
 1

A REUSABLE ARCHITECTURE FOR SATELLITE CONTROL
SOFTWARE

A. Pasetti and W. Pree, Dept. of Computer Science, Univ. of Constance, D-78457, Constance,
(Germany)

Introduction
It is now recognized that software reuse, to be

truly effective, needs to go beyond the reuse of
mere code fragments or modules. The toughest
design choices, and those where errors and non-
compliances most often arise, concern the
architecture of a software system. It is accordingly
this software architecture that must be made
reusable in order to make the intellectual
investment that went into developing it available to
multiple projects. In mainstream applications, this
form of reuse has led to the construction of software
frameworks [1,2,3], namely artifacts that
encapsulate an architecture optimized for all
applications within a certain domain and that
provide a ready-made skeleton from which
individual applications within that domain can be
instantiated.

This approach has brought unquestioned
benefits to fields as diverse as GUI, business and
system applications but has so far been shunned in
the real-time and embedded world in general and in
space applications in particular. Quite apart from
the conservatism of space software designers – a
consequence of the high reliability requirements of
their applications – software frameworks have been
avoided in this field because of the processing and
memory overheads they introduce and because,
often, they are based on object-oriented (OO)
languages that are felt to be inappropriate for
mission-critical applications. Space qualification of
processors like the ESA’s ERC32 (built around a
32-bit SPARC architecture [4]), the introduction of
“safe” OO languages like Ada95 and the emergence
of guidelines for the use of C++ in mission critical
systems (see for instance [5]) in the view of the
authors make such concerns obsolete.

This paper is based on a project funded by the
European Space Agency1 to design and prototype
an object-oriented software framework for the
Attitude and Orbit Control Subsystem (AOCS) of
satellites. At present, the prototype framework is
being readied for deployment on an ERC32
processor. This paper outlines its architecture.

The AOCS
Figure 1 shows the structure of an AOCS. The

AOCS is an embedded hard real-time control
system. Its chief task is to periodically collect
measurements from sensors and convert them into
commands for actuators. The AOCS interacts with a
ground control station from which it receives
commands (telecommands) and to which it
forwards housekeeping data (telemetry). Like all
satellite systems, the AOCS should be able to
survive some types of faults and prolonged periods
of ground station outage. Robustness to faults and
autonomy require the AOCS to perform failure
detection and failure recovery actions.

�������
� �
	

��

 �� �
�� ��
�

����������� �"!$#�%$& '�(

)+*$,$-/.10 */2+*$354 6 7�8/9+9+:/;=<$>

? @A @B
@C DE

F GH GIJ
KKLM
N O

PRQ/S T U1V WYXZW$[W$\1[S]/^ _R`$a b c1d eYfge$h1i=j e/d k

Figure 1 : Structure of AOCS

1 The views expressed in this paper are those of its authors
only. They do not in any way commit the European Space
Agency or reflect official European Space Agency thinking.

 2

The AOCS software is usually organized as a
set of statically defined tasks running under the
control of a cyclical scheduler. Its code size
normally lies between 10000 and 20000 lines of
very compact code. This will increase in the future
as more powerful space-qualified processors come
into use. The software is normally written in Ada83
or C with sprinklings of assembler.

The RTOS Reuse Model
The objective of the AOCS framework project

is to improve software reuse in a particular kind of
real-time, embedded applications. Real Time
Operating Systems (RTOS) constitute a very
successful – and often overlooked – example of
software reuse in the real-time field. For over two
decades, packages have been available as
commercial off-the-shelf products that offer generic
solutions for the management of most
functionalities related to task scheduling. The reuse
model behind RTOS is based on two key features.

There is firstly the enforcement of an
architectural infrastructure. RTOS’s assume an
application to be made up of tasks with certain
well-defined characteristics (single entry point,
mutual exclusion mechanisms, etc). Applications
that wish to use the RTOS must conform to this
architecture.

Secondly, the RTOS relies on the separation of
the management of a functionality from its
implementation. Consider for instance task
scheduling. At its simplest, and using UML
notation, the RTOS sees a task as an object derived
from the following abstract class:

Task

ini t()
run()

where a call to i ni t () causes the task to initialize
itself and a call to r un() causes it to start
executing. Separation through an abstract interface
is essential since the implementation of the task is
obviously application-dependent and hence
reusability can only concern the management of the
scheduling functionality.

