

Abstract--In the network-centric computing paradigm the net
gains more importance. Software and hardware components,
often abstracted as services, form an application that is
distributed over the network and only loosely coupled. Clients
that depend on those services communicate remotely and
download the necessary code they need.
Jini is a framework, based on Java that provides an
infrastructure for network-centric computing. A Jini
environment is a collection of interacting Java programs,
called services, which are distributed over a network, and
which need to register themselves with the Jini lookup service
(LUS). The LUS works like the yellow pages allowing clients to
lookup services. An exact type match between the service
interface registered with the LUS and the one requested by the
client is needed for a lookup. Therefore a client cannot use a
service integrated into the network, which does not match a
known interface.
The adapter pattern applied to Jini services solves this
problem by creating adapters for services unknown to the
clients. An adapter implements the known interface making it
accessible by the client and operating as a link between the
client and the unknown service. Since manually creating these
adapters would result in a redundant coding effort, we
propose using a tool, called the Generic Adapter, which
combines automatic adaptation and adaptation requiring user
interaction as strategies to facilitate the adapter creation. An
intuitive graphical user interface reduces the effort for the
user to a minimum allowing drag-and-drop operations to
define mapping relations and to simply add custom code. The
Generic Adapter tool can be easily integrated into a network-
centric architecture like Jini. Service adaptation is performed
on the basis of Java Reflection, XML or Javadoc service
descriptions, and the mapping relations, which are either
automatically determined or specified by the user, and which
are stored in a central mapping table.

Index Terms--Module adaptation, adapter design pattern,
Java, network-centric computing, Jini, component based
software, reflection.

I. INTRODUCTION

A. Network-Centric Computing
Network-centric computing is the next step following
client/server computing and disk centric computing [3, 9].
In general, the net gains more importance, for instance,
software can be downloaded from central servers instead of

being locally installed from a CD. The crucial point of
network-centric computing, however, is that software and
hardware components (often called services) that form an
application are distributed over the network and are loosely
coupled. Clients that depend on those services communicate
remotely and download the necessary code they need.

To show the power of this approach, we can take a look on
how an application connects to a printer. In the disk centric
approach the printer would be installed locally and
connected to the computer where the application runs. Thus
each computer would need its own printer. In the
client/server approach the server manages the single
components such as the client computer and the printer. To
install the printer the client would have to install the printer
driver (for instance, by downloading it from the server) and
would connect to the printer through the server. This
approach is has the advantage that more clients can share
one printer. The printer is still managed by the server. In the
network-centric approach, the printers represented by
printing services register themselves when they are
available. In order to print out a document, the application
searches the net to find the available printing services,
connects to the one that fits and downloads the necessary
drivers from the printer service directly. This is possible
without pre-installing any other components. In case the
printing service is not available any more, the application
disconnects and connects to another printer.

An example domain where network-centric computing can
be demonstrated is the so-called building control system. In
buildings we find a lot of services and gadgets such as
lighting and heating components, electronic equipment
(coffee machines, washing machines, stereos), alarms and
smoke detectors. These services are distributed and self-
contained. However, the installation and management of
services can be very expensive, especially in larger
buildings. To reduce the effort a central management unit
could be installed to which the services connect (like in the
printer example) and offer their functionality. Services are
managed and grouped by the central unit. There are several
standards in Europe, USA and Japan for building control
systems [6]. Both examples show the dynamic nature of
network-centric computing. Services should be attached to
and detached from the running system without interrupting
other processes.

Generic Adaptation of Jini Services
Matthias Lampe, Egbert Althammer, Wolfgang Pree

Software Research Lab
University of Konstanz

D-78457 Konstanz, Germany
lampe@lampe.net, althammer@acm.org, pree@acm.org

www.SoftwareResearch.net

The nature of networks, the limited bandwidth, inherent
latency and the possibility of partial failure also bring some
challenges to software architectures. This paper first
introduces Jini [2] as a network architecture based on Java
that addresses these aspects. It then points out a
fundamental problem that can occur while integrating new
services – when interfaces do not match. Finally, the paper
demonstrates service adaptation as a possible solution and
presents a case study, which uses adaptation on top of Jini.

