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Introduction 
This paper presents a concept for integrating 

the embedded programming methodology Giotto 
and the object-oriented AOCS Framework to create 
an environment for the rapid development of 
distributed software for safety-critical embedded 
control systems with hard real-time requirements of 
the kind typically found in aerospace applications. 

Giotto is middleware that offers a tool-
supported design methodology for implementing 
embedded control systems on platforms of possibly 
distributed sensors, actuators, CPU's, and networks.  
Giotto enables the decoupling of software design 
(functionality and timing) from implementation 
concerns (scheduling, communication, and 
mapping). It thus allows developers to concentrate 
on the design of the software architecture and on 
the implementation of the control and management 
functionalities required by the target application.  
Giotto is based on a time-triggered programming 
language.  This ensures timing predictability and 
makes it particularly suitable for safety-critical 
applications with hard real-time constraints. 
Avionics systems are one of its natural target 
applications. 

The AOCS Framework is an object-oriented 
software framework for embedded control systems.  
Software frameworks are a software reuse 
technology. They consist of collections of 
components with predefined connections that 
capture an architectural design optimized for a 
specific domain.  They predefine the composition 
and interaction of the components of a system while 
at the same time allowing for customization by 
providing hooks where default behavior can be 
overridden.  Frameworks differ from other reuse 
technologies, because they make architectural as 
opposed to code reuse possible, and because they 
rely on object composition and inheritance as 
functionality-extending mechanisms. 

The AOCS Framework was developed for the 
European Space Agency for satellite control 
systems but is suitable more generally for 
embedded control applications. 

Giotto and the AOCS Framework are 
complementary technologies.  The former addresses 
the real-time and physical realization concerns of an 
embedded system (timing, scheduling, 
communication, and mapping) while the latter 
addresses data structuring and task functionality 
concerns. The work described here arises from an 
attempt to integrate the two technologies to create 
an environment where real-time embedded control 
applications, because of the AOCS Framework, can 
be rapidly instantiated and, because of Giotto, are 
predictable in their timing properties even when 
distributed over multiple CPUs. 

The key to this integration is the delegate 
object mechanism, which allows software 
components to interact as if they reside within the 
same address space even when they are located in 
different processes or on different CPUs. The 
fiction of a global address space is maintained by 
copying entire objects between CPUs in a way that 
guarantees consistency and timeliness.  The 
delegate object mechanism is innovative because, 
unlike rival proxy-based approaches such as 
CORBA or DCOM, it is specifically designed to 
promote timing predictability and is therefore 
ideally suited for hard real-time applications.  While 
proxies ensure only referential transparency (for the 
user, there is no logical difference between local 
and remote object access, but there may be a time 
difference), delegate objects ensure both referential 
and time-bound transparency (for the user, there is 
neither a logical nor a time difference between local 
and remote object access).  The on-time availability 
of consistent delegate objects is not achieved 
dynamically, on demand, but scheduled statically 
by the Giotto compiler, which performs a global 
task and communication scheduling analysis. 



 2 

The AOCS Framework 
The AOCS Framework [1,2,3] was designed as 

a generic architecture for satellite control systems 
from which concrete applications can be 
instantiated by configuring the framework for use in 
a specific context. The adaptation mechanisms in 
the AOCS Framework are based on object 
composition and inheritance.  
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Figure 1. Structure of the AOCS Framework  

The framework is best seen as a domain-
specific extension to the operating system. An 
operating system (OS) is a component that offers 
certain functionalities, e.g., task scheduling as 
application-independent services. An OS is 
deployed as an off-the-shelf item that is configured 
at run-time for use in a specific application. The 
AOCS Framework extends this concept to other 
functionalities within a satellite control system. It 
offers application-independent components that 
encapsulate functionalities like management of 
failure detection, management of closed-loop 
controllers, management of telemetry, etc. These 
are recurring functionalities in a satellite control 
system. Their implementation varies across 
applications (just as the implementation of tasks 
varies across applications) but the way a 
functionality is managed can be encapsulated in a 
reconfigurable component (just as the OS 
encapsulates a reconfigurable task scheduler). Such 
reconfigurable components in the framework are 
called functionality managers. They are reusable 
without changes within the domain of satellite 
control systems. The architecture of an application 
instantiated from the AOCS Framework is therefore 
as shown in Figure 1. The functionality managers 
are at the same level of abstraction as the OS and, 

like it, they are application-independent and need to 
be configured at initialization time to be adapted to 
the need of a specific application. 