The reuse approach taken in the AOCS
framework follows the RTOS model in enforcing
an architectural infrastructure and in splitting each
the AOCS functionalities in functionality
management components – that are made reusable –
and in functionality implementers that are realized
as application-dependent components to be plugged
into the framework.

The next section presents the architectural
infrastructure that the framework enforces and the
following section presents some of the functionality
managers. More detailed information can be
obtained from [15].

Architectural Infrastructure
The architectural infrastructure is built around

design patterns [6, 7] that address design problems
specific to the AOCS domain. The main such
problems and the proposed solutions are outlined in
the subsections below.

Inter-component Communication
The AOCS framework builds the AOCS

software as a collection of independent and
cooperating components. The inter-component
communication mechanism is loosely based on the
JavaSpace model [8].

Two categories of data are recognized by the
framework: cyclical data and event data. The
former are data produced or consumed on a periodic
basis by AOCS components (eg sensor outputs).
The latter are data produced asynchronously by
components that wish to signal a change in their
internal state or the occurrence of some event such
as the execution of a telecommand or the detection
of a failure.

Both cyclical and event data can be of different
kinds (eg cyclical data can be quaternions, vectors,
scalars, etc) but both are derived from a single
abstract class. Thus, for instance, for cyclical data, a
class structure of the following kind results2:

2 All UML class diagrams shown in this paper are highly
simplified showing only the main operations of each class.

 3

Cyc licalData

Scalar Quaternion Vector

Housekeeping operations are performed
through the abstract base class so that data are
treated in a uniform manner independent of their
specific type.

Cyclical and event data reside in shared
memory areas called data pools for the cyclical data
and event repositories for the event data. Access to
shared data is through accessor methods so that this
solution is compatible with a distributed
architecture where the AOCS software is spread
over several processors or processes.

Each item in a data pool has a owner
component which is the only one authorized to
change its value. Other components have
unrestricted read access. Events in a repository can
be inspected but not copied out of the repository.
This ensure that only authorized components
process them.

Property Monitoring
The property monitoring mechanism was

introduced primarily to allow AOCS components to
coordinate their behaviour.

A property is an attribute of a component that
describes one aspect of its behaviour or of its
internal state that is made accessible to external
components. Properties are encapsulated in objects
derived from a common abstract class Pr oper t y :

Property

getPropertyId()
getValue()

Components coordinate their behaviour by
monitoring each other’s properties. The property
model proposed by the AOCS framework is derived
from the JavaBeans architecture [9]. The main
addition is the introduction of change objects.

The term monitoring refers to the observation
of a change over time in the value of a property. At
the most basic level, monitors are interested in any
change in the monitored property. More frequently,
however, they are only interested in certain types of
changes. In AOCS systems, monitors are typically
interested in variables exiting a pre-defined range or
in their changing by more than a pre-defined delta-
threshold. In order to avoid burdening monitors
with the need to implement highly specific (and
hence non-reusable) filters, the concept of change is
encapsulated in objects derived from an abstract
class called ChangeObj ect :

ChangeObject

checkValue(value : double) : bool

Thus, a check on a property is made by passing
its value to method checkVal ue that returns
t r ue if the change encapsulated in the change
object has occurred.

The framework offers three property
monitoring mechanisms ranging from a simple
direct check on a property’s value to a registration
mechanism whereby the monitor registers with the
monitored component asking to be notified if a
certain kind of change (as specified by a change
object) occurs. The use of property and change
objects derived from abstract base classes allows
the monitoring mechanisms to be implemented in a
generic manner independent of both the property
being monitored and the type of change being
checked.

Operational Mode
Current AOCS systems are based on the

concept of operational mode. The operational mode
is an attribute of the AOCS software as a whole. Its
purpose is to adapt the software’s behaviour to
various sets of external conditions. In keeping with
a component-oriented approach, the AOCS
framework instead makes operational mode an
attribute of individual components.

Mode-dependent components have the
structure shown below:

 4

ImplementerStrategy2ImplementerStrategy1

ModeDependentComponent
ModeManager

getImplementer(s : int)

1.. *

1

1.. *

1

1..*

1

1..*

1

111 1

The mode-dependent component relies on one
or more strategies. Each strategy has several
implementations. To each operational mode, there
corresponds a set of strategy implementations. At
any instant in time, the mode-dependent component
retrieves the strategy implementers adequate to
current operational conditions from its mode
manager using method get I mpl ement er (s)
where s is the strategy number. The mode manager
uses the property monitoring mechanisms outlined
above to keep track of changes in its environment
and to decide when to perform mode switches. An
attitude controller, for instance, relies on a mode
manager to supply it with the control algorithm
corresponding to the current operational mode.

