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Introduction 
It is now recognized that software reuse, to be 

truly effective, needs to go beyond the reuse of 
mere code fragments or modules. The toughest 
design choices, and those where errors and non-
compliances most often arise, concern the 
architecture of a software system. It is accordingly 
this software architecture that must be made 
reusable in order to make the intellectual 
investment that went into developing it available to 
multiple projects. In mainstream applications, this 
form of reuse has led to the construction of software 
frameworks [1,2,3], namely artifacts that 
encapsulate an architecture optimized for all 
applications within a  certain domain and that 
provide a ready-made skeleton from which 
individual applications within that domain can be 
instantiated.  

This approach has brought unquestioned 
benefits to fields as diverse as GUI, business and 
system applications but has so far been shunned in 
the real-time and embedded world in general and in 
space applications in particular. Quite apart from 
the conservatism of space software designers – a 
consequence of the high reliability requirements of 
their applications – software frameworks have been 
avoided in this field because of the processing and 
memory overheads they introduce and because, 
often, they are based on object-oriented (OO) 
languages that are felt to be inappropriate for 
mission-critical applications. Space qualification of 
processors like the ESA’s ERC32 (built around a 
32-bit SPARC architecture [4]), the introduction of 
“safe”  OO languages like Ada95 and the emergence 
of guidelines for the use of C++ in mission critical 
systems (see for instance [5]) in the view of the 
authors make such concerns obsolete. 

This paper is based on a project funded by the 
European Space Agency1 to design and prototype 
an object-oriented software framework for the 
Attitude and Orbit Control Subsystem (AOCS) of 
satellites. At present, the prototype framework is 
being readied for deployment on an ERC32 
processor. This paper outlines its architecture. 

The AOCS 
Figure 1 shows the structure of an AOCS. The 

AOCS is an embedded hard real-time control 
system. Its chief task is to periodically collect 
measurements from sensors and convert them into 
commands for actuators. The AOCS interacts with a 
ground control station from which it receives 
commands (telecommands) and to which it 
forwards housekeeping data (telemetry). Like all 
satellite systems, the AOCS should be able to 
survive some types of faults and prolonged periods 
of ground station outage. Robustness to faults and 
autonomy require the AOCS to perform failure 
detection and failure recovery actions. 
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Figure 1 : Structure of AOCS  

                                                   
1 The views expressed in this paper are those of its authors 
only. They do not in any way commit the European Space 
Agency or reflect official European Space Agency thinking. 
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The AOCS software is usually organized as a 
set of statically defined tasks running under the 
control of a cyclical scheduler. Its code size 
normally lies between 10000 and 20000 lines of 
very compact code. This will increase in the future 
as more powerful space-qualified processors come 
into use. The software is normally written in Ada83 
or C with sprinklings of assembler. 

The RTOS Reuse Model 
The objective of the AOCS framework project 

is to improve software reuse in a particular kind of 
real-time, embedded applications. Real Time 
Operating Systems (RTOS) constitute a very 
successful – and often overlooked – example of 
software reuse in the real-time field. For over two 
decades, packages have been available as 
commercial off-the-shelf products that offer generic 
solutions for the management of most 
functionalities related to task scheduling. The reuse 
model behind RTOS is based on two key features. 

There is firstly the enforcement of an 
architectural infrastructure. RTOS’s assume an 
application to be made up of tasks with certain 
well-defined characteristics (single entry point, 
mutual exclusion mechanisms, etc). Applications 
that wish to use the RTOS must conform to this 
architecture.  

Secondly, the RTOS relies on the separation of 
the management of a functionality from its 
implementation. Consider for instance task 
scheduling. At its simplest, and using UML 
notation, the RTOS sees a task as an object derived 
from the following abstract class: 

Task

ini t()
run()

 

where a call to i ni t ( )  causes the task to initialize 
itself and a call to r un( )  causes it to start 
executing. Separation through an abstract interface 
is essential since the implementation of the task is 
obviously application-dependent and hence 
reusability can only concern the management of the 
scheduling functionality. 