The structure of the functionality managers 
and the distinction between implementation and 
management of the functionalities will now be 
illustrated by means of two examples. The 
examples are very simplified and are only intended 
to illustrate the principle of construction of the 
framework, not its actual implementation. First, 
consider the telemetry functionality manager. The 
telemetry data should be sent periodically to the 
ground station to check the correct functioning of 
the on-board systems. The AOCS Framework sees 
telemetry as a form of serialization in the Java 
sense. The application is conceptualized as a set of 
objects some of which should be capable of writing 
(a subset of) their internal state to a telemetry 
stream representing the data channel through which 
telemetry data are forwarded to the ground. Such 
objects are said to be telemeterable. A telemeterable 
object must implement the abstract interface: 

 
The basic method is writeToTm. A call to 

this method will cause the object to write (a subset 
of) its own state to the telemetry stream. Method 
getTmImageLength instead returns the length 
in bytes of the telemetry image generated by the 
object. The telemetry stream is characterized by the 
implementation of the abstract interface 
TmStream. Having defined the telemeterable and 
telemetry stream abstractions through two abstract 
interfaces, it becomes possible to define a generic 
telemetry manager component that is responsible 
for controlling the process by which telemetry data 
are sent to the ground. Its UML diagram is: 
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The telemetry manager has a list of items of 
type Telemeterable and, when it is activated, it 
goes through the list and asks each object to write 
itself to the telemetry stream. Method 
getTmImageLength is used to verify that the 
quantity of data produced by each object are 
compatible with the capacity of the telemetry 
channel. Clearly, the telemetry manager is 
completely application independent. It sees concrete 
telemeterable objects only through the 
Telemeterable interface and it is therefore 
shielded from any details concerning the format and 
content of the telemetry data, which are obviously 
application-dependent. In this sense, it is similar to 
the task scheduler in an OS that sees the tasks it 
manages only as abstract entities upon which 
generic operations (‘task initialize’, ‘task execute’, 
‘task suspend’, etc) can be performed. 

As a second example of a functionality 
manager, consider the failure detection  manager. A 
common type of failure detection test performed on 
satellite systems is the consistency check. A 
consistency check consists in verifying the internal 
consistency of the state of an object. In the case of 
an object representing a set of four gyros, for 
instance, a consistency check would verify that any 
three sets of measurements yield the same estimate 
of the spacecraft angular rate. The framework 
defines an abstract interface to represent a generic 
object that can be subjected to a consistency check: 

 
A call to method doConsistencyCheck 

causes an object to perform a consistency check 
upon itself. A return value of false indicates that 
the check has failed and that a failure has been 
detected.  The introduction of interface 
ConsistencyCheckable allows the definition 
of an application-independent failure detection 
manager as shown in the following UML diagram: 

 

The failure detection manager has a list of 
objects that it sees as instances of type 
ConsistencyCheckable and, when it is 
activated, it goes through the list, asks each object 
in the list to check its internal consistency and, if 
the object reports a problem, it declares a failure.  

Like the telemetry manager, the failure 
detection manager is a generic component that can 
be deployed in an application as a binary entity and 
that is configured at run time by loading into it the 
objects whose internal consistency needs to be 
monitored. In addition to the telemetry and failure 
detection managers, designated in the following by 
acronyms TmMan and FdMan, the AOCS 
Framework defines the following major 
functionality managers:  

• telecommand manager (TcMan) 
• manoeuvre manager (ManMan) 
• controller manager (ConMan) 
• failure recovery manager (FrMan) 
• unit manager (UniMan) 
• reset manager (ResMan) 

 
In all cases, the functionality manager is 

separated from the objects it manages by an abstract 
interface. It is this abstract interface that 
distinguishes the management of a functionality 
from its implementation. In a typical 
implementation, a task is associated to each 
functionality manager with its method 
activate() being the entry point for the task. 

It is important to note that the same object can 
be operated upon by several functionality managers, 
e.g., the same object might be subjected to 
consistency checks and have its state included in 
telemetry, which means that it must implement the 
corresponding abstract interfaces. Thus, the AOCS 
Framework requires an implementation language 
that supports the concept of multiple interface 
implementation. The framework prototype was 
implemented in C++. 

Distributing The Framework 
The AOCS Framework was designed for a 

single processor system. Satellites however tend to 
be distributed. A large satellite might have a central 
processor performing data handling and one or 
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more payload processors. Sometimes, especially on 
large European missions, a dedicated processor is 
included for the guidance and navigation tasks 
(GNC processor). Increasingly, sensors, e.g., GPS 
receivers and autonomous star trackers, might also 
be processor-based.  