B. Overview of the Jini Environment
Jini is a framework, based on Java that provides an
infrastructure for network-centric computing. A Jini system
(also called Jini federation or Djinn) is a collection of
interacting Java programs, the services, which are
distributed over a network. At the core of the Jini
infrastructure is the so-called Jini lookup service (LUS)
where services are registered. The LUS can be compared to
the yellow pages. It contains only the interface of the
services and the information to find them.

All other components of Jini are services. A Service can be
any piece of software or hardware. Each service needs to
keep the LUS up to date by registering its interface, which
contains the public methods offered to the world, and
attributes, which contain extra information about the
service, when they join the Djinn. This is accomplished by
sending the service proxy to the LUS as shown in Figure
1a. To keep service information valid in a network
environment with partial failures, the service registration
has to be renewed after certain duration. Otherwise the
service entry is automatically cancelled from the LUS.

To use a service, a client has to contact the LUS first. It
performs a service request by sending a service template,
which contains one or more Java interfaces and/or
attributes. The LUS returns the service proxies whose
interfaces (attributes) are type compatible to the service
template, which can be seen in Figure 1b. Figure 1c shows
how the client invokes the service through its proxy without
using the Jini infrastructure.

Figure 1a Djinn [10]

Figure 1b Service request [10]

Figure 1c Service invocation [10]

Jini uses remote method invocation (RMI) as its remote
communication protocol, thus Jini services are normally
implemented in Java (at least Java 2 [1]) and have to be
remote objects (throwing a RemoteException). If the
service is implemented in a different language, it only has
to offer a RMI proxy for the LUS. The communication
protocol between proxy and service can be chosen
arbitrarily.

C. The Problem of Syntactically Unknown Or
Incompatible Interfaces

As mentioned, the Jini query model requires an exact type
match between the service interface and the service
template. This presumes that the client knows the syntax of
the service interface. In other words, a client may not use a
certain service because it does not know the syntax of its
interface (i.e. its type). In the printer example this would be
a printer with an incompatible interface. The following
approaches attack this fundamental problem:

1. Standardization of Interfaces: To avoid this problem,

clients and services need to be compliant to standards
that specify how interfaces should look.
Example: The Printing Service API [12].
Advantage: Interfaces are known through standards and
fit together.
Disadvantage: It is difficult to establish one standard
that covers all possible situations; normally there are
deficiencies or multiple incompatible standards exist.

2. Rewriting Services and Clients: Services or clients
are rewritten in order to cope with the counterpart.
Advantage: Good performance through optimized
interaction; is useful for special cases.

Disadvantage: Implementation effort, not possible
when services and clients are black box
implementations, which cannot be changed.

3. Service Adaptation: A connecting link is put between
an incompatible client and service, which interprets the
service interface and adapts it to the interface the client
expects.
Advantage: More elegant than the second approach
because client and service remain unchanged and the
adapter is flexible and adjustable to changes of
interfaces. This is the only possible way for black-box
services. Service adaptation is also used as a
supplement to standardization (see 1).
Disadvantage: Creating an adapter can be difficult
depending on the interfaces and is not trivial.
Performance could suffer by the indirection over the
adapter.

Service adaptation relies on a semantic understanding of the
service’s interface, i.e. the functionality of the offered
methods and values of attributes. This is done using Java
reflection, the Javadoc [11] documentation or an XML-
based [4, 13] service description.

Both approaches, the first one that relies on service
standardization as well as the second one that requires a
service description, have in common that they need the
adaptation of components that do not exactly fit.
Component-oriented systems solve this problem more or
less elegantly through adapters as discussed in the Adapter
design pattern [5]. As adaptation will become a frequent
task in open distributed systems, an automation of this
programming activity should be provided.

II. CONCEPTS OF AUTOMATING SERVICE ADAPTATION

A. Adaptation of Interfaces
If classes cannot work together because of incompatible
interfaces it is necessary to create an adapter, which
converts the interface of a class into another interface
expected by a client. This adapter pattern is described in [5]
and shown in Figure 2.

Figure 2 Structure of the Adapter Pattern [5]

The participants of the adapter pattern are the Target, which
defines the domain-specific interface that the Client uses.
The Client collaborates with objects conforming to the
Target interface. The Adapter adapts the existing interface,

Adaptee, to the Target interface. If the Clients call
operations on an Adapter instance, they are handled by calls
to Adaptee operations that carry out the request.