The reuse approach taken in the AOCS 
framework follows the RTOS model in enforcing 
an architectural infrastructure and in splitting each 
the AOCS functionalities in functionality 
management components – that are made reusable – 
and in functionality implementers that are realized 
as application-dependent components to be plugged 
into the framework. 

The next section presents the architectural 
infrastructure that the framework enforces and the 
following section presents some of the functionality 
managers. More detailed information can be 
obtained from [15]. 

Architectural Infrastructure 
The architectural infrastructure is built around 

design patterns [6, 7] that address design problems 
specific to the AOCS domain. The main such 
problems and the proposed solutions are outlined in 
the subsections below.  

Inter-component Communication 
The AOCS framework builds the AOCS 

software as a collection of independent and 
cooperating components. The inter-component 
communication mechanism is loosely based on the 
JavaSpace model [8]. 

Two categories of data are recognized by the 
framework: cyclical data and event data. The 
former are data produced or consumed on a periodic 
basis by AOCS components (eg sensor outputs). 
The latter are data produced asynchronously by 
components that wish to signal a change in their 
internal state or the occurrence of some event such 
as the execution of a telecommand or the detection 
of a failure.  

Both cyclical and event data can be of different 
kinds (eg cyclical data can be quaternions, vectors, 
scalars, etc) but both are derived from a single 
abstract class. Thus, for instance, for cyclical data, a 
class structure of the following kind results2: 

                                                   
2 All UML class diagrams shown in this paper are highly 
simplified showing only the main operations of each class. 
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Cyc licalData

Scalar Quaternion Vector

 

Housekeeping operations are performed 
through the abstract base class so that data are 
treated in a uniform manner independent of their 
specific type. 

Cyclical and event data reside in shared 
memory areas called data pools for the cyclical data 
and event repositories for the event data. Access to 
shared data is through accessor methods so that this 
solution is compatible with a distributed 
architecture where the AOCS software is spread 
over several processors or processes. 

Each item in a data pool has a owner 
component which is the only one authorized to 
change its value. Other components have 
unrestricted read access. Events in a repository can 
be inspected but not copied out of the repository. 
This ensure that only authorized components 
process them. 

Property Monitoring 
The property monitoring mechanism was 

introduced primarily to allow AOCS components to 
coordinate their behaviour.  

A property is an attribute of a component that 
describes one aspect of its behaviour or of its 
internal state that is made accessible to external 
components. Properties are encapsulated in objects 
derived from a common abstract class Pr oper t y : 

Property

getPropertyId()
getValue()

 

Components coordinate their behaviour by 
monitoring each other’s properties. The property 
model proposed by the AOCS framework is derived 
from the JavaBeans architecture [9]. The main 
addition is the introduction of change objects.   

The term monitoring refers to the observation 
of a change over time in the value of a property. At 
the most basic level, monitors are interested in any 
change in the monitored property. More frequently, 
however, they are only interested in certain types of 
changes. In AOCS systems, monitors are typically 
interested in variables exiting a pre-defined range or 
in their changing by more than a pre-defined delta-
threshold. In order to avoid burdening monitors 
with the need to implement highly specific (and 
hence non-reusable) filters, the concept of change is 
encapsulated in objects derived from an abstract 
class called ChangeObj ect : 

ChangeObject

checkValue(value : double) : bool
 

Thus, a check on a property is made by passing 
its value to method checkVal ue that returns 
t r ue if the change encapsulated in the change 
object has occurred. 

The framework offers three property 
monitoring mechanisms ranging from a simple 
direct check on a property’s value to a registration 
mechanism whereby the monitor registers with the 
monitored component asking to  be notified if a 
certain kind of change (as specified by a change 
object) occurs. The use of property and change 
objects derived from abstract base classes allows 
the monitoring mechanisms to be implemented in a 
generic manner independent of both the property 
being monitored and the type of change being 
checked. 

Operational Mode  
Current AOCS systems are based on the 

concept of operational mode. The operational mode 
is an attribute of the AOCS software as a whole. Its 
purpose is to adapt the software’s behaviour to 
various sets of external conditions. In keeping with 
a component-oriented approach, the AOCS 
framework instead makes operational mode an 
attribute of individual components.  