Most of the functions covered by the AOCS 
Framework would be present on more than one on-
board processor. Telecommand and telemetry 
management, for instance, are likely to be present 
on all on-board processors. Hence, the AOCS 
framework can be used to instantiate part of the 
software running on all satellite processors.  

In order to aid the discussion in the remainder 
of the paper, reference will be made to a simplified 
but not unrealistic scenario. The example scenario 
is based on a satellite with two on-board processors: 
the ‘data handling (DH) processor’ in charge of 
receiving and distributing telecommands and of 
collecting and forwarding telemetry, and the ‘GNC 
processor’ in charge of attitude control and station 
keeping. The GNC processor needs the following 
functionality managers: telecommand, telemetry, 
manoeuvre, failure detection, failure recovery, 
controller and unit managers. The data handling 
processor instead needs a reduced set of 
functionality managers: telemetry, telecommand, 
failure detection and failure recovery managers. 
Both the data handling and the GNC software run 
cyclically. In each cycle all the functionality 
managers are activated in sequence. The cycles on 
the two processors have identical duration and are 
divided into minor cycles. A minor cycle is devoted 
to the activation of a functionality manager. The 
resulting architecture is shown in Figure 2. 
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Figure 2. Example Scenario  

The architecture of Figure 2 has a significant 
degree of redundancy. Consider for instance 
telemetry management. Each processor has its own 

telemetry manager that maintains a list of 
telemeterable objects resident on its own processor 
and periodically asks them to write themselves to 
the local telemetry stream. The two telemetry 
managers are identical even if they are differently 
configured, i.e., they have different lists of 
telemeterable objects. There is therefore a case for 
having a single telemetry manager located on one of 
the two processors that manages all the 
telemeterable objects regardless of where they 
reside. There is a similar case for centralizing most 
or all of the other functionality managers. Thus, a 
distributed AOCS Framework calls for a situation 
where unique functionality managers are in charge 
of a specific functionality at satellite level.  

Implementing such a distributed concept 
requires creating the fiction of a single address 
space. This is essential because the functionality 
managers interact with their clients by calling the 
methods they expose. Maintaining the architectural 
integrity imposed by the framework depends on the 
ability of the functionality managers to see their 
clients as instances of an abstract type. The 
telemetry manager, for instance, needs to be able to 
see all the telemeterable objects as instances of type 
Telemeterable and needs to access them as if 
they resided within its own address space.  

Thus, a distributed AOCS Framework requires 
a middleware infrastructure that sustains the 
“illusion of local action” [4]. Both CORBA and 
DCOM have this property. They would, however, 
be unsuitable for the purpose at hand because 
satellite control systems are mission-critical, real-
time systems and neither of these two middleware is 
designed for this type of applications. Real-time 
versions of CORBA have been proposed, e.g., TAO 
[5], but it was felt that a simpler scheme was 
needed for satellite control systems.  

Our starting point for the investigation into a 
distributed AOCS Framework is Giotto. As is 
argued in the next section, however, Giotto by itself 
is unsuitable as a basis upon which to build a 
distributed AOCS Framework. The so-called 
delegate object mechanism, described later in the 
paper, has to be introduced to complement it.  
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Giotto 
Giotto [7] is a tool-supported design 

methodology [8] for implementing embedded 
control systems on platforms of possibly distributed 
sensors, actuators, CPUs, and networks. Giotto 
consists of a time-triggered programming language, 
a compiler, and a runtime system. The key entities 
of a Giotto program are Giotto ports, Giotto tasks,  
and Giotto modes. A Giotto task is a periodic 
software task operating on Giotto ports without any 
synchronization points. The implementation of a 
Giotto task is external to Giotto and can, in 
principle, be done in any programming language. 
We require that the worst-case execution time of a 
Giotto task is known. 

A Giotto task may have input, private, and 
output ports. A Giotto port is a typed variable with 
a fixed location in memory. From the perspective of 
a Giotto task there exist only the objects in its own 
ports. Giotto tasks are invoked periodically. As 
mentioned above, Giotto is based on a time-
triggered paradigm. At the time of their invocation, 
they read the content of their input ports, process it 
according to their implementation, and finally 
update their output ports before terminating 
execution. Private ports are used by tasks to store 
state information that must be preserved across 
invocations. Intertask communication is achieved 
by connecting output ports to input ports of 
different tasks. Thus only the output ports of a task 
are accessible to other tasks. The scheduler of the 
Giotto runtime system is responsible for invoking 
tasks and communicating data from output to input 
ports. The necessary schedule is generated by the 
Giotto compiler. 

