
* This research was supported in part by DARPA under grants F33615-C-98-3614, F33615-00-C-1693, and
F33615-00-C-1703, and by MARCO under grant 98-DT-660.

A REUSABLE AND PLATFORM-INDEPENDENT FRAMEWORK FOR
DISTRIBUTED CONTROL SYSTEMS

T. Brown, A. Pasetti, W. Pree, University of Konstanz, Konstanz, Germany

T.A. Henzinger, C.M. Kirsch, University of California, Berkeley, California*

Introduction
This paper presents a concept for integrating

the embedded programming methodology Giotto
and the object-oriented AOCS Framework to create
an environment for the rapid development of
distributed software for safety-critical embedded
control systems with hard real-time requirements of
the kind typically found in aerospace applications.

Giotto is middleware that offers a tool-
supported design methodology for implementing
embedded control systems on platforms of possibly
distributed sensors, actuators, CPU's, and networks.
Giotto enables the decoupling of software design
(functionality and timing) from implementation
concerns (scheduling, communication, and
mapping). It thus allows developers to concentrate
on the design of the software architecture and on
the implementation of the control and management
functionalities required by the target application.
Giotto is based on a time-triggered programming
language. This ensures timing predictability and
makes it particularly suitable for safety-critical
applications with hard real-time constraints.
Avionics systems are one of its natural target
applications.

The AOCS Framework is an object-oriented
software framework for embedded control systems.
Software frameworks are a software reuse
technology. They consist of collections of
components with predefined connections that
capture an architectural design optimized for a
specific domain. They predefine the composition
and interaction of the components of a system while
at the same time allowing for customization by
providing hooks where default behavior can be
overridden. Frameworks differ from other reuse
technologies, because they make architectural as
opposed to code reuse possible, and because they
rely on object composition and inheritance as
functionality-extending mechanisms.

The AOCS Framework was developed for the
European Space Agency for satellite control
systems but is suitable more generally for
embedded control applications.

Giotto and the AOCS Framework are
complementary technologies. The former addresses
the real-time and physical realization concerns of an
embedded system (timing, scheduling,
communication, and mapping) while the latter
addresses data structuring and task functionality
concerns. The work described here arises from an
attempt to integrate the two technologies to create
an environment where real-time embedded control
applications, because of the AOCS Framework, can
be rapidly instantiated and, because of Giotto, are
predictable in their timing properties even when
distributed over multiple CPUs.

The key to this integration is the delegate
object mechanism, which allows software
components to interact as if they reside within the
same address space even when they are located in
different processes or on different CPUs. The
fiction of a global address space is maintained by
copying entire objects between CPUs in a way that
guarantees consistency and timeliness. The
delegate object mechanism is innovative because,
unlike rival proxy-based approaches such as
CORBA or DCOM, it is specifically designed to
promote timing predictability and is therefore
ideally suited for hard real-time applications. While
proxies ensure only referential transparency (for the
user, there is no logical difference between local
and remote object access, but there may be a time
difference), delegate objects ensure both referential
and time-bound transparency (for the user, there is
neither a logical nor a time difference between local
and remote object access). The on-time availability
of consistent delegate objects is not achieved
dynamically, on demand, but scheduled statically
by the Giotto compiler, which performs a global
task and communication scheduling analysis.

 2

The AOCS Framework
The AOCS Framework [1,2,3] was designed as

a generic architecture for satellite control systems
from which concrete applications can be
instantiated by configuring the framework for use in
a specific context. The adaptation mechanisms in
the AOCS Framework are based on object
composition and inheritance.

Operating
System

Funct.
Manager 1

Funct.
Manager 2

Funct.
Manager 3

Functionality Implementers

Device Drivers

AOCS Processor

Application Layer

System Services Layer

Resource Access Services Layer

Physical Resources Layer

Figure 1. Structure of the AOCS Framework

The framework is best seen as a domain-
specific extension to the operating system. An
operating system (OS) is a component that offers
certain functionalities, e.g., task scheduling as
application-independent services. An OS is
deployed as an off-the-shelf item that is configured
at run-time for use in a specific application. The
AOCS Framework extends this concept to other
functionalities within a satellite control system. It
offers application-independent components that
encapsulate functionalities like management of
failure detection, management of closed-loop
controllers, management of telemetry, etc. These
are recurring functionalities in a satellite control
system. Their implementation varies across
applications (just as the implementation of tasks
varies across applications) but the way a
functionality is managed can be encapsulated in a
reconfigurable component (just as the OS
encapsulates a reconfigurable task scheduler). Such
reconfigurable components in the framework are
called functionality managers. They are reusable
without changes within the domain of satellite
control systems. The architecture of an application
instantiated from the AOCS Framework is therefore
as shown in Figure 1. The functionality managers
are at the same level of abstraction as the OS and,

like it, they are application-independent and need to
be configured at initialization time to be adapted to
the need of a specific application.