This architecture – based on an extension of
the strategy pattern of [6] – separates the
implementation of mode-specific algorithms from
the implementation of mode-switching logic. It is
described in more detail in [16].

Sequential Data Processing
Cyclical data in an AOCS go through several

processing stages. In the AOCS framework,
processing of such data flow data is done in blocks.
Blocks can be chained together and block chains
can be nested within superblocks. The data
structures representing these abstractions are:

ControlChannelSuperBlockControlChannelBlock

AbstractControlChannel

propagate()
hold()
release()
linkInput()
getOutput()
setEnclosingControlChannel ()

1.. *

1

1.. *

1

1..*

11

1..*

Concrete blocks are instances of subclasses of
Cont r ol Channel Bl ock . Superblocks are
instances of Cont r ol Channel Super Bl ock.
Base class Abst r act Cont r ol Channel
encapsulates generic operations that can be
performed on all data processing structures,
regardless of whether they are blocks or
superblocks. It thus allows blocks and superblocks
to be mixed when constructing concrete processing
structures.

The AOCS framework offer pre-defined
blocks implementing a PID filter and embedding
code generated from the Xmath autocode tool.

External Unit Management
External units (sensors and actuators) are

represented within the AOCS framework by proxy
objects implementing two interfaces:

AocsUnit

UnitFunctional UnitHousekeeping

Interface Uni t Funct i onal defines
operations needed for data exchanges with the
physical unit. It captures the behaviour of AOCS
units that is visible to the unit’s clients. Interface
Uni t Housekeepi ng defines housekeeping
operations such as unit switch-on and -off, unit self-
test, etc. Class AocsUni t was split into two
interfaces to introduce the concept of fictitious unit.
Data processing components (eg controllers) do not
always interface directly with units. Often, pre-
processing components (unit reconfiguration
managers, filters, unit selectors, etc) are interposed
as in figure 2. The preprocessing components are
called fictitious units because they are made to
implement the Uni t Funct i onal interface and
therefore “ look like” units. This makes it possible to
freely interchange preprocessing components and it
insulates the data processing components from the
type of preprocessing that is performed on unit data.

 5

Figure 2: Sensor Processing Chain

Units are too diverse to be packaged in
standard configurable components. Reusability is
fostered by making their software proxies conform
to a standard interface thus decoupling the
managers and user of unit data from the unit
themselves.

Functionality Managers
The AOCS framework provides a number of

functionality managers as generic components that
can be deployed and reused “as is” in any AOCS.

The functionality managers interact with the
(application-dependent) components they manage
through abstract interfaces that define the
operations that they can perform upon them. The
implementation of these operations is application-
specific and has to be defined for each particular
AOCS. Functionality managers are active
components that are periodically activated by a
scheduler (not part of the framework).

The following subsections describe the main
functionality managers offered by the framework.

The Controller Manager
An AOCS typically contains several closed-

loop controllers to control the spacecraft attitude on
each axis, the speed of the reaction wheels and,
perhaps, the spacecraft orbit. In the AOCS
framework, controllers are encapsulated in objects
that implement the following interface:

Controllab le

isStable()
setOpenLoop()
setCLoseLoop()
doControl()

This interface defines the operations that make
sense on controller. The main such operations are:

i sSt abl e() that returns true if the controller is
stable; set Cl oseLoop() and set OpenLoop()
to set the control loop to closed/open; and
doCont r ol () to compute and apply the control
action.

The operation of the controller manager can be
described in terms of such operations. In simplified
terms, the actions taken by the controller manager
when it is activated are:

 Cont r ol l abl e* l i s t [N] ;
 . . .
 f or (al l obj ect s ‘ c ’ i n l i s t) do
 { i f (! c . i sSt abl e())
 . . . / / i nst abi l i t y !
 el se
 doCont r ol () ;
 }

Thus, the controller manager maintains a list of
controllers – which are seen as instances of abstract
class Cont r ol l er – and it periodically asks each
controller to verify its own stability and, if stability
is confirmed, it asks it to compute and apply its
control action. The controller manager moreover
exposes operations allowing items to be
dynamically added to or removed from the list,
individual controllers to be put in open or closed
loop mode, and other generic operations to be
performed on the controllers it manages. The list of
controllers finally is mode-dependent which means
that it is supplied at each activation of the controller
manager by a mode manager component.