The basic structure and principle of the adapter is the same
for various types of adapters, which can differ in the
number of methods and the complexity of the adaptation of
these methods. Manually implementing these adapters
would result in an extra coding effort, which can be
automated as facilitated as far as possible in systems where
adaptation is often needed. The adaptation is defined
through the mapping of the methods of the Target interface
to the methods of the Adaptee interface. In this terminology
the method request() of the Target would be mapped to the
method specialRequest() of the Adaptee. All methods of the
Target interface need to be mapped to methods of the
Adaptee interface for the adapter to be complete.

The mapping can be classified in two main categories. The
first is automatic mapping, i.e. the straightforward cases,
which can be done automatically. However, most cases
belong to the second category, mapping requiring user
interaction, which need the user to define the mapping. The
second category can again be divided into cases where the
mapping can be defined using only a graphical user
interface and cases where the user also needs to provide
custom source code. The main assumption in the automatic
mapping process is that methods with the same name
provide the same functionality. This naming convention
could be misleading in certain cases, which would require a
user to verify the results with the help of the interface
documentation. The two categories are:

1. Automatic Mapping

o The name of an Adaptee and Target interface
method and the parameter types and names are the
same but the order of the parameters differs.

o The name of an Adaptee and Target interface
method and the parameter names are the same, but
the parameter types differ. However, the parameter
types of the Target interface method are subtypes
of the corresponding parameters of the Adaptee
interface method.

o The name of an Adaptee and Target interface
method is the same, but the return parameter type
differs and the return parameter type of the
Adaptee interface method is a subtype of the return
parameter type of the Target interface method.

2. Mapping Requiring User Interaction
2.1. Definition of mapping relations through a user

interface
o The method name of the Adaptee and Target

interface differs, but the parameter types,
parameter names and the functionality are the
same.

o The parameter name of a non-primitive type,
which corresponds in an Adaptee and Target
interface method, differs but they are type
compatible.

o A method of the Target interface cannot be
mapped to a single method of the Adaptee
interface, but to a series of methods of the Adaptee
interface.

2.2. Providing custom source code to define mapping
o Two parameters in an Adaptee and Target

interface method correspond to each other, but the
parameter types are incompatible.

o The return types of two corresponding Adaptee
and Target interface methods are incompatible.

o A method of the Target interface cannot be
directly mapped to a method of the Adaptee
interface.

o A parameter in a Target interface method cannot
be mapped directly to a parameter in the
corresponding Adaptee interface method.

B. Adaptation in the Context of Jini Services
In the Jini environment the general structure of the adapter
pattern will be the same. The classes and interfaces in the
pattern are only extended by the functionality necessary for
classes to be clients and services in the Jini environment,
including registering with the Jini LUS and performing
lookups for services. Using the Adapter Pattern in the Jini
environment also has the advantage that it allows the
service, which implements the Adaptee interface, to change
its implementation while keeping its interface without any
changes to the Adapter, therefore supporting the loose
coupling between the network components.

The following example from the domain of building control
systems should demonstrate the advantage of adaptation in
a Jini environment using a service that would be
incompatible to an existing system without adaptation. The
first interface, Thermostat, is the Target interface known to
Clients in an existing building control system. However,
there exists no service in the network implementing this
interface. The only service providing similar functionality
implements another interface called TemperatureControl,
the Adaptee interface. Type incompatibility makes this
service inaccessible to Clients, but a fairly simple
adaptation allows integrating this service in the existing
network. The methods of the two interfaces are shown in
Figure 3.

Only the method setSchedule() of the interface Thermostat
and the corresponding method schedule() of the interface
TemperatureControl are explained in more detail to
demonstrate the adaptation of these methods. The method
setSchedule() schedules a rated temperature (ratedTemp)
specified in Fahrenheit at the specified date (date). The
rated temperature is the temperature the user wants to set.
The service advises the connected gadgets to heat or cool in
order to reach the temperature. The user can specify if this
schedule should be done only once or repeated weekly
(weekly).

The method schedule() offers nearly the same functionality,
but has a different signature. Not only the method name
differs, also the type of the date is Date and not Calendar,
the second and third parameters are changed, the
temperature is measured in Celsius and the repetition rate
can be an arbitrary number of days specified as an integer
value, where 0 means no repetition, i.e. a slightly extended
functionality in respect to the first method.