The structure of the functionality managers
and the distinction between implementation and
management of the functionalities will now be
illustrated by means of two examples. The
examples are very simplified and are only intended
to illustrate the principle of construction of the
framework, not its actual implementation. First,
consider the telemetry functionality manager. The
telemetry data should be sent periodically to the
ground station to check the correct functioning of
the on-board systems. The AOCS Framework sees
telemetry as a form of serialization in the Java
sense. The application is conceptualized as a set of
objects some of which should be capable of writing
(a subset of) their internal state to a telemetry
stream representing the data channel through which
telemetry data are forwarded to the ground. Such
objects are said to be telemeterable. A telemeterable
object must implement the abstract interface:

The basic method is writeToTm. A call to

this method will cause the object to write (a subset
of) its own state to the telemetry stream. Method
getTmImageLength instead returns the length
in bytes of the telemetry image generated by the
object. The telemetry stream is characterized by the
implementation of the abstract interface
TmStream. Having defined the telemeterable and
telemetry stream abstractions through two abstract
interfaces, it becomes possible to define a generic
telemetry manager component that is responsible
for controlling the process by which telemetry data
are sent to the ground. Its UML diagram is:

 3

The telemetry manager has a list of items of
type Telemeterable and, when it is activated, it
goes through the list and asks each object to write
itself to the telemetry stream. Method
getTmImageLength is used to verify that the
quantity of data produced by each object are
compatible with the capacity of the telemetry
channel. Clearly, the telemetry manager is
completely application independent. It sees concrete
telemeterable objects only through the
Telemeterable interface and it is therefore
shielded from any details concerning the format and
content of the telemetry data, which are obviously
application-dependent. In this sense, it is similar to
the task scheduler in an OS that sees the tasks it
manages only as abstract entities upon which
generic operations (‘task initialize’, ‘task execute’,
‘task suspend’, etc) can be performed.

As a second example of a functionality
manager, consider the failure detection manager. A
common type of failure detection test performed on
satellite systems is the consistency check. A
consistency check consists in verifying the internal
consistency of the state of an object. In the case of
an object representing a set of four gyros, for
instance, a consistency check would verify that any
three sets of measurements yield the same estimate
of the spacecraft angular rate. The framework
defines an abstract interface to represent a generic
object that can be subjected to a consistency check:

A call to method doConsistencyCheck

causes an object to perform a consistency check
upon itself. A return value of false indicates that
the check has failed and that a failure has been
detected. The introduction of interface
ConsistencyCheckable allows the definition
of an application-independent failure detection
manager as shown in the following UML diagram:

The failure detection manager has a list of
objects that it sees as instances of type
ConsistencyCheckable and, when it is
activated, it goes through the list, asks each object
in the list to check its internal consistency and, if
the object reports a problem, it declares a failure.

Like the telemetry manager, the failure
detection manager is a generic component that can
be deployed in an application as a binary entity and
that is configured at run time by loading into it the
objects whose internal consistency needs to be
monitored. In addition to the telemetry and failure
detection managers, designated in the following by
acronyms TmMan and FdMan, the AOCS
Framework defines the following major
functionality managers:

• telecommand manager (TcMan)
• manoeuvre manager (ManMan)
• controller manager (ConMan)
• failure recovery manager (FrMan)
• unit manager (UniMan)
• reset manager (ResMan)

In all cases, the functionality manager is

separated from the objects it manages by an abstract
interface. It is this abstract interface that
distinguishes the management of a functionality
from its implementation. In a typical
implementation, a task is associated to each
functionality manager with its method
activate() being the entry point for the task.

It is important to note that the same object can
be operated upon by several functionality managers,
e.g., the same object might be subjected to
consistency checks and have its state included in
telemetry, which means that it must implement the
corresponding abstract interfaces. Thus, the AOCS
Framework requires an implementation language
that supports the concept of multiple interface
implementation. The framework prototype was
implemented in C++.

Distributing The Framework
The AOCS Framework was designed for a

single processor system. Satellites however tend to
be distributed. A large satellite might have a central
processor performing data handling and one or

 4

more payload processors. Sometimes, especially on
large European missions, a dedicated processor is
included for the guidance and navigation tasks
(GNC processor). Increasingly, sensors, e.g., GPS
receivers and autonomous star trackers, might also
be processor-based.

