
Embedded Software Market Transformation Through
Reusable Frameworks

Wolfgang Pree, Alessandro Pasetti

Software Research Lab
University of Constance, D-78457 Constance, Germany

firstname.lastname@uni-konstanz.de
www.SoftwareResearch.net

Object-oriented frameworks are a software reuse technology that fosters reuse
of entire architectures and which has made software reuse a reality in many
domain areas. Like other advanced software techniques, however, framework
technology has seldom been used in the embedded domain. This paper argues
that its application to embedded (control) systems is technically feasible and
liable to bring to them the same benefits it has already brought to other
domains. The description of a prototype framework for satellite control systems
corroborates the argument. It is then argued that software frameworks, when
combined with other enabling technologies, have the potential to standardize
various aspects of embedded software and to transform the embedded sytems
market.

1 Project culture versus product culture

Classical software development strategies do not focus on the reusability of software
components. Bertrand Meyer [Mey89] remarks that “object-orientedness is not just a
programming style but the implementation of a certain view of what software should
be—this view implies profound rethinking of the software process.” Thus we might
discern between two views or cultures:
– The conventional culture is project-based: the classical software life-cycle or

some of its variations have the goal of solving one certain problem. The primary
question addressed in the analysis and design phases is “What must the system
do?”, followed by a stepwise refinement of a system’s functions.

– The preconditions of a product culture are object-oriented development
techniques, in particular object-oriented frameworks. This culture yields not only
software systems that solve one certain problem, but reusable software
components that are useful for a potentially large number of applications.

A set of ready-made reusable/adaptable software components also influences the

system specification. In contrast to the project-based culture, where a software system
is developed to satisfy specific needs, good frameworks typically capture the existing
“best practices” in a domain. For example, the SAP system represents a framework
that—although developed with a non-object-oriented language—standardizes

– 2 –

significant portions of how companies conduct business, covering areas such as
accounting, human resource management, production planning and manufacturing.
The SAP framework can be adapted and fine-tuned to the specific needs of
companies. Though the effort required to adapt SAP to a specific company is
significant and some adaptations are not feasible, the defacto domain standardization
is part of SAP’s success story.

In other words, instead of slavishly adhering to the user’s or customer’s requests
in the realm of a conventional custom-made system construction process, the system
specification inherent in a framework most likely provides a somewhat different
functionality (for example, without some nice-to-have features), which can be created
by means of existing framework components. The customer has the choice between a
custom-made system implemented (almost) from scratch with significantly more
effort and cost, and a system built out of ready-made components by adapting a
framework. The framework has the additional advantage that the quality of the
resulting system in terms of reliability will likely be higher than the custom-made
system. This is particularly true if the framework has been thoroughly tested and/or
has already been reused several times. Some offers might be hard to refuse.

From an organizational persepective, successful application of framework
technology implies a more integrated approach to software development that breaks
down the traditional barrier between the application and the software specialists. The
way how SAP systems are adapted to specific needs corroborates this change in the
development process.

Other domains where a standarization through frameworks has lead to a product
culture are graphical user interfaces and Internet applications. Fayad et al. [Fay99]
present successful frameworks in various domains. We see no reason why a
standardization of real-time embedded systems software should not be feasible.

2 Object-oriented frameworks for reuse and flexibility

Over the past decade object technology has gained widespread use in software
development. Overall, three essential concepts comprise object technology:
information hiding, inheritance/polymorphism and dynamic binding. The mixing ratio
of these ingredients defines the flavors of object technology. Object-based systems
stress information hiding. Object-oriented programming is often described as
programming by difference as it adds inheritance and dynamic binding to the object-
based paradigm. Nevertheless, the object-based and object-oriented paradigms do not
automatically enhance reusability and exentsibility. The coupling of components1
often manifests in the source code. Figure 1 schematically outlines the problem. If the
right hand component should work with another component, its source code has to be
changed.

1 software component:= a piece of software with a programming interface; ideally deployable

as unit. Classes and modules are examples of software components.

– 3 –

Fig. 1. Components with glue code inside.