To adapt the TemperatureControl interface to the
Thermostat interface, the method schedule() has to be
adapted to setSchedule(). In this case an adaptation strategy
would be to adapt the three parameters in the
implementation of setSchedule() to be able to invoke
schedule(): the date parameter is converted from Calendar
to Date, the second parameter is converted from Fahrenheit
to Celsius and the third parameter is converted from
boolean to int where true is converted to 7 (weekly) and
false to 0 (once). The parameter conversions are realized as
three separate methods, called custom methods, in the
service adapter TemperatureControlAdapter.

The interaction between these components in the Jini
environment is shown in Figure 4. The service
implementing the TemperatureControl interface (Adaptee)
first needs to register itself with the Jini LUS. The
TemperatureControlAdapter (Adapter) performs a lookup
for the TemperatureControl interface and receives the
remote reference to the instance in the Jini environment,
which allows the TemperatureControlAdapter to use
remote method invocation of the adapted methods. In order
to be accessible by clients in the network the
Figure 3 Class diagram of the interfaces Thermostat and TemperatureControl

TemperatureControlAdapter registers itself with the Jini
LUS. Since it implements the Thermostat interface (Target),
Clients that perform a lookup for a service using the
Thermostat interface will get a remote reference to the
TemperatureControlAdapter instance from the Jini LUS. A
remote method invocation of setSchedule() send to the
TemperatureControlAdapter results in method calls to the
custom methods calendarToDate(), fahrenheitToCelsius()
and weekly(), and to a remote method invocation of the
service method schedule() send to the TemperatureControl
according to the Adapter Pattern.

III. GENERIC SERVICE ADAPTATION TOOL
The advantages of using adaptation in the Jini environment
to allow unknown services to communicate with each other
and the combination of automatic adaptation and
adaptation requiring user interaction to facilitate creating
adapters, resulted in the design and development of a tool
called Generic Adapter, which integrates into the Jini
environment allowing to create adapters for arbitrary
service interfaces. Information necessary for the adaptation
process is obtained from the interface definitions using Java
Reflection. The relationships between the methods and
parameters of the two interfaces are stored in a mapping
table, which allows the generation of the adapter source
code. The user interaction is supported through the Generic
Adapter GUI that gives the user the possibility to use
simple drag-and-drop operations and add custom code to
specify the mapping relations.

A. Integration of the Generic Adapter Tool into the Jini
Environment

The Generic Adapter is integrated into the Jini environment
as a Jini service known to an extended LUS, which will
launch the Generic Adapter if a service lookup fails, in
order to allow adapting existing services. The sequence
diagram in Figure 5 shows the interaction between Client,
Extended LUS, and GenericAdapter and also the steps
involved in creating the service adapter for the
TemperatureControl service.

If the Client performs a lookup for the Thermostat interface,
the Extended LUS will search for a matching service, but
instead of returning a failure to the Client, since no
registered service implements the given interface, it will
invoke the Generic Adapter. The Generic Adapter will
generate the service adapter with the help of the user and
start it. The Extended LUS will return the remote reference
of the service adapter adapting the TemperatureControl to
the Client.

The steps in generating the service adapter are first to allow
the user to choose a service to adapt from a list of registered
services. Optional, the service with the highest probability
for adaptation could be selected automatically. In this case
the TemperatureControl service is chosen. Using the two
interfaces Thermostat and TemperatureControl the service
adapter is generated. Since full-automatic adaptation is not
possible in this case, the Generic Adapter GUI is opened
and the user can define the mapping between the two

Figure 4 Functionality of the TemperatureControlAdapter in the Jini Environment

interfaces and add custom code to the adaptation. When the
mapping definition is completed the source code for the
adapter is generated, compiled into Java byte code, and the
class file is dynamically loaded. The service adapter also
includes special methods to handle the Jini specific tasks
including registering and performing lookups. When started
the service adapter registers itself with the Extended LUS in
order to be integrated in the building control system.

B. Implementation Aspects of the Generic Adapter Tool
The information necessary to generate the service adapter is
the interface definition of the Target and Adaptee interface,
including the syntactic information. The interface
definitions are loaded dynamically and examined using the
Java Reflection API. Information about the interface
methods including method names, parameter and return
types can be obtained. In addition, the interface
documentation, including the semantic information, is
helpful for the user to determine valid mapping relations.
The automatic mapping mentioned above, which is based
on naming conventions also needs the parameter names of
the interface methods, which cannot be obtained using
Reflection. Using XML based interface documentation
would provide both the interface documentation for the user
and the parameter names needed for the automatic
adaptation. As an alternative, the Javadoc interface

documentation could be used by parsing it for the parameter
names.