The Telemetry Manager
In current AOCS’s, telemetry handlers directly

collect telemetry data storing them in buffers from
which they are transferred to the ground. They thus
need an intimate knowledge of the type and format
of the telemetry data. This coupling between
handler and data makes the former mission-specific
and hinders its re-use.

In the AOCS framework the software is
organized as a collection of components each
potentially capable of writing itself to telemetry.
This means that each component implements the
following abstract interface:

lnm�oqp=rtsvu

wnxty{zR|�}gwnx�~ xq�5� |t} �Y�����{� ��� �q���g� � � �t� �+���{� � ��� � �t�

�n���q�=�t���

�n�q� ¡Z¢q��£R � ¤{��¥{¦
§ ¨�© ª{« ¬ ­�®Rª ¯n°�± ² ³µ´{°t¶=² ± ·q°q¸q¹º »t¼ ½q¾ ¿ ÀtÁ=½ ÂnÃqÄ Å ÆµÇqÃ�È=Å Ä É{Ã�Ê{ËÌ ÍtÎ Ï{Ð Ñ Ò�ÓRÏ

 6

Telemeterab le

writeToTelemetry()
setTelemetryFormat()
getTelemetryFormat()
getTelemetryImageLength()

The basic method is wr i t eToTel emet r y.
Calls to it cause the object to write its internal state
to the telemetry stream. The telemetry manager
simply keeps track of the telemetry objects and
periodically calls their wr i t eToTel emet r y
method. It uses the other operations exposed by
Tel emet er abl e to check the size and format of
the telemetry image.

As usual, operations to dynamically manage
the items in the list are provided and the list itself is
mode-dependent being supplied by a mode
manager. More details on the telemetry manager
can be found in [16].

Note that the same object may be managed by
several functionality managers at the same time.
Thus, for instance, the component implementing the
X-axis attitude controller will in general be
managed by both the controller manager and the
telemetry manager. In practice, this means that this
component implements two interfaces:

ControllableTelemeterable

XAxisController

In fact, most framework objects typically
implement 6-7 different interfaces since they
interact with several functionality managers.
Multiple inheritance of interfaces (not of
implementation!) therefore plays a key role in the
AOCS framework.

The Telecommand Manager
 Traditionally, telecommands are strings of

data bytes beginning with a header word identifying
the telecommand type followed by data words and
terminated by a checksum. Such telecommands are
executed on-board by a telecommands handler

essentially consisting of a case statement that
processes each telecommand according to its type
as defined by the telecommand identifier.

The AOCS framework breaks with this
concept. It applies the command design pattern
from [6] and treats telecommands as objects
implementing the following abstract interface:

Telecommand

execute()
getTimeTag()
getCheckSum()

The key method is execut e which, when
called, performs the actions associated with the
telecommand itself. The telecommand manager
therefore maintains a list of objects of type
Tel ecommand and cyclically goes through the
list, verifies the time tag and check-sum of each
telecommand and, if appropriate, asks it to execute
itself.

Note that with this concept the code associated
to a telecommand may be part of the telecommand
itself and may have to be uplinked to the spacecraft
alongside the telecommand data. More details on
the telemetry manager can be found in [16].

The Failure Detection Manager
The most typical failure detection test

performed on an AOCS is a consistency check
where a failure is declared if an object is found to
be in an inconsistent state (eg. the sun sensor and
the gyro read-outs indicate different angular
velocities). This type of failure detection test is
covered by the AOCS framework through the
introduction of the following abstract interface:

ConsistencyCheckable

doConsistencyCheck()
getRecoveryAction()
setRecoveryAction()

Objects that may be potentially subjected to
consistency checks are made to implement interface
Consi st encyCheckabl e. A call to method
doConsi st encyCheck causes the consistency
check to be executed. The method returns f al se if
the check failed. The getter and setter methods refer

 7

to the recovery action associated to the failure (see
below). The failure detection manager maintains a
list of objects of type Consi st encyCheckabl e
and periodically asks them to perform a consistency
check upon themselves.

Additionally, failure detection is performed by
comparing the values of key parameters – such as
the output of controllers and sensors – against pre-
defined limits or by verifying that they do not
undergo sharp changes. The failure detection
manager encapsulates all such parameter values in
property objects and the limits or type of change
against which monitoring must be performed in
change objects. The monitoring action can then be
done systematically and independently of the
particular parameters being checked.

The type of failure checks to be done depends
on operational conditions. This is modeled by
making the list of Consi st encyCheckabl e
objects and of properties to be monitored mode-
dependent: both list are supplied by a dedicated
mode manager component.