Mode-dependent components have the 
structure shown below: 
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getImplementer(s : int)
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1

1.. *

1
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1
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1

111 1

 

The mode-dependent component relies on one 
or more strategies. Each strategy has several 
implementations. To each operational mode, there 
corresponds a set of strategy implementations. At 
any instant in time, the mode-dependent component 
retrieves the strategy implementers adequate to 
current operational conditions from its mode 
manager using method get I mpl ement er ( s)  
where s is the strategy number. The mode manager 
uses the property monitoring mechanisms outlined 
above to keep track of changes in its environment 
and to decide when to perform mode switches. An 
attitude controller, for instance, relies on a mode 
manager to supply it with the control algorithm 
corresponding to the current operational mode. 

This architecture – based on an extension of 
the strategy pattern of [6] – separates the 
implementation of mode-specific algorithms from 
the implementation of mode-switching logic. It is 
described in more detail in [16].  

Sequential Data Processing 
Cyclical data in an AOCS go through several 

processing stages. In the AOCS framework, 
processing of such data flow data is done in blocks. 
Blocks can be chained together and block chains 
can be nested within superblocks. The data 
structures representing these abstractions are: 

ControlChannelSuperBlockControlChannelBlock

AbstractControlChannel

propagate()
hold()
release()
linkInput()
getOutput()
setEnclosingControlChannel ()

1.. *

1

1.. *

1

1..*

11

1..*

 

Concrete blocks are instances of subclasses of 
Cont r ol Channel Bl ock . Superblocks are 
instances of Cont r ol Channel Super Bl ock.  
Base class Abst r act Cont r ol Channel  
encapsulates generic operations that can be 
performed on all data processing structures, 
regardless of whether they are blocks or 
superblocks. It thus allows blocks and superblocks 
to be mixed when constructing concrete processing 
structures. 

The AOCS framework offer pre-defined 
blocks implementing a PID filter and embedding 
code generated from the Xmath autocode tool. 

External Unit Management 
External units (sensors and actuators) are 

represented within the AOCS framework by proxy 
objects implementing two interfaces: 

AocsUnit

UnitFunctional UnitHousekeeping

 

Interface Uni t Funct i onal  defines 
operations needed for data exchanges with the 
physical unit. It captures the behaviour of AOCS 
units that is visible to the unit’s clients. Interface 
Uni t Housekeepi ng defines housekeeping 
operations such as unit switch-on and -off, unit self-
test, etc. Class AocsUni t  was split into two 
interfaces to introduce the concept of fictitious unit. 
Data processing components (eg controllers) do not 
always interface directly with units. Often, pre-
processing components (unit reconfiguration 
managers, filters, unit selectors, etc) are interposed 
as in figure 2. The preprocessing components are 
called fictitious units because they are made to 
implement the Uni t Funct i onal  interface and 
therefore “ look like”  units. This makes it possible to 
freely interchange preprocessing components and it 
insulates the data processing components from the 
type of preprocessing that is performed on unit data. 
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Figure 2: Sensor Processing Chain 

Units are too diverse to be packaged in 
standard configurable components. Reusability is 
fostered by making their software proxies conform 
to a standard interface thus decoupling the 
managers and user of unit data from the unit 
themselves. 

Functionality Managers 
The AOCS framework provides a number of 

functionality managers as generic components that 
can be deployed and reused “as is”  in any AOCS. 

The functionality managers interact with the 
(application-dependent) components they manage 
through abstract interfaces that define the 
operations that they can perform upon them. The 
implementation of these operations is application-
specific and has to be defined for each particular 
AOCS. Functionality managers are active 
components that are periodically activated by a 
scheduler (not part of the framework).  

The following subsections describe the main 
functionality managers offered by the framework. 

The Controller Manager 
An AOCS typically contains several closed-

loop controllers to control the spacecraft attitude on 
each axis, the speed of the reaction wheels and, 
perhaps, the spacecraft orbit. In the AOCS 
framework, controllers are encapsulated in objects 
that implement the following interface: 

Controllab le

isStable()
setOpenLoop()
setCLoseLoop()
doControl()

 

This interface defines the operations that make 
sense on controller. The main such operations are: 

i sSt abl e() that returns true if the controller is 
stable; set Cl oseLoop() and set OpenLoop() 
to set the control loop to closed/open; and 
doCont r ol () to compute and apply the control 
action. 