The core of the Generic Adapter is the mapping table [7],
which stores the meta-information about the Target and
Adaptee interfaces, and the mapping relations between the
methods of the interfaces. These are not only one-to-one
relationships, and often the sequence of the adapted
methods is important. Additionally, custom code might be
added. These facts make it important to keep a simple
structure for the mapping definition. The Generic Adapter
keeps for each Target interface method a sequence of
Adaptee interface methods and custom methods,
encapsulating the custom code. This sequence clearly
defines the adaptation for the Target interface method. The
mapping of the parameters of the Target interface method
to parameters of the Adaptee and custom methods in the
sequence is also defined in the method mapping. Return
parameters of methods in the sequence are handled the
same way.

The information stored in the mapping table is sufficient to
generate the source code for the service adapter. It is
important to test the completeness of the mapping between
the two interfaces before generating the code. A source
code template for the service adapter contains the Jini
specific code, which is independent from the adapted

Figure 5 Generation of the TemperatureControl service adapter

interfaces. This template is filled with the information from
the mapping table to complete the Java source file.

C. Interactive User Interface of the Generic Adapter
Tool

In case the complete automatic mapping is not possible and
mapping with user interaction is required, we specified,
designed and implemented the user interface for the
interactive adaptation of the Generic Adapter. Figure 6
shows the design including the Thermostat example
explained above. The left part of the GUI shows the
methods of the Target interface, here called domain
interface. The right part shows the methods of the Adaptee
interface, here called service interface, and the custom
methods for the adaptation, which contain the custom code
implemented by the user of the Generic Adapter. The
middle part shows the mapping for one selected domain
interface method in detail.

The mapping of the domain interface method is expressed
as a sequence of method invocations, either service
methods or custom methods. The service methods
correspond to the methods of the service interface and the
custom methods encapsulate source code which is not part
of the service interface and which is either implemented
manually or taken from a library. For example, custom
methods are necessary to adapt parameters or to implement
a different control flow. Each method invocation includes a
parameter list, which shows how the parameters of the
domain interface method are mapped to the parameters of

the invoked service or custom method. Return parameters
are mapped to special return variables, which can be used in
further method calls in the method sequence. More detailed
information about the selected methods is shown in the
bottom left and right part. This information is extracted
from the Javadoc or XML description of the interfaces.

In the example the domain method setSchedule() is
selected. The window in the bottom left shows the Javadoc
details about the method and the window in the middle the
existing adaptation for setSchedule(). The adaptation
sequence consists of four methods: custom method
calendarToDate(), custom method fahrenheitToCelsius(),
custom method weekly() and service method schedule().
The order of the methods in the adaptation window
corresponds to the order of execution. In the GUI most
actions are achieved with drag-and-drop operations, for
example inserting a service or custom method into the
adaptation sequence.

Results from one method serve as input for the ones
underneath. This is realized with the so-called mapping
parameters. For example, the first parameter date (of type
Calendar) of the domain method setSchedule() serves as
input parameter cal (of type Calendar) of the first method
calendarToDate(). This so-called parameter mapping is
realized by introducing an extra variable (we call it a
mapping parameter) of type Calendar that saves the value.
To map the parameters the user makes a drag and drop from
the source parameter to the target parameter (in this case
from date to cal). The generic adapter makes a plausibility

jiniService.thermostat .
Thermostat

setSchedule(
Calendar date,
float ratedTemp,
boolean weekly)

removeSchedule(
Calendar date)

setCurrentRatedTemp(
float ratedTemp)

float getCurrentRated
Temp()

setSchedule:

schedules temperatures at
given dates. The temperature
is valid until the next rated
temperature is scheduled. A
weekly rhythm is supported,
meaning that the specified
rated temperature is scheduled
every week at the date with
the same weekday.