Most of the functions covered by the AOCS
Framework would be present on more than one on-
board processor. Telecommand and telemetry
management, for instance, are likely to be present
on all on-board processors. Hence, the AOCS
framework can be used to instantiate part of the
software running on all satellite processors.

In order to aid the discussion in the remainder
of the paper, reference will be made to a simplified
but not unrealistic scenario. The example scenario
is based on a satellite with two on-board processors:
the ‘data handling (DH) processor’ in charge of
receiving and distributing telecommands and of
collecting and forwarding telemetry, and the ‘GNC
processor’ in charge of attitude control and station
keeping. The GNC processor needs the following
functionality managers: telecommand, telemetry,
manoeuvre, failure detection, failure recovery,
controller and unit managers. The data handling
processor instead needs a reduced set of
functionality managers: telemetry, telecommand,
failure detection and failure recovery managers.
Both the data handling and the GNC software run
cyclically. In each cycle all the functionality
managers are activated in sequence. The cycles on
the two processors have identical duration and are
divided into minor cycles. A minor cycle is devoted
to the activation of a functionality manager. The
resulting architecture is shown in Figure 2.

Time

FdMan FrMan TcMan ConMan ManMan TmMan

FdMan FrMan TcMan TmMan

DH Processor

GNC Processor

Minor Cycle

I d l e

Full Cycle

UniMan

Figure 2. Example Scenario

The architecture of Figure 2 has a significant
degree of redundancy. Consider for instance
telemetry management. Each processor has its own

telemetry manager that maintains a list of
telemeterable objects resident on its own processor
and periodically asks them to write themselves to
the local telemetry stream. The two telemetry
managers are identical even if they are differently
configured, i.e., they have different lists of
telemeterable objects. There is therefore a case for
having a single telemetry manager located on one of
the two processors that manages all the
telemeterable objects regardless of where they
reside. There is a similar case for centralizing most
or all of the other functionality managers. Thus, a
distributed AOCS Framework calls for a situation
where unique functionality managers are in charge
of a specific functionality at satellite level.

Implementing such a distributed concept
requires creating the fiction of a single address
space. This is essential because the functionality
managers interact with their clients by calling the
methods they expose. Maintaining the architectural
integrity imposed by the framework depends on the
ability of the functionality managers to see their
clients as instances of an abstract type. The
telemetry manager, for instance, needs to be able to
see all the telemeterable objects as instances of type
Telemeterable and needs to access them as if
they resided within its own address space.

Thus, a distributed AOCS Framework requires
a middleware infrastructure that sustains the
“illusion of local action” [4]. Both CORBA and
DCOM have this property. They would, however,
be unsuitable for the purpose at hand because
satellite control systems are mission-critical, real-
time systems and neither of these two middleware is
designed for this type of applications. Real-time
versions of CORBA have been proposed, e.g., TAO
[5], but it was felt that a simpler scheme was
needed for satellite control systems.

Our starting point for the investigation into a
distributed AOCS Framework is Giotto. As is
argued in the next section, however, Giotto by itself
is unsuitable as a basis upon which to build a
distributed AOCS Framework. The so-called
delegate object mechanism, described later in the
paper, has to be introduced to complement it.

 5

Giotto
Giotto [7] is a tool-supported design

methodology [8] for implementing embedded
control systems on platforms of possibly distributed
sensors, actuators, CPUs, and networks. Giotto
consists of a time-triggered programming language,
a compiler, and a runtime system. The key entities
of a Giotto program are Giotto ports, Giotto tasks,
and Giotto modes. A Giotto task is a periodic
software task operating on Giotto ports without any
synchronization points. The implementation of a
Giotto task is external to Giotto and can, in
principle, be done in any programming language.
We require that the worst-case execution time of a
Giotto task is known.

A Giotto task may have input, private, and
output ports. A Giotto port is a typed variable with
a fixed location in memory. From the perspective of
a Giotto task there exist only the objects in its own
ports. Giotto tasks are invoked periodically. As
mentioned above, Giotto is based on a time-
triggered paradigm. At the time of their invocation,
they read the content of their input ports, process it
according to their implementation, and finally
update their output ports before terminating
execution. Private ports are used by tasks to store
state information that must be preserved across
invocations. Intertask communication is achieved
by connecting output ports to input ports of
different tasks. Thus only the output ports of a task
are accessible to other tasks. The scheduler of the
Giotto runtime system is responsible for invoking
tasks and communicating data from output to input
ports. The necessary schedule is generated by the
Giotto compiler.