Go the extra mile—define abstractions! Object-oriented frameworks form a
special breed of object-oriented systems with extensibility as key characteristic
[Font01]. The precondition for achieving extensibility and as a consequence
plug&work composition capabilities are domain abstractions. They become abstract
classes or Java/C# interfaces. Conceptually, domain abstractions form plugs.
Polymorphism and dynamic binding allow a compositional adaptation of these
components without having to change the source code. Figure 2 illustrates the
difference to the previous solution: It depends on the dynamic type of the plugged in
component which implementation of m1() is executed. The source code which calls
m1() remains unchanged. This call-back-style of programming manifests in
function/procedure parameters in conventional languages. Object-oriented languages
provide polymorphism and dynamic binding for that purpose. As several methods can
be grouped in object-oriented abstractions, the composition becomes more convenient
if an object-oriented language is used.

m1()

m1()

m1()
call m1

Fig. 2. Plug standardization through domain abstractions.

A framework deserves the attribute well-designed if it offers the domain-specific
plugs, often referred to as variation points, to achieve the desired flexibility for
adaptations. Well-designed frameworks also predefine most of the overall
architecture, that is, the composition and interaction of its components. Applications
built on top of a framework reuse not only source code but architecture design—
which we consider as an important characteristic of a framework.

Pros and cons of frameworks

Besides the fact that reuse of architecture design amounts to a standardization of the
application structure, frameworks offer further advantages. Adapting a framework to
produce specific applications implies a significant reduction in the size of the source
code that has to be written by the application programmer. Mature frameworks allow

– 4 –

a reduction of up to 90% [Wei89, Fay99] compared to software written with the
support of a conventional function library.

More good news is that framework-centered software development is not restricted
to specific domains. Actually, frameworks are well-suited for almost any commercial
and technical domain as sketched in Section 1.

The bad news is that framework development requires an extraordinary develop-
ment effort. The costs to develop a framework are significantly higher (in the order of
three to four times) compared to the development of a specific application: If similar
applications already exist, they have to be studied carefully to come up with an
appropriate generic semifinished system—the framework for the particular domain.
Framework development requires a thorough domain understanding. Adaptations of
the resulting framework lead to an iterative redesign. So frameworks represent a long-
term investment that pays off only if similar applications are developed again and
again in a given domain.

Framework development and reuse is at odds with the current project culture that
tries to optimize the development of specific software solutions instead of generic
ones. We refer to the discussion of organizational issues by Goldberg and Rubin
[Gol95].

Finally, it takes considerable effort to learn and understand a framework. The
application developer cannot use a framework without knowing the basics of the
functionality and interactions the framework provides. This makes essential to not
only provide a high-quality framework, but also a straightforward way to learn it.
Socalled cookbooks document frameworks and support their adaptations. They
contain a set of recipes that provide step-by-step guidelines for typical adaptations
together with sample source code. Visual, interactive composition tools may further
support the configuration process.

Software frameworks and embedded systems

Despite having proven its worth in various domains, framework technology is still
largely shunned in the embedded world. To some extent, this is just one aspect of the
wider problem of the technological backwardness of embedded software. Embedded
software projects, when seen from the point of view of mainstream computer science,
often appear to be taking place in a time warp: the language of choice remains C, the
dominant architectural paradigm is only now shifting from procedural to object-based,
software engineering tools are seldom used. Embedded systems additionally tend to
be mass-produced which creates a financial incentive to limit their resources, and
embedded software is consequently severely CPU- and memory-limited. The fact that
object-oriented software requires some extra resources, is one reason why object-
oriented frameworks have been avoided so far.

To penetrate the embedded world, framework technology must overcome at least
this technological hurdle. This will require more powerful hardware and a greater
willingness to see software as the main source of added value in embedded systems.
Both conditions are gradually coming to be realized. On the one hand, the continuing
decline in hardware costs is bringing more and more processing power and memory
resources within the budgetary envelope of embedded software projects while, on the

– 5 –

other hand, ever expanding consumer expectations are putting increasing demands on
the software. Satisfying these demands will eventually force the adoption of the same
kind of technology prevalent in other domains and frameworks will undoubtedly play
an important role in shortening development times and in improving product
flexibility.