In integrating Giotto with the framework, 
Giotto ports are identified with objects of the AOCS 
Framework, i.e., with concrete instances of the 
framework classes. 

Consider the example in Figure 2. Suppose 
that the sequence of invocations of all functionality 
managers on the GNC processor is implemented by 
a procedure called ControlProc. A call to 
ControlProc will result in a single invocation of 
all functionality managers on the GNC processor in 
the given order. The execution of ControlProc 
will take at most 700ms since we are assuming a 
minor cycle of at most 100ms duration. The 

following Giotto code declares a Giotto task 
Control that invokes ControlProc on a 
persistent object CcObject: 

task Control() output () { 
 private 
  CcObject: ConsistencyCheckable; 
 
 call ControlProc(CcObject); 
} 

For the sake of simplicity we use only a single 
persistent object in this example. In reality, there 
will be multiple private ports holding different 
persistent objects representing the objects upon 
which the functionality managers activated by 
ControlProc operate. We will later see how to 
use input and output ports for intertask 
communication. The sequence of invocations of 
functionality managers on the DH processor is 
given by the following Giotto task Data: 

task Data() output () { 
 private 
  CcObject: ConsistencyCheckable; 
 
 call DataProc(CcObject); 
} 

Once again, only one private object is shown 
for simplicity.  

A Giotto mode consists of Giotto tasks and so-
called Giotto mode switches, which are, similarly to 
the time-triggered invocation of Giotto tasks, 
evaluated periodically at a given frequency. A 
Giotto mode represents a set of Giotto tasks 
together with their activation frequencies. A mode 
switch is performed immediately whenever a mode 
switch is enabled. Giotto mode switching therefore 
corresponds to changing task schedules. Note that a 
possibly distributed Giotto system can only be in a 
single Giotto mode at the same time. We will 
discuss the mode switching semantics later in the 
context of the delegate object mechanism. 

The example in Figure 2 does not require 
mode switching. A single mode M sufficiently 
describes the scenario: 

start M() { 
 mode M() period 700ms { 
  taskfreq 1 
   do Control(); [host GNC] 
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  taskfreq 1 do Data(); [host DH] 
 } 
} 

The Giotto program starts executing mode M 
by periodically invoking task Control on the 
GNC processor and task Data on the DH processor 
with a period of 700ms. The code in square 
brackets, e.g., [host GNC], is an example of a 
platform-dependent Giotto annotation [7], which 
maps the task Control to the GNC processor. A 
Giotto program without any annotations is 
platform-independent. 

The simplified Giotto implementation presented 
above assumes the conventional (non-distributed) 
situation of Figure 2. Before proceeding to show 
how it must be modified for the distributed case of 
Figure 4, it is necessary to introduce the delegate 
object mechanism upon which the distribution 
concept it based. 

The Delegate Object Mechanism 
The delegate object mechanism is proposed as 

an alternative to middleware like CORBA or 
DCOM to sustain the illusion of local action while 
at the same time ensuring the timing predictability 
essential to real-time systems. The delegate object 
mechanism is targeted at distributed applications 
that operate cyclically as is normally the case of 
embedded control systems. It is described in general 
in [6]. Here it will be described with reference to 
the example scenario introduced above in the 
section on the distribution of the AOCS Framework 
(see Figure 2). Consider a modification of the basic 
situation shown in Figure 2 where telemetry 
management is centralized and assume that the 
single telemetry manager is physically located on 
the data handling processor. As discussed above, 
this component needs to have access to all 
telemeterable objects on both its own and the GNC 
processor and it needs to see them as if they resided 
within its own address space.  

The traditional solution to this problem à la 
CORBA or DCOM is to create proxy objects on the 
data handling processor that represent the 
telemeterable objects that are resident on the GNC 
processor. These proxies expose the 
Telemeterable interface but do not actually 
process servicing requests themselves. Instead, they 

rout any request they receive to the remote object 
that they represent. This routing is syntactically 
transparent to the telemetry manager which sees 
both the local and the proxy objects as instances of 
type Telemeterable but it is not transparent 
from an implementation point of view since local 
processing of a service request is much faster than 
remote processing. Thus, proxies are equivalent to 
the objects they represent from a syntactical point 
of view but not from a timing point of view. Proxy 
mechanisms therefore sustain the illusion of local 
action at syntactical level only, but not at timing 
level. This type of distribution mechanism is not 
suitable for real-time applications because in such 
applications timing aspects are extremely important 
and implementations that make timing aspects 
harder to control or to predict should be avoided.  