In integrating Giotto with the framework,
Giotto ports are identified with objects of the AOCS
Framework, i.e., with concrete instances of the
framework classes.

Consider the example in Figure 2. Suppose
that the sequence of invocations of all functionality
managers on the GNC processor is implemented by
a procedure called ControlProc. A call to
ControlProc will result in a single invocation of
all functionality managers on the GNC processor in
the given order. The execution of ControlProc
will take at most 700ms since we are assuming a
minor cycle of at most 100ms duration. The

following Giotto code declares a Giotto task
Control that invokes ControlProc on a
persistent object CcObject:

task Control() output () {
 private
 CcObject: ConsistencyCheckable;

 call ControlProc(CcObject);
}

For the sake of simplicity we use only a single
persistent object in this example. In reality, there
will be multiple private ports holding different
persistent objects representing the objects upon
which the functionality managers activated by
ControlProc operate. We will later see how to
use input and output ports for intertask
communication. The sequence of invocations of
functionality managers on the DH processor is
given by the following Giotto task Data:

task Data() output () {
 private
 CcObject: ConsistencyCheckable;

 call DataProc(CcObject);
}

Once again, only one private object is shown
for simplicity.

A Giotto mode consists of Giotto tasks and so-
called Giotto mode switches, which are, similarly to
the time-triggered invocation of Giotto tasks,
evaluated periodically at a given frequency. A
Giotto mode represents a set of Giotto tasks
together with their activation frequencies. A mode
switch is performed immediately whenever a mode
switch is enabled. Giotto mode switching therefore
corresponds to changing task schedules. Note that a
possibly distributed Giotto system can only be in a
single Giotto mode at the same time. We will
discuss the mode switching semantics later in the
context of the delegate object mechanism.

The example in Figure 2 does not require
mode switching. A single mode M sufficiently
describes the scenario:

start M() {
 mode M() period 700ms {
 taskfreq 1
 do Control(); [host GNC]

 6

 taskfreq 1 do Data(); [host DH]
 }
}

The Giotto program starts executing mode M
by periodically invoking task Control on the
GNC processor and task Data on the DH processor
with a period of 700ms. The code in square
brackets, e.g., [host GNC], is an example of a
platform-dependent Giotto annotation [7], which
maps the task Control to the GNC processor. A
Giotto program without any annotations is
platform-independent.

The simplified Giotto implementation presented
above assumes the conventional (non-distributed)
situation of Figure 2. Before proceeding to show
how it must be modified for the distributed case of
Figure 4, it is necessary to introduce the delegate
object mechanism upon which the distribution
concept it based.

The Delegate Object Mechanism
The delegate object mechanism is proposed as

an alternative to middleware like CORBA or
DCOM to sustain the illusion of local action while
at the same time ensuring the timing predictability
essential to real-time systems. The delegate object
mechanism is targeted at distributed applications
that operate cyclically as is normally the case of
embedded control systems. It is described in general
in [6]. Here it will be described with reference to
the example scenario introduced above in the
section on the distribution of the AOCS Framework
(see Figure 2). Consider a modification of the basic
situation shown in Figure 2 where telemetry
management is centralized and assume that the
single telemetry manager is physically located on
the data handling processor. As discussed above,
this component needs to have access to all
telemeterable objects on both its own and the GNC
processor and it needs to see them as if they resided
within its own address space.

The traditional solution to this problem à la
CORBA or DCOM is to create proxy objects on the
data handling processor that represent the
telemeterable objects that are resident on the GNC
processor. These proxies expose the
Telemeterable interface but do not actually
process servicing requests themselves. Instead, they

rout any request they receive to the remote object
that they represent. This routing is syntactically
transparent to the telemetry manager which sees
both the local and the proxy objects as instances of
type Telemeterable but it is not transparent
from an implementation point of view since local
processing of a service request is much faster than
remote processing. Thus, proxies are equivalent to
the objects they represent from a syntactical point
of view but not from a timing point of view. Proxy
mechanisms therefore sustain the illusion of local
action at syntactical level only, but not at timing
level. This type of distribution mechanism is not
suitable for real-time applications because in such
applications timing aspects are extremely important
and implementations that make timing aspects
harder to control or to predict should be avoided.

The solution to the problem of centralized
telemetry management proposed by the delegate
object mechanism is more radical and is based on
having full copies of the remote telemeterable
objects on the central processor. A full copy of an
object is a copy of both the data and the code
associated to the object. Such copies are called
delegate objects. Since it includes both data and
code, a delegate object is capable of processing
servicing requests locally and is therefore
equivalent to the object it represents both from a
syntactical and from a timing point of view.