As part of our commitment to demonstrating the applicability of framework
technology to embedded applications, we have designed and developed a prototype
software framework for satellite control systems. Satellite systems are representative
candidates because on-board processor resources are undergoing a rapid expansion
with the traditional 16-bits CISC processors being replaced by 32-bits SPARC
processors while, on the demand side, there is growing pressure to extend the
capabilities of the on-board software. We think that similar trends are in evidence in
other embedded fields and we believe that software frameworks represent an effective
way to exploit the extra hardware resources now becoming available to meet the new
user demands.

The prototype satellite framework was developed in cooperation with the European
Space Agency by an interdisciplinary team that included both satellite and software
expertise. Our experience certainly confirms the generally held view that this
combination of software and domain skills was essential to the success of the project.
Thus, we think that the satellite framework project is representative of future
framework projects for embedded systems both from a technological and from an
organizational point of view.

AOCS
Computer

Ground Station

Measurements Commands

Failure Detection Failure Recovery

Fig. 3. General structure of an AOCS

3 Case study: a framework for satellite control systems

The Attitude and Orbit Control System (AOCS) is usually the most complex of the
subsystems on a satellite. Its main function is to process the measurements of a set of
attitude and orbit sensors to generate commands for a set of actuators that are
designed to stabilize the satellite’s orbital position and attitude. Additionally, the
AOCS must respond to commands from a ground center and must generate
housekeeping data for it. Finally, like most embedded systems, the AOCS must have
a high degree of autonomy and must be capable of performing failure detection tests
upon itself and of carrying out emergency recovery actions in response to detected

– 6 –

failures. The AOCS is therefore a typical embedded control system and its structure is
schematically shown in figure 3.

Although the AOCS framework was initially aimed at the AOCS domain, its
applicability is in fact wider because, as became clear during its development, the
framework is best seen as a collection of independent modules, the so-called
functionality managers, that can be used either together or in isolation from each
other and most of which are suitable for control systems other than the AOCS.

The AOCS framework is described in detail in [Pas01b] and on the Web site
[Pas01c], which includes the freely available source code. [Pas01a] provides a
summary of the framework components. Below, an overview of the principles that
inspired its design is given together with a discussion of the problems that are specific
to the embedded character of the target domain.

Frameworks as domain-specific operating system extensions

The typical structure of an embedded system is as shown in figure 4(a). The two
intermediate layers represent the reusable part of the software whereas the top layer is
application-specific and is typically re-developed from scratch for each new
application. The operating system is reusable because it packages functionalities that
are common to most embedded systems. The device drivers are instead reusable
because they are specific to the (reusable) devices whose interface they encapsulate.
Both the operating system and the device drivers are constituted by components
(typically available as binary entities) that are characterized by the services they offer
to their clients. They are intended to be delivered as off-the-shelf items and to be
configured for use in a particular application at run-time.

Operating
System

Funct.
Manager 1

Funct.
Manager 2

Funct.
Manager N

Functionality Implementers

Device Drivers

Processor

Application Layer

System Services Layer

Resource Access Services Layer

Physical Resources Layer

Application Code

Device Drivers

Processor

Application Layer

System Services Layer

Resource Access Services Layer

Physical Resources Layer

Operating System

(a) (b)
Fig. 4. Conventional (a) versus framework-based (b) structure of a control system.

The operating system represents a framework because the configuration of an
operating system during application initialization can be seen as an extension of the
operating system itself through the call-back style of programming. Components
typically register with the operating system by passing to it pointers to functions they
expose and which the operating system – which retains overall control of the main
thread of execution – calls when appropriate. The scheduler, for instance, which is

– 7 –

one of the core components of an operating system, is configured by passing to it the
entry points of the tasks that it must schedule.