Parameters:
date the specified date
ratedTemp the rated temperature.
weekly if set true,
the schedule is repeated weekly.

jiniService.control.
TemperatureControl

schedule(
Date date,
int repeatAfter,
float temp)

setRatedTemp(float temp)

float fahrenheitToCelsius(
float tempInF)

{
return
(tempInF - 33)*5/9;

}

DOMAIN INTERFACE

JAVADOC

CUSTOM CODE

SERVICE INTERFACEADAPTATION WINDOW

Adaptation for Domain Method:

setSchedule(Calendar date, float ratedTemp,
boolean weekly)

Date calendarToDate(
Calendar cal)

float fahrenheitToCelsius(
float tempInF)

int weekly(boolean w)

CUSTOM METHODS

Custom Method:
Date calendarToDate(Calendar cal)
Parameter: Calendar date --> Calender cal

Date dateInD <-- Date return

Custom Method:
float fahrenheitToCelsius(float tempInF)
Parameter: float ratedTemp --> float tempInF

float tempInC <-- float return

Custom Method:
int weekly(boolean w)
Parameter: boolean weekly --> boolean w

int repeatRate <-- int return

Service Method:
schedule(Date date, int repeatAfter, float temp)
Parameter: Date dateInD --> Date date

int repeatRate --> int repeatAfter
float tempInC --> float temp
--- <-- void return

Figure 6 Design of the Interactive Adaptation GUI

check (the source must come before the target) and a type
check (covariant and contra variant in the sense of [8]) and
displays the type and the name of the mapping parameter in
the left field besides the input parameter.

The generic adapter is designed in a way that it allows the
user to automate the adaptation process. On the basis of the
actual status of the adaptation process, the generic adapter
will try to automatically complete the adaptation process by
inserting the missing methods and parameters. If this is not
possible it will try to generate the mapping with a highest
probability (on the basis of naming conventions and type
checks), which the user can change afterwards.

IV. CONCLUSION
Network-centric computing creates new situations of
component interaction. One significant problem using typed
languages like Java is the interface mismatch. Adaptation as
the general idea solves these problems facilitating the
component interaction in the network federation through
adapters switched between incompatible interfaces. Since
manually creating these adapters would result in a
redundant coding effort, we propose using a tool, called the
Generic Adapter, which combines automatic adaptation and
adaptation requiring user interaction as strategies to
facilitate the adapter creation. An intuitive graphical user
interface reduces the effort for the user to a minimum
allowing drag-and-drop operations to define mapping
relations and to simply add custom code. The Generic
Adapter tool can be easily integrated into a network-centric
architecture like Jini. Service adaptation is performed on
the basis of Java Reflection, XML or Javadoc service
descriptions, and the mapping relations, which are either
automatically determined or specified by the user, and
which are stored in a central mapping table.

V. REFERENCES
[1] K. Arnold, J. Gosling, and D. Holmes, The Java Programming

Language, Third Edition. Addison-Wesley, 2000
[2] K. Arnold et al., The Jini Specification. Addison-Wesley, 2000
[3] B. Cole, The Emergence of Net-Centric Computing: Network

Computers, Internet Appliances, and Connected PCs, Prentice Hall,
1998

[4] S. Czerwinski et al., An Architecture for a Secure Service
Discovery Service. Mobicom ’99 Seattle Washington USA, 1999

[5] E. Gamma et al., Design Patterns—Elements of Reusable Object-
Oriented Software, Reading, Addison-Wesley, Massachusetts, 1995

[6] M. Jedamzik, Smart House, http://ls7-www.informatik.uni-
dortmund.de/research/gesture/argus/intelligent-home

[7] D. Rine, N. Nada, K. Jaber, Using Adapters to Reduce Interaction
Complexity in Reusable Component-Based Software Design, SSR
’99, Los Angeles, CA, 1999

[8] C. Szyperski, Component Software, Addison Wesley, 1997
[9] P. Varhol, Netcentric computing, Computer Technology Research,

1998
[10] Web reference: Infoworld.

http://www.infoworld.com/pageone/gif/980928sb1-spotlight.gif
[11] Web reference: Javadoc.

http://java.sun.com/products/jdk/javadoc/
[12] Web reference: Printing Service API, draft version.

http://developer.jini.org
[13] Web reference: XML. http://www.w3.org/xml

	Introduction
	Network-Centric Computing
	Overview of the Jini Environment
	The Problem of Syntactically Unknown Or Incompatible Interfaces

	Concepts of Automating Service Adaptation
	Adaptation of Interfaces
	Adaptation in the Context of Jini Services

	Generic Service Adaptation Tool
	Integration of the Generic Adapter Tool into the Jini Environment
	Implementation Aspects of the Generic Adapter Tool
	Interactive User Interface of the Generic Adapter Tool

	Conclusion
	References