The solution to the problem of centralized 
telemetry management proposed by the delegate 
object mechanism is more radical and is based on 
having full copies of the remote telemeterable 
objects on the central processor. A full copy of an 
object is a copy of both the data and the code 
associated to the object. Such copies are called 
delegate objects. Since it includes both data and 
code, a delegate object is capable of processing 
servicing requests locally and is therefore 
equivalent to the object it represents both from a 
syntactical and from a timing point of view. 

If the delegate object mechanism is used, the 
architecture with a centralized telemetry 
management is as depicted in Figure 3. Now, just 
before the telemetry manager is activated, the 
telemeterable objects resident on the GNC 
processor are copied to the data handling processor 
and there they are operated upon by the telemetry 
manager as if they were local objects. 

FdManFrMan TcManUniMan ConMan ManMan I d l e

FdMan FrMan TcMan TmMan I d l e

Operates on both DH and
GNC telemeterable objects

Copy GNC telemeterable
objects to DH taskDH Processor

GNC Processor

 

Figure 3. Centralized TM Management 

The advantage of this architecture with respect 
to that of Figure 2 is that telemetry management has 
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been centralized thus removing the need for 
multiple telemetry managers. Note that this 
advantage, by itself, has nothing to do with 
parallelizing some of the functions in the satellite. 
In fact, comparison with Figure 2, shows that 
adoption of this solution actually de-parallelizes the 
telemetry management. In the original 
configuration, two telemetry managers were 
running in parallel where now one single telemetry 
manager takes twice as long to process all the 
objects on the data handling processor.  

While the telemetry manager processes the 
telemeterable objects on the data handling 
processor, the GNC processor can perform other 
functions. In Figure 3, the GNC processor performs 
the failure detection management and controller 
management. In general, the framework allows one 
particular object to implement several abstract 
interfaces and therefore to be operated upon by 
more than one functionality manager. In a 
distributed concept, therefore the possibility arises 
that, in the same cycle, the same object is operated 
upon by several functionality managers. For 
instance, in Figure 3, a consistency checkable 
object on the GNC processor could also be a 
telemeterable object in which case, during the 
fourth minor cycle, it would be operated upon by 
both the failure detection manager, which would 
operate upon the object as an instance of type 
ConsistencyCheckable, and by the telemetry 
manager, which would operate upon the same 
object as an instance of type Telemeterable. 
This situation however does not give rise to any 
inconsistencies because  the telemetry manager only 
needs a read-only access to the telemeterable 
objects. 

The same approach to the centralization of 
functionality management can be applied to other 
functionalities. Figure 4 shows the case where the 
failure detection management has also been 
centralized by placing the single failure detection 
manager on the GNC processor. In this case, at the 
beginning of the 4-th minor cycle, all consistency 
checkable objects that are not resident on the GNC 
processor have delegate copies created to represent 
them on this processor. Since a consistency check 
may imply a state update, the mechanism only 
works if the functionality managers active on the 
data handling processor in minor cycles 4 and 5 do 

not need write access to consistency checkable 
objects. This is indeed the case in the example in 
the figure because in these two minor cycles the 
data handling processor is occupied doing telemetry 
management which only implies read access to 
telemetry objects. 
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Figure 4. Centralized TM and FD Management 

In general, the delegate object mechanism calls 
for placing a delegate in every task in which the 
distributed object must be present and available. 
Each delegate is a full copy of the object. The code 
that implements the behavior of the object is 
duplicated in the delegate as well as the data. 
Unlike a remote proxy, a delegate can service 
requests without forwarding any of those requests 
to a “real” object in some other address space.  

Thus, with the proposed mechanism, objects 
that must be simultaneously operated upon by 
several processes, possibly running on different 
processors, are essentially duplicated with each 
process having its own copy or delegate. 
Additionally, the delegate object mechanism makes 
provisions for the periodic synchronization of 
delegates of the same object. The objective of the 
synchronization process is to ensure that duplication 
of shared objects has no impact on the behaviour of 
an application. Synchronization is performed 
periodically at pre-defined times and it relies on the 
assumption that, at any given time, only one process 
is allowed to have write access to a given shared 
object. This process is the owner of the object and 
the delegate upon which it operates is called the 
owner delegate. The owner process is the only one 
that can perform operations on the object that 
change its internal state. All other processes sharing 
access to that object are only allowed to perform 
operations that do not alter its state. Their delegates 
are known as read-only delegates. When 
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synchronization is performed, each read-only 
delegate is brought into synch with the single owner 
delegate.  