When looking at figure 4(a), it is natural to ask whether the operating system really
represents the highest possible level of reuse in embedded systems or whether there
are commonalities beyond those covered by it that can be encapsulated in reusable
and reconfigurable components. If one considers embedded systems in general, the
answer to this question is no. There is simply too much variation in the generic
domain “embedded systems”. However, as one narrows the focus to particular
categories of embedded systems, it becomes possible to identify functionalities that
are common to groups of related applications and which can become the basis for
domain-specific frameworks.

So far we cannot define these categories. In our project, we concentrated on
satellite control systems and we tried to identify whether there were other OS-like
functionalities that were specific to this domain and that might allow the OS to be
extended in a domain-specific manner. In other words, the question we asked was: if
we were to design an operating system only for satellite control systems, how would
we do it? Which functions would this OS cover and which components would it offer
to AOCS developers?

The OS achieves reusability by separating the implementation of a functionality
from its management. Thus, for instance, the scheduler sees the tasks it schedules as
abstract entities and it is exclusively responsible for deciding when they should be
initialized, executed, suspended, etc. The scheduler is application-independent
because it performs all these operations in a manner that is independent of how the
tasks are implemented. In this sense, task management is separated from task
implementation.

Analysis of the AOCS domain showed that there are several functionalities in an
AOCS for which it is possible to have an analogous separation between management
of the functionality and its implementation. In such cases, it then becomes possible to
construct components that encapsulate the functionality management and that are
completely application-independent. We have called such components the
functionality managers. The AOCS framework offers managers for the following
functionalities: telecommand and telemetry handling, failure detection, failure
recovery, closed-loop controlling, as well as maneuvers and unit management.

The structure of an AOCS application instantiated from the framework then
becomes as shown in figure 4(b). Comparison to figure 4(a) shows that the operating
system has now been extended in a domain-specific fashion. It is worth pointing out
that the functionality managers can be deployed independently of each other. There is
another analogy with operating systems which are often offered as a bundle of
modules of which only those needed by a particular application have to be installed.

The real-time dimension

Satellite control systems—like many other embedded systems—are subject to hard
real-time constraints. Framework technology has seldom been applied to hard real-
time systems. This is partly for the same reasons why it has not been applied to
embedded systems in general, but also because of the special problems inherent to

– 8 –

real-timeness. Software frameworks rely heavily on dynamic binding as a behavior
adaptation mechanism and dynamic binding makes static analysis of the timing
properties of an application harder to perform. Additionally, many of the classical
design patterns that are commonly used to model framework adaptability are typically
implemented using dynamic memory allocation which is not used in real-time
applications or use recursion which is again incompatible with static timing analysis.

The position adopted in the AOCS framework project is that since embedded
systems are “closed” (all the components making up an application are known at
compile time), dynamic binding does not preclude timing analysis because it is
always possible to put an upper bound on the execution time of a call to a
dynamically bound procedure [Pas99].

As mentioned above, the AOCS framework can be seen as a collection of design
patterns that have been adapted to the special needs of the AOCS domain. In many
cases, this adaptation takes the form of making the pattern compatible with the real-
time requirements of AOCS applications either by removing the need for dynamic
memory allocation or by showing how the depth of recursion can be bounded using
semantic information.

Conventional frameworks are designed to have control of application execution
[Mat99]. This is a problem in the AOCS domain – and indeed in most embedded
systems – where applications often differ for the scheduling policy that they adopt.
The framework therefore has to be insulated from scheduling aspects. This is done by
turning the functionality managers into active components, namely components that
offer an entry point to a generic scheduler that is assumed external to the framework
itself. Decoupling from the scheduling policy is achieved by designing the
functionality managers in such a way that they need not make any assumptions about
the frequency with which they are activated, about the source of the activation call, or
about the relative ordering in which they are activated.

This decision to leave scheduling aspects outside the framework can also be
justified by noting that there already exist excellent reusable solutions to the
scheduling problem, provided by commercial operating systems. Hence, a framework
should concentrate on addressing issues that are not yet covered, while providing an
interface to the components that address the scheduling problem.

All of the solutions we have implemented in the AOCS framework to tackle the
real-time dimension could, at least in principle, be carried over to other embedded
domains and therefore we believe that our project demonstrates that the framework
approach can be successfully applied to this class of embedded systems.