If the delegate object mechanism is used, the
architecture with a centralized telemetry
management is as depicted in Figure 3. Now, just
before the telemetry manager is activated, the
telemeterable objects resident on the GNC
processor are copied to the data handling processor
and there they are operated upon by the telemetry
manager as if they were local objects.

FdManFrMan TcManUniMan ConMan ManMan I d l e

FdMan FrMan TcMan TmMan I d l e

Operates on both DH and
GNC telemeterable objects

Copy GNC telemeterable
objects to DH taskDH Processor

GNC Processor

Figure 3. Centralized TM Management

The advantage of this architecture with respect
to that of Figure 2 is that telemetry management has

 7

been centralized thus removing the need for
multiple telemetry managers. Note that this
advantage, by itself, has nothing to do with
parallelizing some of the functions in the satellite.
In fact, comparison with Figure 2, shows that
adoption of this solution actually de-parallelizes the
telemetry management. In the original
configuration, two telemetry managers were
running in parallel where now one single telemetry
manager takes twice as long to process all the
objects on the data handling processor.

While the telemetry manager processes the
telemeterable objects on the data handling
processor, the GNC processor can perform other
functions. In Figure 3, the GNC processor performs
the failure detection management and controller
management. In general, the framework allows one
particular object to implement several abstract
interfaces and therefore to be operated upon by
more than one functionality manager. In a
distributed concept, therefore the possibility arises
that, in the same cycle, the same object is operated
upon by several functionality managers. For
instance, in Figure 3, a consistency checkable
object on the GNC processor could also be a
telemeterable object in which case, during the
fourth minor cycle, it would be operated upon by
both the failure detection manager, which would
operate upon the object as an instance of type
ConsistencyCheckable, and by the telemetry
manager, which would operate upon the same
object as an instance of type Telemeterable.
This situation however does not give rise to any
inconsistencies because the telemetry manager only
needs a read-only access to the telemeterable
objects.

The same approach to the centralization of
functionality management can be applied to other
functionalities. Figure 4 shows the case where the
failure detection management has also been
centralized by placing the single failure detection
manager on the GNC processor. In this case, at the
beginning of the 4-th minor cycle, all consistency
checkable objects that are not resident on the GNC
processor have delegate copies created to represent
them on this processor. Since a consistency check
may imply a state update, the mechanism only
works if the functionality managers active on the
data handling processor in minor cycles 4 and 5 do

not need write access to consistency checkable
objects. This is indeed the case in the example in
the figure because in these two minor cycles the
data handling processor is occupied doing telemetry
management which only implies read access to
telemetry objects.

FdManFrMan TcManUniMan ConMan ManMan

I d l e FrMan TcMan TmMan I d l e

Operates on both DH and
GNC telemeterable objects

Copy GNC telemeterable
objects to DH processor

DH Processor

GNC Processor

Copy DH consistency checkable
objects to GNC processor

Operates on both DH and
GNC consistency checkable objects

Figure 4. Centralized TM and FD Management

In general, the delegate object mechanism calls
for placing a delegate in every task in which the
distributed object must be present and available.
Each delegate is a full copy of the object. The code
that implements the behavior of the object is
duplicated in the delegate as well as the data.
Unlike a remote proxy, a delegate can service
requests without forwarding any of those requests
to a “real” object in some other address space.

Thus, with the proposed mechanism, objects
that must be simultaneously operated upon by
several processes, possibly running on different
processors, are essentially duplicated with each
process having its own copy or delegate.
Additionally, the delegate object mechanism makes
provisions for the periodic synchronization of
delegates of the same object. The objective of the
synchronization process is to ensure that duplication
of shared objects has no impact on the behaviour of
an application. Synchronization is performed
periodically at pre-defined times and it relies on the
assumption that, at any given time, only one process
is allowed to have write access to a given shared
object. This process is the owner of the object and
the delegate upon which it operates is called the
owner delegate. The owner process is the only one
that can perform operations on the object that
change its internal state. All other processes sharing
access to that object are only allowed to perform
operations that do not alter its state. Their delegates
are known as read-only delegates. When

 8

synchronization is performed, each read-only
delegate is brought into synch with the single owner
delegate.