In the case of the example of Figure 4, for 
instance, the GNC processor is the owner process 
for the consistency checkable objects because it 
needs write access to them. Some of these 
consistency checkable objects may also be 
telemeterable objects and may therefore exist as 
delegate objects in the data handling processor. 
Synchronization between the various copies of the 
consistency checkable objects is achieved at the end 
of cycle 5 when the read-only copies are refreshed 
to bring their value in line with the value of the 
owner copy in the GNC processor. 

The restriction that at any given time there 
should be only one owner of each shared object 
may at first appear to be very constraining. Its 
impact is however substantially lessened by the 
provision that object ownership can change 
dynamically. The change of ownership, however, 
needs to be declared at design time. Consider again 
the example of Figure 4. In minor cycles 4 and 5, 
the failure detection manager must have write 
access to all consistency checkable objects. Since 
the failure detection manager runs on the GNC 
processor, this means that, during these two minor 
cycles, this processor must be the owner of all 
consistency checkable objects. There is however no 
reason why this ownership relationship should be 
maintained during other minor cycles. Thus, the 
delegate object mechanism allows dynamic changes 
of ownership. This simply means that, at different 
times, different processes have write access to a 
given object. Changes of ownership also affect the 
direction in which data copies are made to 
synchronize the state of delegate objects.  

This section presented the concept of the 
delegate object mechanism. The next section shows 
how this concept can be concretely implemented 
upon the Giotto infrastructure. 

Implementation Aspects  
In this section we discuss a Giotto 

implementation of the example in Figure 4. For 
simplicity’s sake, we will suppose that there is a 
single ConsistencyCheckable object CcCt 
and a single Telemeterable object TmCt on the 

GNC processor and a ConsistencyCheckable 
object CcDt and a Telemeterable object TmDt 
on the DH processor.  

Consider the first 300 ms in the cycle of 
Figure 4, i.e., the first three minor cycles. In this 
phase, system execution requires two tasks, one for 
each processor. Task Control executes on the 
GNC processor and task Data executes on the DH 
processor. The two tasks are completely decoupled. 
The four objects can be mapped to four Giotto 
output ports declared as follows: 

output 
 CcCt: ConsistencyCheckable; 
 TmCt: Telemeterable; 
 CcDt: ConsistencyCheckable; 
 TmDt: Telemeterable; 
 

A Giotto task is the owner of the delegate 
objects in its output ports and thus has exclusive 
write access to these objects. Using the terminology 
introduced in the previous section, the four objects 
declared above therefore represent owner delegate 
objects. The sequence of functionality managers 
UniMan, FrMan, and TcMan on the GNC 
processor is implemented by a procedure called 
ControlProc. The Giotto task Control 
invokes this procedure on the delegate objects 
CcCt and TmCt of which Control is the owner: 

task Control() 
     output (CcCt, TmCt) { 
 call ControlProc(CcCt, TmCt); 
} 

The sequence of functionality managers 
FrMan and TcMan on the DH processor is instead 
implemented by a procedure called DataProc. 
The Giotto task Data invokes this procedure on the 
delegate objects CcDt and TmDt of which Data is 
the owner: 

task Data() 
     output (CcDt, TmDt) { 
 call DataProc(CcDt, TmDt); 
} 

In the second part of the cycle beginning with 
the fourth minor cycle, the failure detection 
manager requires ownership of the delegate objects 
CcCt and CcDt from task Control, which is the 
owner of these objects in the first three minor 
cycles. Accordingly, we define a new Giotto mode 
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consisting of two new Giotto tasks: task Failure 
for the GNC processor and task Telemetry for 
the DH processor. Task Failure invokes a 
procedure called FailureProc that in turn 
invokes the failure detection manager FdMan, the 
controller manager ConMan, and the manoeuvre 
manager ManMan. Since, as discussed above, the 
failure detection manager needs write access to 
consistency checkable objects, the task Failure 
must be the owner of the delegate objects CcCt and 
CcDt. In Giotto terminology, these two objects 
must be associated to output ports for task 
Failure: 