The Failure Recovery Manager
The AOCS framework regards failure

detection and failure recovery as separate tasks
allocated to two distinct active components. The
failure detection manager performs failure checks
and, when it detects a failure, it creates an event that
describes it and stores it in an event repository. At a
later time, the failure recovery manager inspects the
failure event repository to check whether any
failures have been identified and then uses the
information stored in the failure events to decide on
the appropriate response. The chief advantage of
this approach is that a separate failure recovery
manager can inspect all failures detected in a
certain control cycle and can implement recovery
responses that take account of the interrelationships
of different individual failures.

Failure recovery is performed at two levels: at
the level of recovery action and of recovery
strategy. A recovery action encapsulates a single
action taken in response to a single failure event.
Recovery actions are encapsulated in objects that
implement the following interface:

RecoveryAction

doRecovery()
enable()
disable()
setNextRecoveryAction()

The key method is doRecover y that causes
the recovery action to be executed. Method
set Next Recover yAct i on allows several
recovery actions to be chained together so that a
call to doRecover y causes all actions in the chain
to be executed in sequence.

The AOCS framework stipulates that to each
failure a recovery action must be associated:
components that perform a failure check, should
know what has to be done if the check fails and this
knowledge is contained in a recovery action object.
In particular, components implementing interface
Consi st encyCheckabl e must be able to
supply a recovery action object specifying the
response to the failure of the consistency check.

Typical recovery actions are: resetting a
component, resetting the AOCS software,
performing a unit reconfiguration. The framework
offers predefined components encapsulating these
and other common recovery actions.

While recovery actions represent responses to
individual failure events, a recovery strategy
represents a set of coordinated responses to all the
failure events in the failure event repository. As
usual, recovery actions are encapsulated in objects
derived from an abstract interface:

RecoveryStrategy

doRecovery()
setNextRecoveryStrategy()
enable()
disable()

A call to doRecover y causes the strategy to
be executed. Like recovery actions, recovery
strategies can be linked together. The recovery
manager is responsible for executing recovery
strategies. The chain of responsibility pattern from
[6] is used to pass execution orders along chains of
linked recovery strategies.

 8

A simple recovery strategy could be to check
the number of failure events generated in the last
period and, if this larger than a certain threshold, to
reset the AOCS software. A more complex recovery
strategy might instead execute in sequence all the
recovery actions associated to the failure events
currently in the failure event repository. The
framework offers ready-made components
implementing both of these default strategies.

Scheduling
AOCS’s are multi-task systems. The AOCS

framework distinguishes active objects that
implement the following interface:

Runnable

run()
initialize()
terminate()

where r un is a task’s entry point. The
framework does not enforce any specific scheduling
policy and does not include any mutual exclusion
mechanisms which, if pre-emptive scheduling is
adopted (against current practice in the AOCS field)
would have to be built on top of the framework
components.

The framework design ensures that AOCS
applications derived from the framework are HRT-
HOOD compatible in the sense that their
schedulability properties can be established by
static analysis [10].

Design Methodology
Design methodologies currently in use for

AOCS – such as HOOD [11] – tend to be object-
based and are therefore unsuitable for the systems
like the AOCS framework that are truly object-
oriented in the sense of relying heavily on abstract
coupling and dynamic typing. There is at present no
well-established design methodology for software
frameworks. The AOCS framework project was
used as a test case to propose a methodology of this
kind and the results are reported in [12].

Implementation Issues
The AOCS framework is implemented in C++

with the GNU compiler. Initially, Ada95 was
favoured but was finally discarded because of its
poor support for multiple inheritance. C++ is not as
“safe” a language as Ada but in a component-based
system language issues become less important.
Language choice affects the “ inside” of a
component but, when a system is built by
assembling pre-defined components, one assumes
that the components are error-free (they have been
tested by their supplier). Attention therefore shifts
to the component configuration and assembly
process that occurs at a level higher than that of
ordinary programming languages.

Because of the real-time environment, both
dynamic memory allocation and exceptions are
avoided. All non-trivial objects are created
statically and never destroyed. Such objects are
derived from a common base class (similar to
Java’s Obj ect class) whose destructor is declared
private so that inadvertent dynamic destruction is
caught by the compiler.

The framework design relies heavily on
multiple inheritance which is used in the safe form
proposed by the Java language, namely it is allowed
only from pure virtual classes. Implementation
inheritance is only allowed from a single base class.
This removes the well-known problems associated
to multiple inheritance [13].