In the case of the example of Figure 4, for
instance, the GNC processor is the owner process
for the consistency checkable objects because it
needs write access to them. Some of these
consistency checkable objects may also be
telemeterable objects and may therefore exist as
delegate objects in the data handling processor.
Synchronization between the various copies of the
consistency checkable objects is achieved at the end
of cycle 5 when the read-only copies are refreshed
to bring their value in line with the value of the
owner copy in the GNC processor.

The restriction that at any given time there
should be only one owner of each shared object
may at first appear to be very constraining. Its
impact is however substantially lessened by the
provision that object ownership can change
dynamically. The change of ownership, however,
needs to be declared at design time. Consider again
the example of Figure 4. In minor cycles 4 and 5,
the failure detection manager must have write
access to all consistency checkable objects. Since
the failure detection manager runs on the GNC
processor, this means that, during these two minor
cycles, this processor must be the owner of all
consistency checkable objects. There is however no
reason why this ownership relationship should be
maintained during other minor cycles. Thus, the
delegate object mechanism allows dynamic changes
of ownership. This simply means that, at different
times, different processes have write access to a
given object. Changes of ownership also affect the
direction in which data copies are made to
synchronize the state of delegate objects.

This section presented the concept of the
delegate object mechanism. The next section shows
how this concept can be concretely implemented
upon the Giotto infrastructure.

Implementation Aspects
In this section we discuss a Giotto

implementation of the example in Figure 4. For
simplicity’s sake, we will suppose that there is a
single ConsistencyCheckable object CcCt
and a single Telemeterable object TmCt on the

GNC processor and a ConsistencyCheckable
object CcDt and a Telemeterable object TmDt
on the DH processor.

Consider the first 300 ms in the cycle of
Figure 4, i.e., the first three minor cycles. In this
phase, system execution requires two tasks, one for
each processor. Task Control executes on the
GNC processor and task Data executes on the DH
processor. The two tasks are completely decoupled.
The four objects can be mapped to four Giotto
output ports declared as follows:

output
 CcCt: ConsistencyCheckable;
 TmCt: Telemeterable;
 CcDt: ConsistencyCheckable;
 TmDt: Telemeterable;

A Giotto task is the owner of the delegate
objects in its output ports and thus has exclusive
write access to these objects. Using the terminology
introduced in the previous section, the four objects
declared above therefore represent owner delegate
objects. The sequence of functionality managers
UniMan, FrMan, and TcMan on the GNC
processor is implemented by a procedure called
ControlProc. The Giotto task Control
invokes this procedure on the delegate objects
CcCt and TmCt of which Control is the owner:

task Control()
 output (CcCt, TmCt) {
 call ControlProc(CcCt, TmCt);
}

The sequence of functionality managers
FrMan and TcMan on the DH processor is instead
implemented by a procedure called DataProc.
The Giotto task Data invokes this procedure on the
delegate objects CcDt and TmDt of which Data is
the owner:

task Data()
 output (CcDt, TmDt) {
 call DataProc(CcDt, TmDt);
}

In the second part of the cycle beginning with
the fourth minor cycle, the failure detection
manager requires ownership of the delegate objects
CcCt and CcDt from task Control, which is the
owner of these objects in the first three minor
cycles. Accordingly, we define a new Giotto mode

 9

consisting of two new Giotto tasks: task Failure
for the GNC processor and task Telemetry for
the DH processor. Task Failure invokes a
procedure called FailureProc that in turn
invokes the failure detection manager FdMan, the
controller manager ConMan, and the manoeuvre
manager ManMan. Since, as discussed above, the
failure detection manager needs write access to
consistency checkable objects, the task Failure
must be the owner of the delegate objects CcCt and
CcDt. In Giotto terminology, these two objects
must be associated to output ports for task
Failure:

task Failure()
 output (CcCt, CcDt) {
 call FailureProc(CcCt, CcDt);
}

The telemetry manager TmMan on the DH
processor is implemented by a procedure called
TelemetryProc which is invoked by Giotto task
Telemetry. This task does not change the state of
the objects upon which it operates which can
therefore be represented as Giotto input ports or, in
the terminology of the previous section, as read-
only delegate objects. In our example, the
Telemetry task operates on two objects called
Tm1 and Tm2. Note that these two objects are the
delegate copies of TmCt and TmDt, respectively:

task Telemetry(Tm1, Tm2)
 output () {
 input
 Tm1: Telemeterable;
 Tm2: Telemeterable;

 call TelemetryProc(Tm1, Tm2);
}

Regular non-delegate objects that need to be
persistent between task invocations have to be
defined as private ports.