task Failure() 
     output (CcCt, CcDt) { 
 call FailureProc(CcCt, CcDt); 
} 

The telemetry manager TmMan on the DH 
processor is implemented by a procedure called 
TelemetryProc which is invoked by Giotto task 
Telemetry. This task does not change the state of 
the objects upon which it operates which can 
therefore be represented as Giotto input ports or, in 
the terminology of the previous section, as read-
only delegate objects. In our example, the 
Telemetry task operates on two objects called 
Tm1 and Tm2. Note that these two objects are the 
delegate copies of TmCt and TmDt, respectively:  

task Telemetry(Tm1, Tm2) 
     output () { 
 input 
  Tm1: Telemeterable; 
  Tm2: Telemeterable; 
 
 call TelemetryProc(Tm1, Tm2); 
} 

Regular non-delegate objects that need to be 
persistent between task invocations have to be 
defined as private ports.  

The task invocations and the mode switches 
discussed above are shown in Figure 5 that gives 
the “Giotto view” of the example of Figure 4. 
Summarizing, the Giotto program uses two Giotto 
modes M1 and M2. The mode M1 invokes the tasks 
Control and Data on the GNC and DH 
processor, respectively, once within a period of 
300ms. Similarly, the mode M2 invokes the tasks 
Failure and Telemetry on the GNC and DH 

processor, respectively, once within a period of 
400ms. Upon invocation of Telemetry the read-
only delegate objects Tm1 and Tm2 are 
synchronized with the owner delegate objects TmCt 
and TmDt, respectively. This Giotto program can 
be represented as follows: 

 
 
start M1(CcCt, CcDt) { 
 mode M1(CcCt, CcDt) period 300ms 
 { 
  taskfreq 1 
   do Control(); [host GNC] 
   
  taskfreq 1 do Data(); [host DH] 
 
  exitfreq 1 
   if True() then 
    M2(CcCt, CcDt, TmCt, TmDt); 
 } 
 
 mode M2(CcCt, CcDt, TmCt, TmDt) 
      period 400ms { 
  taskfreq 1 
   do Failure(); [host GNC] 
 
  taskfreq 1 
   do Telemetry(TmCt, TmDt); 
   [host DH] 
 
  exitfreq 1 
   if True() then 
    M1(CcCt, CcDt); 
 } 
} 

The Giotto program starts in mode M1 by 
invoking concurrently the tasks Control and 
Data once. After 300ms the mode switch at the 
end of mode M1 is trivially enabled and thus 
triggers a switch to mode M2. Upon mode switching 
the delegate objects CcCt, CcDt, TmCt, and TmDt 
are synchronized between the two processors. The 
Giotto compiler generates the necessary 
synchronization messages according to the 
communication topology of the Giotto program. In 
particular, the object CcDt is transferred from the 
DH processor to the GNC processor and the object 
TmCt from the GNC processor to the DH 
processor. 
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Then the Giotto mode M2 invokes concurrently 
the tasks Failure and Telemetry once. In this 
mode the task Failure has exclusive write access 
to the objects CcCt and CcDt whereas the task 
Telemetry has read-only access to the objects 
TmCt and TmDt. The mode switch at the end of 
mode M2 is again trivially enabled and thus triggers 
a switch back to mode M1 after 400ms. Upon mode 
switching only the delegate objects CcCt and 
CcDt are synchronized because the objects TmCt 
and TmDt are not modified by the task 
Telemetry. In particular, the object CcDt is 
transferred back from the GNC processor to the DH 
processor. The Giotto compiler performs a 
schedulability analysis based on the user-provided 
worst-case execution times and latencies of the 
tasks and synchronization messages, respectively. 

FdManFrMan TcManUniMan ConMan ManMan

I d l e FrMan TcMan TmMan I d l e
DH Processor

GNC Processor

Task Control

Task Data

Mode Switch

Task Failure

Task Telemetry

 

Figure 5: Giotto View of Figure 4 

The Giotto mode concept supports changing 
the ownership of delegate objects. Within a Giotto 
mode ownership cannot be changed. However, a 
Giotto mode can express more complex scenarios 
of periodic tasks and mode switches with different 
frequencies [7] than in the presented examples. In 
particular, Giotto mode switches may use arbitrary 
predicates, instead of True(), which may be 
defined on any read-only delegate object, to express 
more interesting scenarios of changing ownership 
and task schedules.  