The operation of the controller manager can be 
described in terms of such operations. In simplified 
terms, the actions taken by the controller manager 
when it is activated are: 

  Cont r ol l abl e*  l i s t [ N] ;  
  .  .  .  
  f or  ( al l  obj ect s ‘ c ’  i n l i s t )  do 
  {   i f  ( ! c . i sSt abl e( ) )  
     .  .  .   / /  i nst abi l i t y !  
     el se 
        doCont r ol ( ) ;  
   }  
 

Thus, the controller manager maintains a list of 
controllers – which are seen as instances of abstract 
class Cont r ol l er  – and it periodically asks each 
controller to verify its own stability and, if stability 
is confirmed, it asks it to compute and apply its 
control action. The controller manager moreover 
exposes operations allowing items to be 
dynamically added to or removed from the list, 
individual controllers to be put in open or closed 
loop mode, and other generic operations to be 
performed on the controllers it manages. The list of 
controllers finally is mode-dependent which means 
that it is supplied at each activation of the controller 
manager by a mode manager component. 

The Telemetry Manager 
In current AOCS’s, telemetry handlers directly 

collect telemetry data storing them in buffers from 
which they are transferred to the ground. They thus 
need an intimate knowledge of the type and format 
of the telemetry data. This coupling between 
handler and data makes the former mission-specific 
and hinders its re-use. 

In the AOCS framework the software is 
organized as a collection of components each 
potentially capable of writing itself to telemetry. 
This means that each component implements the 
following abstract interface: 
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Telemeterab le

writeToTelemetry()
setTelemetryFormat()
getTelemetryFormat()
getTelemetryImageLength()

 

The basic method is wr i t eToTel emet r y.  
Calls to it cause the object to write its internal state 
to the telemetry stream. The telemetry manager 
simply keeps track of the telemetry objects and 
periodically calls their wr i t eToTel emet r y  
method. It uses the other operations exposed by 
Tel emet er abl e to check the size and format of 
the telemetry image. 

As usual, operations to dynamically manage 
the items in the list are provided and the list itself is 
mode-dependent being supplied by a mode 
manager. More details on the telemetry manager 
can be found in [16]. 

Note that the same object may be managed by 
several functionality managers at the same time. 
Thus, for instance, the component implementing the 
X-axis attitude controller will in general be 
managed by both the controller manager and the 
telemetry manager. In practice, this means that this 
component implements two interfaces: 

ControllableTelemeterable

XAxisController

 

In fact, most framework objects typically 
implement 6-7 different interfaces since they 
interact with several functionality managers. 
Multiple inheritance of interfaces (not of 
implementation!) therefore plays a key role in the 
AOCS framework. 

The Telecommand Manager 
 Traditionally, telecommands are strings of 

data bytes beginning with a header word identifying 
the telecommand type followed by data words and 
terminated by a checksum. Such telecommands are 
executed on-board by a telecommands handler 

essentially consisting of a case statement that 
processes each telecommand according to its type 
as defined by the telecommand identifier. 

The AOCS framework breaks with this 
concept. It applies the command design pattern 
from [6] and treats telecommands as objects 
implementing the following abstract interface: 

Telecommand

execute()
getTimeTag()
getCheckSum()

 

The key method is execut e which, when 
called, performs the actions associated with the 
telecommand itself. The telecommand manager 
therefore maintains a list of objects of type 
Tel ecommand and cyclically goes through the 
list, verifies the time tag and check-sum of each 
telecommand and, if appropriate, asks it to execute 
itself.  

Note that with this concept the code associated 
to a telecommand may be part of the telecommand 
itself and may have to be uplinked to the spacecraft 
alongside the telecommand data. More details on 
the telemetry manager can be found in [16]. 