Estimating the memory footprint of a
framework is difficult because not all components
offered by a framework go into all applications
instantiated from the framework. Preliminary tests
indicate that, on the average, a framework class
occupies 2 kbyte (memory+data). A typical AOCS
might include between 100 and 150 such classes
thus giving a footprint of 200 to 300 kbytes. This
fits easily into the multi-megabytes memory of the
ERC32.

The AOCS framework is currently in the last
stage of its development. Many of its components
have already been deployed on an ERC32 simulator
[4] where final testing will be done in the second
half of this year. Time and schedule permitting,
tests will also be done on an ERC32 test board.

 9

Conclusions
The software development process in the

AOCS field –indeed in the space field in general –
typically begins with the definition of user
requirements. Requirements are normally
formulated under the tacit assumption that all the
software will be developed anew. Consequently,
they are narrowly targeted at a specific mission and
result in a monolithic piece of code that, while
highly optimized for the application at hand, has to
be developed entirely from scratch and cannot be
reused in other missions.

This approach is in sharp contrast to that
adopted on the hardware side. Here, designers begin
by surveying the market for available components
and then specify their system in terms of these
components. Widely accepted standards (on bus
interfaces, on electrical interfaces, on mechanical
interfaces, etc.) allow components from different
suppliers to be plugged together. The resulting
system is perhaps not optimal in terms of mass or
power consumption (the characteristics of standard
components seldom match perfectly the
requirements of a specific project) but it is certainly
cheaper and faster to assemble than if it were
developed from scratch.

The research group at the University of
Constance to which the authors belong, has
traditionally been concerned with software
architectures for complex systems in the business
field where it has advocated and successfully
applied the component and framework approach
which tries to build software very much like
hardware is built: by assembling pre-defined
components with standardized interfaces. The
AOCS framework project is part of an effort to port
this technology to a real-time, mission-critical field
(see [14] for the long-term goals of this effort).
While a final assessment will have to wait for the
complete deployment of the AOCS framework
(foreseen for the end of 2000), results to date
indicate that the introduction of advanced
processors in space applications makes framework
and component technologies viable options for
space systems promising to bring them the same
benefits in terms of reusability and reduced
development times seen in other fields.

References
[1] Fayad M, Schmidt, Johnson (Ed.), 1999,
Building Application Frameworks, Wiley
Computing Publishing

[2] Johnson R, 1997, Frameworks = (Components
+ Patterns), Communications of the ACM, Vol. 40,
N. 10, p. 39-42, Oct. 1997

[3] Taligent, Inc., 1995, The Power of Frameworks,
Reading, Massachusetts: Addison-Wesley

[4] www.estec.esa.nl/wsmwww/erc32/erc32.html

[5] http://hissa.ncsl.nist.gov/sw_develop/safety.html

[6] Gamma E., et al (1995) Design Patterns—
Elements of Reusable Object-Oriented Software
Reading, Massachusetts: Addison-Wesley

[7] Pree W. (1995), Design Patterns for Object-
Oriented Software Development, Addison-Wesley

[8] Freeman E. (1999), JavaSpaces Principles,
Patterns, and Practice, Addison-Wesley

[9] Englander R. (1997), Developing Java Beans,
O’Reilly & Associates Inc.

[10] Burns A, Wellings, 1994, HRT-HOOD: A
structured Design Method for Hard Real-Time
Systems, Real-Time Systems, Vol. 6, pag. 73-114

[11] http://www.estec.esa.nl/wmwww/WME/oot/
hood/index.html

[12] Pasetti A, Pree, 2000, Two Novel Concepts for
Systematic Product Line Development, to be
published in the Proceedings of the First Software
Product Line Conference; 28-39 Aug 2000, Denver,
Colorado (USA)

[13] Szyperski C., 1998, Component Software,
Harrow (UK), Addison Wesley Longman Limited

[14] Pasetti A, Pree, 1999, The Component
Software Challenge for Real-Time Systems,
Proceedings of the 1-st International Workshop on
Real-Time Mission-Critical Systems; 30 Nov - 1
Dec 1999, Scottsdale, AZ (USA)

[15] http://www.softwareresearch.net/
AocsFrameworkProject/ProjectHomePage.html

[16] Pasetti A, Pree, 1999, A Component
Framework for Satellite On-Board Software,
Proceedings of the 18-th Digital Avionics System
Conference; Oct. 1999, St. Louis, Missouri (USA)