The framework and autocoding tools

Control engineers are becoming more and more accustomed to using environments
such as Matlab that offers tools to design controllers and to simulate their operation.
(We expect Matlab to prevail in the future. The discussion below applies equally well
to similar tools, in particular XMath). Increasingly, such environments come with
autocoding facilities that allow code to be generated that implements the controller
defined by the user. Since the AOCS framework targets a control domain, the
question naturally arises as to whether the approach it promotes to the development of

– 9 –

an application is alternative, complementary to, or just different from, that promoted
by autocoding tools [Pas99].

The main point to note in this respect is that the Matlab tool is aimed at facilitating
the synthesis of control laws and that the implementation of the control algorithms
usually represents a small part of the total application code. In the AOCS domain, it is
probably around 20-30%. The remainder of the code covers tasks such as data
handling or failure detection and recovery for which the autocoding tools do not offer
any specific abstractions. Although, technically, it would be possible to generate an
entire AOCS from Matlab, this approach would not foster reuse since understanding a
complex Matlab model can be as difficult as understanding a complex piece of code.
Reusing it is as hard as reusing poorly structured code. The AOCS framework, on the
other hand, is specifically designed to be portable across projects and to have a
structure that facilitates maintainability, reusability and understandability.

On the other hand, the ease of designing control algorithms in Matlab and the
convenience of being able to generate code that is guaranteed to match the models
that were verified by simulation is too valuable to give up. The AOCS framework
therefore takes the view that the framework and the autocoding approach are
complementary. The framework defines the overall application architecture but it also
offers wrappers for code generated by Matlab. The intention is that Matlab covers the
design and implementation of the control algorithms whereas the framework provides
the architectural skeleton for the application and covers all other aspects of an AOCS
application.

4 Towards a product culture—the way ahead

The AOCS framework project is only the beginning of mid- to long-term research
and development activities to improve the software process for embedded control
systems. The objective is that control engineers can develop new applications within a
particular domain with a minimum amount of manual coding by adapting
semifinished frameworks mainly through visual/interactive composition (see figure
5). Conceptually, two stages can be identified in the application development process:
the definition of the logical architecture and the definition of the physical
architecture. The logical architecture covers the realization of the functional aspects
whereas the physical architecture covers scheduling, communication and distribution
issues.

– 10 –

MatlabControl Algorithm
Design

Autocoding
Facility

autocoded routines
(wrapped to be used in
framework components)

Framework
Components

Manual Coding
Environment

 Application-Specific
Components

Component-Composition
Environment

 Downloadable
Code

 Application-Independent
Components

Fig. 5. Development of embedded control systems out of framework components.

The first actor in the definition process for the logical architecture is a tool such as
Matlab which allows the control engineers to define and validate by simulation the
control algorithms. An autocoding facility generates the corresponding code. The
second actor in the definition of the logical architecture is an adequate framework
providing a configurable architectural skeleton for the application and a set of default
components representing common implementations of the functionalities. Inevitably,
some manual development of components is required. Compliance with the
framework facilitates the development of the new components and it preserves the
architectural integrity and high-level uniformity of the application by ensuring that the
similar problems in different parts of the application receive similar solutions.

The components then need to be configured to form a complete application. This
process is typically done by manually writing the code to glue together the
components, but could be automated through visual/interactive tools analogous to
commonly used GUI editors.

The final step in the application development process is the imposition of a
physical architecture onto the logical architecture. This means that tasks must be
allocated to processors in the distributed case or to processes in the single-processor
case. Furthermore, scheduling policies must be defined and the schedulability must be
checked. The communication infrastructure must be put in place to allow the tasks to
exchange information among themselves and with the external world. We believe that
logical and physical architectures should be kept separate and should be definable
independently of each other. Within the object-oriented paradigm, this is possible if a
middleware is available that sustains the “illusion of local action” [Ast01] by allowing
components to interact as if they resided in the same address space. The logical
architecture is defined in this fictitious but uniform space and the successive
definition of a physical architecture leads to its splitting into intercommunicating
subspaces possibly located on different nodes in a distributed network. Distribution
and communication issues should again be handled automatically by dedicated tools.