The Failure Detection Manager 
The most typical failure detection test 

performed on an AOCS is a consistency check 
where a failure is declared if an object is found to 
be in an inconsistent state (eg. the sun sensor and 
the gyro read-outs indicate different angular 
velocities). This type of failure detection test is 
covered by the AOCS framework through the 
introduction of the following abstract interface: 

ConsistencyCheckable

doConsistencyCheck()
getRecoveryAction()
setRecoveryAction()

 

Objects that may be potentially subjected to 
consistency checks are made to implement interface 
Consi st encyCheckabl e. A call to method 
doConsi st encyCheck  causes the consistency 
check to be executed. The method returns f al se if 
the check failed. The getter and setter methods refer 
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to the recovery action associated to the failure (see 
below). The failure detection manager maintains a 
list of objects of type Consi st encyCheckabl e 
and periodically asks them to perform a consistency 
check upon themselves.  

Additionally, failure detection is performed by 
comparing the values of key parameters – such as 
the output of controllers and sensors – against pre-
defined limits or by verifying that they do not 
undergo sharp changes. The failure detection 
manager encapsulates all such parameter values in 
property objects and the limits or type of change 
against which monitoring must be performed in 
change objects. The monitoring action can then be 
done systematically and independently of the 
particular parameters being checked.  

The type of failure checks to be done depends 
on operational conditions. This is modeled by 
making the list of Consi st encyCheckabl e 
objects and of properties to be monitored mode-
dependent: both list are supplied by a dedicated 
mode manager component. 

The Failure Recovery Manager 
The AOCS framework regards failure 

detection and failure recovery as separate tasks 
allocated to two distinct active components.  The 
failure detection manager performs failure checks 
and, when it detects a failure, it creates an event that 
describes it and stores it in an event repository. At a 
later time, the failure recovery manager inspects the 
failure event repository to check whether any 
failures have been identified and then uses the 
information stored in the failure events to decide on 
the appropriate response. The chief advantage of 
this approach is that a separate failure recovery 
manager can inspect all failures detected in a 
certain control cycle and can implement recovery 
responses that take account of the interrelationships 
of different individual failures. 

Failure recovery is performed at two levels: at 
the level of recovery action and of recovery 
strategy. A recovery action encapsulates a single 
action taken in response to a single failure event. 
Recovery actions are encapsulated in objects that 
implement the following interface: 

RecoveryAction

doRecovery()
enable()
disable()
setNextRecoveryAction()

 

The key method is doRecover y  that causes 
the recovery action to be executed. Method 
set Next Recover yAct i on allows several 
recovery actions to be chained together so that a 
call to doRecover y  causes all actions in the chain 
to be executed in sequence.  

The AOCS framework stipulates that to each 
failure a recovery action must be associated: 
components that perform a failure check, should 
know what has to be done if the check fails and this 
knowledge is contained in a recovery action object. 
In particular, components implementing interface 
Consi st encyCheckabl e must be able to 
supply a recovery action object specifying the 
response to the failure of the consistency check. 

Typical recovery actions are: resetting a 
component, resetting the AOCS software, 
performing a unit reconfiguration. The framework 
offers predefined components encapsulating these 
and other common recovery actions. 

While recovery actions represent responses to 
individual failure events, a recovery strategy 
represents a set of coordinated responses to all the 
failure events in the failure event repository. As 
usual, recovery actions are encapsulated in objects 
derived from an abstract interface: 

RecoveryStrategy

doRecovery()
setNextRecoveryStrategy()
enable()
disable()

 

A call to doRecover y  causes the strategy to 
be executed. Like recovery actions, recovery 
strategies can be linked together. The recovery 
manager is responsible for executing recovery 
strategies. The chain of responsibility pattern from 
[6] is used to pass execution orders along chains of 
linked recovery strategies.  
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A simple recovery strategy could be to check 
the number of failure events generated in the last 
period and, if this larger than a certain threshold, to 
reset the AOCS software. A more complex recovery 
strategy might instead execute in sequence all the 
recovery actions associated to the failure events 
currently in the failure event repository. The 
framework offers ready-made components 
implementing both of these default strategies.  

Scheduling 
AOCS’s are multi-task systems. The AOCS 

framework distinguishes active objects that 
implement the following interface: 

Runnable

run()
initialize()
terminate()

 

where r un is a task’s entry point. The 
framework does not enforce any specific scheduling 
policy and does not include any mutual exclusion 
mechanisms which, if pre-emptive scheduling is 
adopted (against current practice in the AOCS field) 
would have to be built on top of the framework 
components.  

