobile agents are called “Mobile Applications”. The
code space of a mobile agent includes application-specific Java classes and classes that
are part of the Java runtime system. A mobile agent component is implemented as a
Java thread and the associated execution state is the thread stack and program counter.
The data space may include references to other agents or to external objects.

Jumping Beans does not distinguish between agent systems and places. An agent
system instance is called “Agency” and provides only one place. The code repository
for an agency includes Java classes for the runtime and site-specific classes for the
implementation of local services. Agency resources can be implemented in two ways:
they are either represented by mobile agents or they are directly bound to the agent
system. It is possible to define one agent system local object per instance. For example,
the object may be used to implement a broker service or a wrapper for an external
database.

Jumping Beans provides the concept of region. A region is controlled by a com-
ponent called “Server”. Agent systems within a region have to register with the server,
which maintains access control lists for region resources and monitors agent systems
and agents in a centralized way. Table 2 provides an overview of the mapping between
our abstract model and Jumping Beans.

4.2 Authorization Attacks in Jumping Beans

Jumping Beans implements an authorization system that supports access control lists
for certain resources (e.g. network, file system, etc.). For a more detailed list see the
Jumping Beans white paper [5]. The agent system policies are set by the administrator
through the region’s server. Authorization is enforced by the agent systems. The agent
system receives the ACLs from the region server and enforces them through an imple-
mentation of the Java Security Manager. Starting from version 1.1 Jumping Beans also



Model Jumping Beans

Agent Mobile Application
PlaceAgency

Place ResourcesInternal objects and Agents
Agent SystemAgency

Agent System ResourcesInternal objects and Agents
RegionServer

Table 2.Realization of the Abstract Model in Jumping Beans

includes a role model for agent system owners. Therefore, it is possible to define access
control lists for groups and to assign users to groups. Every mobile agent has a separate
permission set and access control list. As a consequence of mobile agent migration, an
agent’s permissions may get more restrictive, but never less restrictive.

Unauthorized access to the contents of code fragments is implemented by byte-
code obfuscation and “final” classes, which are classes that cannot be subclassed. Both
mechanisms are not reliable. Bytecode obfuscation makes it harder to reverse engineer
Java bytecode, but does not prevent it; a determined attacker may successfully decom-
pile and reverse-engineer the Java classes. The final class mechanism was successfully
attacked by removing the final flag in the obfuscated bytecode and creating a malicious
subclass. Although the bytecode is obfuscated it is still possible to disclose data, code,
and flow control by using the exception mechanisms and the reflection functionalities
provided by the Java runtime, as discussed in the previous section for Aglets.

In addition, as mentioned before, Jumping Beans uses the least trust principle (an
agent can only become more restricted). However, when analyzing the implementa-
tion of the least trust principle, we discovered that it had been implemented without
any exceptions. Because of this, the mechanism can be exploited to perform an attack
against the access capabilities of a server. To be more specific, if an agent removes all
access privileges to itself, then it is impossible even for the region controller to remove
the agent from the target agent system. The agent system’s state has to be manually
deleted (otherwise, the agent would be restarted after a reboot) and the system has to be
restarted.

Graphic user interface attacks.In analyzing the access to the graphic system we found
that the GUI is implemented in a separate thread. Because of this, after a window has
been opened it no longer belongs to the agent. So it is possible for an agent to open
window frames and move onto the next host. After migration, all the windows that were
opened remain open. The successful implementation of this attack opens a window the
size of the whole screen. This window cannot be closed except by closing the entire
virtual machine, disabling the agent system.

Runtime system calls attacks.In attempting to access the system’s runtime code reposi-
tory a complete check of the available system-related calls was performed. The Security
Manager blocked most of the attempts but, due to an incomplete implementation of the
Security Manager, it was possible to invoke the static method“System.exit()”, which is



the exit routine provided by the Java runtime. The net effect of this call is to shut down
the whole system1.

5 Grasshopper

The Grasshopper mobile agent system [1] is developed by GMD FOKUS and dis-
tributed by IKV++ [3]. Grasshopper is the reference implementation for the OMG’s
MASIF specification [10]. The current version of Grasshopper is 2.2. The analysis of
the system was performed using Grasshopper version 1.2.2.3.

5.1 The Grasshopper Model

The Grasshopper model closely follows the one described in the MASIF specification.
A mobile agent is called“Service” and an agent system is called“Agency”. Agencies
contain“Places” and are organized in“Regions”. The basic infrastructure is accessible
via the agent system and the local infrastructure has to be implemented in separate
agents. The mapping from our abstract model to Grasshopper is shown in Table 3.

Model Grasshopper

Agent Service
PlacePlace

Place ResourcesAgents
Agent SystemAgency

Agent System ResourcesInternal objects and Agents
RegionRegion

Table 3.Realization of the Abstract Model in Grasshopper

5.2 Authorization Attacks in Grasshopper

Grasshopper’s authorization system is similar to the one implemented in the Aglets
SDK. However, the implementation of the Java Security Manager in Grasshopper is
incomplete.

Trusted code base attacks.Similar to the Aglets SDK, Grasshopper uses trusted classes.
These classes override the Security Manager and are not checked for access. In the case
of Grasshopper this leads to a security leak. The third party trusted classjavax.swing.JIn-
ternalFramecan be used to exit the virtual machine. Therefore, it is possible to exit the
server.