The task invocations and the mode switches
discussed above are shown in Figure 5 that gives
the “Giotto view” of the example of Figure 4.
Summarizing, the Giotto program uses two Giotto
modes M1 and M2. The mode M1 invokes the tasks
Control and Data on the GNC and DH
processor, respectively, once within a period of
300ms. Similarly, the mode M2 invokes the tasks
Failure and Telemetry on the GNC and DH

processor, respectively, once within a period of
400ms. Upon invocation of Telemetry the read-
only delegate objects Tm1 and Tm2 are
synchronized with the owner delegate objects TmCt
and TmDt, respectively. This Giotto program can
be represented as follows:

start M1(CcCt, CcDt) {
 mode M1(CcCt, CcDt) period 300ms
 {
 taskfreq 1
 do Control(); [host GNC]

 taskfreq 1 do Data(); [host DH]

 exitfreq 1
 if True() then
 M2(CcCt, CcDt, TmCt, TmDt);
 }

 mode M2(CcCt, CcDt, TmCt, TmDt)
 period 400ms {
 taskfreq 1
 do Failure(); [host GNC]

 taskfreq 1
 do Telemetry(TmCt, TmDt);
 [host DH]

 exitfreq 1
 if True() then
 M1(CcCt, CcDt);
 }
}

The Giotto program starts in mode M1 by
invoking concurrently the tasks Control and
Data once. After 300ms the mode switch at the
end of mode M1 is trivially enabled and thus
triggers a switch to mode M2. Upon mode switching
the delegate objects CcCt, CcDt, TmCt, and TmDt
are synchronized between the two processors. The
Giotto compiler generates the necessary
synchronization messages according to the
communication topology of the Giotto program. In
particular, the object CcDt is transferred from the
DH processor to the GNC processor and the object
TmCt from the GNC processor to the DH
processor.

 10

Then the Giotto mode M2 invokes concurrently
the tasks Failure and Telemetry once. In this
mode the task Failure has exclusive write access
to the objects CcCt and CcDt whereas the task
Telemetry has read-only access to the objects
TmCt and TmDt. The mode switch at the end of
mode M2 is again trivially enabled and thus triggers
a switch back to mode M1 after 400ms. Upon mode
switching only the delegate objects CcCt and
CcDt are synchronized because the objects TmCt
and TmDt are not modified by the task
Telemetry. In particular, the object CcDt is
transferred back from the GNC processor to the DH
processor. The Giotto compiler performs a
schedulability analysis based on the user-provided
worst-case execution times and latencies of the
tasks and synchronization messages, respectively.

FdManFrMan TcManUniMan ConMan ManMan

I d l e FrMan TcMan TmMan I d l e
DH Processor

GNC Processor

Task Control

Task Data

Mode Switch

Task Failure

Task Telemetry

Figure 5: Giotto View of Figure 4

The Giotto mode concept supports changing
the ownership of delegate objects. Within a Giotto
mode ownership cannot be changed. However, a
Giotto mode can express more complex scenarios
of periodic tasks and mode switches with different
frequencies [7] than in the presented examples. In
particular, Giotto mode switches may use arbitrary
predicates, instead of True(), which may be
defined on any read-only delegate object, to express
more interesting scenarios of changing ownership
and task schedules.

Open Problems
The example examined above is very simple

and it is consequently easy to allocate functionality
managers to processors, to allocated objects to
ports, and to decide which ports are input ports
(corresponding to read-only delegates) and which

ones are output ports (corresponding to owner
delegates). Performing this mapping in a more
realistic case would be more complex because not
all allocations of functionality managers to tasks are
legal. The following constraint needs to be
respected: for every object shared across
concurrently executing tasks, there can be only one
task with write access to it. Given that in a typical
implementation there may be thousands of objects
and tens of functionality managers, performing this
allocation and verifying its legality will require tool
support which, at present, does not exist.

A second open issue concerns the timing
overhead introduced by the delegate object
mechanism. This arises because of the need to
synchronize the various copies of objects that are
shared between concurrently executing tasks. The
synchronization is performed invisibly to the user
by the Giotto infrastructure that, for each task
invocation and mode switch and for each shared
object, updates the input ports representing the
read-only delegates of the object with the value of
the single output port representing the owner
delegate of the same object.

The delegate object mechanism exists at
present at the concept level only. Future work will
concentrate on developing tool support to allow
rapid mapping from the framework level (objects
and functionality managers) to the Giotto level
(tasks, ports, and modes) and on prototyping efforts
to estimate timing overheads.