Open Problems 
The example examined above is very simple 

and it is consequently easy to allocate functionality 
managers to processors, to allocated objects to 
ports, and to decide which ports are input ports 
(corresponding to read-only delegates) and which 

ones are output ports (corresponding to owner 
delegates). Performing this mapping in a more 
realistic case would be more complex because not 
all allocations of functionality managers to tasks are 
legal. The following constraint needs to be 
respected: for every object shared across 
concurrently executing tasks, there can be only one 
task with write access to it. Given that in a typical 
implementation there may be thousands of objects 
and tens of functionality managers, performing this 
allocation and verifying its legality will require tool 
support which, at present, does not exist.  

A second open issue concerns the timing 
overhead introduced by the delegate object 
mechanism. This arises because of the need to 
synchronize the various copies of objects that are 
shared between concurrently executing tasks. The 
synchronization is performed invisibly to the user 
by the Giotto infrastructure that, for each task 
invocation and mode switch and for each shared 
object, updates the input ports representing the 
read-only delegates of the object with the value of 
the single output port representing the owner 
delegate of the same object.  

The delegate object mechanism exists at 
present at the concept level only. Future work will 
concentrate on developing tool support to allow 
rapid mapping from the framework level (objects 
and functionality managers) to the Giotto level 
(tasks, ports, and modes) and on prototyping efforts 
to estimate timing overheads. 

Comparison with Other Concepts 
How does the delegate object mechanism 

compare with traditional middleware concepts? Its 
chief advantage is that all service requests are 
processed locally. Processes are therefore 
completely decoupled which makes analysis of their 
timing properties reliable and straightforward. Inter-
task communication is confined to the pre-defined 
times when the delegates are synchronized. The 
synchronization is done in an orderly fashion and, 
as discussed in a previous section, the Giotto 
infrastructure guarantees that no deadlocks can 
occur and that it completes on time. 

This clean interaction between processes 
should be contrasted with the situation prevailing in 
implementations of CORBA and DCOM in which 
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objects can, at any time, issue requests that must be 
serviced by other objects residing on remote nodes. 
This can give rise to interferences on the 
communication medium that links together tasks. 
These interferences translate into delays for the 
process issuing the requests. Ensuring that such 
delays are predictable or at least bounded is not 
always easy. Interferences also arise on the remote 
node between the task created to process the remote 
request and the local tasks. Devising safe and 
reliable ways to ensure global schedulability is a 
formidable challenge. With the delegate objects 
mechanism, by contrast, schedulability only has to 
be ensured locally on each node. This is a problem 
for which well-known and well-proven solutions 
exist. 

The main drawback of the delegate object 
mechanism is perhaps its restricted scope. Whereas 
CORBA and DCOM are general purpose 
middleware, the delegate object mechanism is 
really targeted at embedded control systems. 
Efficient implementation is only possible for a 
cyclical system but the frequency of the cycle can 
change dynamically. There is moreover an 
underlying assumption that the system is time-
driven rather than event-driven. The delegate object 
mechanism could be implemented upon 
infrastructures other than Giotto. The choice of 
Giotto appears however very natural precisely 
because Giotto too is intended for embedded 
control systems and is premised on a time-triggered 
paradigm.  

Finally, a second drawback of the delegate 
object mechanism is its memory requirements. 
Shared objects must be duplicated at all locations 
where they are used and the code must be 
duplicated as well as the data. In today’s system 
where memory availability is rapidly expanding, 
however, this is not considered a major concern. 

Conclusions 
The solution of the “software problem” will 

probably require some kind of automatization of the 
software development process. The AOCS 
Framework and Giotto are steps in this direction for 
embedded control systems. The framework 
predefines an architecture for embedded control 
systems and allows the rapid instantiations of 
applications within this domain. The framework 

however only covers the functional aspects of an 
application. Giotto by contrast is specifically aimed 
at scheduling and timing issues. These two 
technologies are therefore complementary but their 
integration is hindered by the different paradigms 
that underlie them: the framework assumes a fully 
object-oriented system where inter-object 
communication takes place exclusively through 
method calls whereas Giotto is based on a message-
passing paradigm. The delegate object mechanism 
outlined in this paper is intended to overcome this 
barrier and to allow the construction of systems 
whose functional correctness is guaranteed by 
adherence to the logical architecture embodied in 
the AOCS Framework and whose timing 
correctness is guaranteed by the Giotto 
infrastructure. Additionally, since Giotto is 
designed to allow processes to communicate across 
processor barriers, its integration with the AOCS 
Framework will transform the latter into a 
framework for distributed embedded control 
systems.  
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