1 This attack also bypasses the persistency mechanisms built into the system, making recovery
impossible.



Graphic user interface attacks.In analyzing the access to the graphic system we found
that thecheckAwtEventQueueAccessmethod has not been implemented. By exploiting
this vulnerability it was possible to access the event queue associated with the graphic
interface and trace the graphic events. Through the event references it was possible to
obtain a handle to graphic components external to the agent. The components were then
controlled by sending spoofed events. An attack that sends the key-code “Alt-Shift-Q”,
which quits the Grasshopper agent system, was implemented. The attack also monitors
the event queue for the appearance of a dialog asking the user to acknowledge the quit
command and sends a return key event, simulating the “confirmation click”. By doing
this, it was possible to bypass the authorization system and to shutdown the Grasshopper
agent system.

System properties attacks.By analyzing access to system properties we found that
there is no security check on calls to thecheckPropertyAccessmethod. By exploit-
ing this vulnerability it is possible to access and modify any property that is avail-
able in the system, for exampleagency.name , agentsystem.protocol , re-
gion.registry.host , or user.home .

Policy system attacks.When trying to test the access to the policy system we found that,
similar to the Aglets system, the policy is accessed through static methods and variables.
Although access to the policy object is successfully enforced and special permissions
are needed to access the policy object, it is still possible to instantiate a new policy
object. Since the policy object is static, the new instance is automatically the valid
policy. Although it does not immediately affect the system, the new policy will affect
the system the first time that the system manager opens the policy configuration dialog.

6 Conclusions

This paper presented some initial results of a research effort aimed at the analysis of
the security issues in mobile agent systems. Three Java-Based mobile agent systems
implementing security mechanisms were installed on a testbed network, these systems
were analyzed, and numerous attacks were launched against them. The analysis found
many interesting vulnerabilities.

The long term goal of this study is to understand the security issues in MASs and to
provide a reference model that can help in abstracting security mechanisms and in defin-
ing attack classes in a way that is independent of a particular technology. By doing this,
the security analysis results can be reused as guidelines to evaluate the security of other
MASs. In addition, the use of a reference model highlights the securityabstractions
available in the different languages. Complex applications may require sophisticated
security abstractions such as policies, different types of principals, and so on. If these
concepts are not available, they have to be developed on top of the existing system,
which is usually time-consuming and error-prone.

In this paper we concentrated on the attacks performed by a mobile agent against
the authorization mechanisms. Many other attacks were suggested by the analysis, and
other systems have been installed in the testbed network. Future work will focus on



completing the security analysis of the additional systems and in developing a reference
model.

The next step in this research effort will be to build on the experience gained from
the security analysis and develop guidelines for the design and development of secure
mobile agent systems. Eventually the guidelines will be used to develop a secure agent
system that could be effectively used to develop mission-critical mobile agent applica-
tions.

References

1. Grasshopper. WWW Site.http://www.grasshopper.de .
2. IBM Aglet Workbench. WWW Site.http://www.trl.ibm.co.jp/aglets/ .
3. IKV++. WWW Site. http://www.ikv.de .
4. Jumping Beans. WWW Site.http://www.jumpingbeans.com .
5. AdAstra. Jumping Beans White Paper. Technical report, AdAstra Engineering, Inc., Sunny-

vale, CA, April 27 1999.
6. D. Dean, E. Felten, and D. Wallach. Java Security: From HotJava to Netscape and Beyond.

In Proc. of the 1996 IEEE Symp. on Security and Privacy, Oakland, Cal., May 1996.
7. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility.IEEE Transactions

on Software Engineering, 24(5):342–361, May 1998.
8. R.S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Security in Multiple-Language,

Mobile-Agent System. In G. Vigna, editor,Mobile Agents and Security, volume 1419 of
LNCS. Springer, 1998.

9. G. Karjoth, D. Lange, and M. Oshima. A Security Model For Aglets.IEEE Int. Comp.,
pages 68–77, July 1997.

10. OMG. MASIF - Mobile Agent System Interoperability Facility. Draft, October 3 1998.
11. M. Oshima, G. Karjoth, and K. Ono. Aglets Specification 1.1 Draft. Whitepaper Draft 0.65,

Sept. 8 1998.
12. J. Ousterhout, J. Levy, and B. Welch. The Safe-Tcl Security Model. In G. Vigna, editor,

Mobile Agents and Security, volume 1419 ofLNCS. Springer, 1998.
13. James W. Stamos and David K. Gifford. Implementing Remote Evaluation.IEEE Trans. on

Soft. Eng., 16(7):710–722, July 1990.
14. G. Vigna.Mobile Code Technologies, Paradigms, and Applications. PhD thesis, Politecnico

di Milano, 1997.
15. G. Vigna, editor.Mobile Agents and Security, volume 1419 ofLNCS. Springer, 1998.
16. J. Vitek, M. Serrano, and D. Thanos. Security and Communications in Mobile Object

Systems. In J. Vitek and C. Tschudin, editors,Mobile Object Systems: Towards the Pro-
grammable Internet, LNCS 1222. Springer-Verlag, April 1997.

17. J.E. White. Telescript Technology: Mobile Agents. In J. Bradshaw, editor,Software Agents.
AAAI Press/MIT Press, 1996.