Comparison with Other Concepts
How does the delegate object mechanism

compare with traditional middleware concepts? Its
chief advantage is that all service requests are
processed locally. Processes are therefore
completely decoupled which makes analysis of their
timing properties reliable and straightforward. Inter-
task communication is confined to the pre-defined
times when the delegates are synchronized. The
synchronization is done in an orderly fashion and,
as discussed in a previous section, the Giotto
infrastructure guarantees that no deadlocks can
occur and that it completes on time.

This clean interaction between processes
should be contrasted with the situation prevailing in
implementations of CORBA and DCOM in which

 11

objects can, at any time, issue requests that must be
serviced by other objects residing on remote nodes.
This can give rise to interferences on the
communication medium that links together tasks.
These interferences translate into delays for the
process issuing the requests. Ensuring that such
delays are predictable or at least bounded is not
always easy. Interferences also arise on the remote
node between the task created to process the remote
request and the local tasks. Devising safe and
reliable ways to ensure global schedulability is a
formidable challenge. With the delegate objects
mechanism, by contrast, schedulability only has to
be ensured locally on each node. This is a problem
for which well-known and well-proven solutions
exist.

The main drawback of the delegate object
mechanism is perhaps its restricted scope. Whereas
CORBA and DCOM are general purpose
middleware, the delegate object mechanism is
really targeted at embedded control systems.
Efficient implementation is only possible for a
cyclical system but the frequency of the cycle can
change dynamically. There is moreover an
underlying assumption that the system is time-
driven rather than event-driven. The delegate object
mechanism could be implemented upon
infrastructures other than Giotto. The choice of
Giotto appears however very natural precisely
because Giotto too is intended for embedded
control systems and is premised on a time-triggered
paradigm.

Finally, a second drawback of the delegate
object mechanism is its memory requirements.
Shared objects must be duplicated at all locations
where they are used and the code must be
duplicated as well as the data. In today’s system
where memory availability is rapidly expanding,
however, this is not considered a major concern.

Conclusions
The solution of the “software problem” will

probably require some kind of automatization of the
software development process. The AOCS
Framework and Giotto are steps in this direction for
embedded control systems. The framework
predefines an architecture for embedded control
systems and allows the rapid instantiations of
applications within this domain. The framework

however only covers the functional aspects of an
application. Giotto by contrast is specifically aimed
at scheduling and timing issues. These two
technologies are therefore complementary but their
integration is hindered by the different paradigms
that underlie them: the framework assumes a fully
object-oriented system where inter-object
communication takes place exclusively through
method calls whereas Giotto is based on a message-
passing paradigm. The delegate object mechanism
outlined in this paper is intended to overcome this
barrier and to allow the construction of systems
whose functional correctness is guaranteed by
adherence to the logical architecture embodied in
the AOCS Framework and whose timing
correctness is guaranteed by the Giotto
infrastructure. Additionally, since Giotto is
designed to allow processes to communicate across
processor barriers, its integration with the AOCS
Framework will transform the latter into a
framework for distributed embedded control
systems.

References
[1] A. Pasetti, A Software Framework for Satellite
Control Systems – Methodology and Development,
PhD Dissertation, Feb. 2001, University of
Konstanz.

[2] A. Pasetti et al., An Object-Oriented
Component-Based Framework for On-Board
Software, Proceedings of the Data Systems in
Aerospace Conference, Nice (France), May 2001.

[3] A. Pasetti and T. Brown, A Framework for
Embedded Control Systems: Methodological and
Technological Considerations, submitted for
publication in: M. Fayad, D. Garlan, W. Pree,
Software Architectures, Components, and
Frameworks, Addison-Wesley, 2001 (to be
published).

[4] M. Astley, D.C. Sturman, and G.A. Agha,
Object-based Middleware, sidebar in Customizable
Middleware for Modular Distributed Software,
Communications of the ACM, Vol. 44, No. 5, May
2001.

[5] Real-time CORBA with TAO (The ACE ORB),
URL: www.cs.wustl.edu/~schmidt/TAO.html.

 12

[6] T. Brown et al., Real-Time Middleware
Concepts for Automating the Development of
Distributed Embedded Control Systems, submitted,
May 2001.

[7] T.A. Henzinger, B. Horowitz, and C.M. Kirsch,
Giotto: A Time-triggered Language for Embedded
Programming, Technical report: UCB//CSD-00-
1121, University of California, Berkeley, 2000.

[8] T.A. Henzinger, B. Horowitz, and C.M. Kirsch,
Embedded Control Systems Development with
Giotto, Proceedings of LCTES 2001, ACM
SIGPLAN Notices, June 2001.