The framework design ensures that AOCS 
applications derived from the framework are HRT-
HOOD compatible in the sense that their 
schedulability properties can be established by 
static analysis [10]. 

Design Methodology 
Design methodologies currently in use for 

AOCS – such as HOOD [11] – tend to be object-
based and are therefore unsuitable for the systems 
like the AOCS framework that are truly object-
oriented in the sense of relying heavily on abstract 
coupling and dynamic typing. There is at present no 
well-established design methodology for software 
frameworks. The AOCS framework project was 
used as a test case to propose a methodology of this 
kind and the results are reported in [12]. 

Implementation Issues 
The AOCS framework is implemented in C++ 

with the GNU compiler. Initially, Ada95 was 
favoured but was finally discarded because of its 
poor support for multiple inheritance. C++ is not as 
“safe”  a language as Ada but in a component-based 
system language issues become less important. 
Language choice affects the “ inside”  of a 
component but, when a system is built by 
assembling pre-defined components, one assumes 
that the components are error-free (they have been 
tested by their supplier). Attention therefore shifts 
to the component configuration and assembly 
process that occurs at a level higher than that of 
ordinary programming languages. 

Because of the real-time environment, both 
dynamic memory allocation and exceptions are 
avoided. All non-trivial objects are created 
statically and never destroyed. Such objects are 
derived from a common base class (similar to 
Java’s Obj ect  class) whose destructor is declared 
private so that inadvertent dynamic destruction is 
caught by the compiler. 

The framework design relies heavily on 
multiple inheritance which is used in the safe form 
proposed by the Java language, namely it is allowed 
only from pure virtual classes. Implementation 
inheritance is only allowed from a single base class. 
This removes the well-known problems associated 
to multiple inheritance [13]. 

Estimating the memory footprint of a 
framework is difficult because not all components 
offered by a framework go into all applications 
instantiated from the framework. Preliminary tests 
indicate that, on the average, a framework class 
occupies 2 kbyte (memory+data). A typical AOCS 
might include between 100 and 150 such classes 
thus giving a footprint of 200 to 300 kbytes. This 
fits easily into the multi-megabytes memory of the 
ERC32. 

The AOCS framework is currently in the last 
stage of its development. Many of its components 
have already been deployed on an ERC32 simulator 
[4] where final testing will be done in the second 
half of this year. Time and schedule permitting, 
tests will also be done on an ERC32 test board. 
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Conclusions 
The software development process in the 

AOCS field –indeed in the space field in general –
typically begins with the definition of user 
requirements. Requirements are normally 
formulated under the tacit assumption that all the 
software will be developed anew. Consequently, 
they are narrowly targeted at a specific mission and 
result in a monolithic piece of code that, while 
highly optimized for the application at hand, has to 
be developed entirely from scratch and cannot be 
reused in other missions. 

This approach is in sharp contrast to that 
adopted on the hardware side. Here, designers begin 
by surveying the market for available components 
and then specify their system in terms of these 
components. Widely accepted standards (on bus 
interfaces, on electrical interfaces, on mechanical 
interfaces, etc.) allow components from different 
suppliers to be plugged together. The resulting 
system is perhaps not optimal in terms of mass or 
power consumption (the characteristics of standard 
components seldom match perfectly the 
requirements of a specific project) but it is certainly 
cheaper and faster to assemble than if it were 
developed from scratch. 

The research group at the University of 
Constance to which the authors belong, has 
traditionally been concerned with software 
architectures for complex systems in the business 
field where it has advocated and successfully 
applied the component and framework approach 
which tries to build software very much like 
hardware is built: by assembling pre-defined 
components with standardized interfaces. The 
AOCS framework project is part of an effort to port 
this technology to a real-time, mission-critical field 
(see [14] for the long-term goals of this effort). 
While a final assessment will have to wait for the 
complete deployment of the AOCS framework 
(foreseen for the end of 2000), results to date 
indicate that the introduction of advanced 
processors in space applications makes framework 
and component technologies viable options for 
space systems promising to bring them the same 
benefits in terms of reusability and reduced 
development times seen in other fields.  
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