Realizing the vision of figure 5 requires significant work. Nevertheless, the main
planks of the direction outlined above are already in place. In particular, Matlab is a
mature commercial product with autocoding facilities. It represents a defacto standard
in the embedded community that is tested and widely applied. The AOCS framework
provides wrappers for the generated Matlab code. The areas where work needs to
concentrate in the future are: the generalization of the AOCS framework to embedded
control systems, the development of visual/interactive composition tools, and the

– 11 –

automation of the instantiation of logical architecture to the physical architecture of
an embedded control application. For each of these areas, we are trying to provide
proof-of-concepts solutions that are entirely built on existing technology.

A set of frameworks for control systems

The AOCS framework is targeted at satellite control systems. Although the structure
of such systems is representative of that of generic embedded control systems, to be
usable in other contexts, the AOCS framework needs to be modified and extended.
This can be a gradual process resulting probably in a set of frameworks for different
categories of control systems. Quite likely, additional abstractions have to be added
and specific components have to be created. As the AOCS framework is made up of
independently deployable functionality managers its extension can occur naturally.

An interesting aspect is whether the AOCS framework imposes a certain overall
architecture or favors a real-time programming paradigm. It is unclear whether a
focus on the time-triggered paradigm, which is considered superior for saftey-critcial
applications [Kop97] would imply a different framework design.

The analogous question has to be raised for heavily distributed embedded systems
as opposed to centralized architectures. This concerns, for example, the handling of
external sensors. At present, the framework assumes “dumb” external units (sensors
and actuators) of the kind currently used in satellite systems. These are conceptually
simple data acquisition devices with little or no internal processing capabilities. The
trend is towards “intelligent” units which are processor-based and capable to interact
with the central controller in complex ways. In the case of the AOCS, for instance,
GPS receivers and star trackers with autonomous star pattern recognition capabilities
are becoming common. They are endowed with software that rivals in complexity the
software of the central AOCS computer. New concepts need to be developed to
handle the interaction between a central computer and these intelligent peripherals.

A related problem concerns the definition of the boundaries of the control
software. Once units start having their own software it is no longer clear whether one
should consider the control software as separate from that of the external units. It may
be more sensible to regard the entire control system as a distributed system and, in the
spirit of figure 5, to design it as an integrated whole at the logical level and to leave its
partitioning over central computer and external units to the second stage where the
physical architecture of the system is defined.

Developing a visual/interactive composition tool

JavaBeans [Sun01] form the basis of component composition in Java development
environments. The AOCS framework is currently being ported from C++ to Java and
tested on an embedded target using a real-time version of Java. As part of the porting,
all framework components are being turned into JavaBeans.

The advantage of transforming the framework into a set of beans and of modelling
its instantiation as a sequence of bean operations is that it becomes possible to
visually/interactively manipulate them in off-the-shelf Java development tools. For

– 12 –

complex framework adaptations specific bean configuration editors might have to be
provided.

Mapping the logical architecture to the physical architecture

The implementation of the logical architecture upon a physical platform requires
ideally a description of the physical characteristics of the platform and a tool that can
automatically map the logical architecture to the system at hand. An important
property of such a tool should be its ability to take into account the real-time nature of
most embedded control systems.

As already mentioned above, our philosophy is to reuse existing tools wherever
possible and integrate them within the approach we are proposing. In this case, we
found that Giotto [Hen00, Hen01] matches most of our requirements. Giotto can be
seen as a middleware that offers a tool-supported design methodology for
implementing embedded control systems on platforms of possibly distributed sensors,
actuators, CPU's, and networks. It is specifically intended to decouple the software
design (the logical functionality) from implementation concerns (scheduling,
communication, and mapping to physical resources) which makes it compatible with
our distinction between logical and physical architectures.

In order to be used for the skechted purpose, Giotto must be supplemented with a
middleware layer to support the illusion of local action. We assess existing
middleware such as DCOM or CORBA and its real-time extension as too complex
and thus as unsuitable for real-time applications. Instead we propose a lean
middleware concept that we call the delegate object mechanism [Bro01]. This concept
is tailored to distributed real-time control system and is designed to be implemented
upon a Giotto infrastructure.

We believe that the Giotto toolset combined with the delegate object mechanism
automates the mapping of the functional architecture to the physical architecture,
generating as an output the executable components ready to be downloaded on the
embedded target.

5 Conclusions

Table 1 sketches possible means for automating the development of embedded
systems. We view framework technology as key factor for coming up with reusable
components for the functional aspects aside of control algorithms. A lean middleware,
such as the delegate object mechanism together with Giotto could automate the
mapping to a physical system and provide timing determinism. Due to the fact that the
development of significant portions of embedded control system can be automated as
sketched in the previous sections, we expect a thorough transformation of the
embedded software market over the next decades similar to the transformation of the
commercial software market through SAP since the 1970s.

– 13 –

Table 1. Means for automating embedded software development.

Logical System Control Algorithms Automation Approach

 20-30% of the logical system reuse of models

 autocoding tools

 Management

 70-80% of the logical system reuse of framework components

Physical System Timing Determinism formal methods and tools

 Distribution middleware based on formal

methods and tools

References

[Ast01] M. Astley, D.C. Sturman, and G.A. Agha, Object-based Middleware, sidebar in
Customizable Middleware for Modular Distributed Software, Communications of the ACM,
Vol. 44, No. 5, May 2001.

[Bro01] T. Brown, A. Pasetti, W. Pree, T. Henzinger, C. Kirsch, A Reusable and platform-
independent framework for distributed control systems, Proceedings of the 20-th Digital
Avionics Systems Conference, Daytona Beach, FL, 14-18 October 2001

[Fay99] M. Fayad, D. Schmidt, R. Johnson, Building Application Frameworks, Wiley
Computing Publishing, 1999

[Font01] M. Fontoura, W. Pree, B. Rumpe. The UML-F Profile for Framework Architectures.
Addison-Wesley/Pearson Education, 2001.

[Gol95] A. Goldberg and K. Rubin. Succeeding with Objects: Decision Frameworks for
Project Management. Addison-Wesley, 1995.

[Hen00] T.A. Henzinger, B. Horowitz, and C.M. Kirsch, Giotto: A Time-triggered Language
for Embedded Programming, Technical report: UCB//CSD-00-1121, University of
California, Berkeley, 2000.

[Hen01] T.A. Henzinger, B. Horowitz, and C.M. Kirsch, Embedded Control Systems
Development with Giotto, Proceedings of LCTES 2001, ACM SIGPLAN Notices, June
2001.

[Kop97] H. Koptez Real-Time Systems : Design Principles for Distributed Embedded
Applications, Kluwer Academic Publisher

[Mat99] M. Mattsson, J. Bosch, Composition Problems, Causes, and Solutions, p.467-487, in
[Fay99]

[Mey89] The New Culture of Software Development: Reflections on the Practice of Object-
Oriented Design; in Proceedings of Tools Europe 89, Paris, France.

[Pas99] A. Pasetti, W. Pree, A Component Framework for Satellite On-Board Software,
Proceedings of the 18-th Digital Avionics Systems Conference, St. Louis (USA), Oct. 99

[Pas01a] A. Pasetti, et al, An Object-Oriented Component-Based Framework for On-Board
Software, Proceedings of the Data Systems In Aerospace Conference, Nice, May 2001,

[Pas01b] A. Pasetti, A Software Framework for Satellite Control Systems – Methodology and
Development, PhD Thesis, University of Konstanz, 2001, to be published in the Springer-
Verlag LNCS monograph series.

[Pas01c] http://www.SoftwareResearch.net/AocsFrameworkProject/ProjectOverview.html
[Sun01] http://java.sun.com/products/javabeans/
[Wei89] Weinand A., Gamma E. and Marty R. Design and Implementation of ET++, a

Seamless Object-Oriented Application Framework. Structured Programming, 10(2),
Springer Verlag, 1989.

