
1

Two Novel Concepts for Systematic Product Line
Development

Alessandro Pasetti and Wolfgang Pree
Faculty of Computer Science, University of Constance, D-78457, Constance, Germany,
e-mail: pasetti@fmi.uni-konstanz.de, pree@acm.org

Key words: Product Line, Software Framework, Framelet, Design Pattern

Abstract: Framelets and implementation cases are new concepts to manage the
complexity of product line development. Framelets are “small product lines”
that address, as self-standing units, specific problems within the product line.
They make no assumptions about application execution control and are
designed to be composed with each other. A product line is obtained as a
combination of framelets. Framelets simplify the development and extension
of product lines, and make their integration with other product lines and with
other software simpler. Implementation cases are introduced as ways to
continuously monitor the adequacy of an evolving product line design. They
describe an aspect of the product line instantiation process by specifying how
an architectural feature for an application can be implemented using the
constructs offered by the product line. Implementation cases narrow the
abstraction gap between product line and application by forcing designers to
think about the reification of the abstractions they are creating while at the
same time giving them the opportunity to test the adequacy of these
abstractions. Implementation cases can also be used to specify a product line
or as cookbook-style recipes to document its usage. The discussion is made in
the framework of a project with the European Space Agency to design a
product line for satellite on-board software1. Heuristics for defining framelets
and implementation cases are derived from the experience gained on this
project and discussed in the paper.

1 The views expressed in this paper are those of its authors only. They do not in any way

commit the European Space Agency or reflect official European Space Agency thinking..

2 Alessandro Pasetti and Wolfgang Pree

1. INTRODUCTION

Product lines are notoriously complex constructs. Their complexity has
two aspects. Quantitatively, complexity stems from the sheer size of typical
product lines that may encompass hundreds of classes embedded in an often
tangled web of interconnections and semantic relationships. Qualitatively, it
arises from their high level of abstraction, itself a consequence of their
attempt to model whole application domains.

Complexity translates into long development times – it normally takes 3
to 4 times as long to build a product line as it does to build an individual
application – and several design cycles before the product line reaches
maturity [1,2,18,19,20]. Identifying ways of managing this complexity is one
of the key objectives of product line research.

Recently, the suggestion was advanced [22] to tackle the quantitative
aspect of product line complexity by developing product lines as
combination of smaller – and hopefully more manageable – architectural
units called framelets2.

Earlier this year, the authors started a project for the European Space
Agency to develop a product line for the Attitude and Orbit Control System
(AOCS) of satellites. AOCS’s are a complex, real-time, mission-critical
systems and building a product line to model them promised to be a
challenging assignment making this project a good candidate for testing the
framelet approach. The AOCS product line was accordingly designed as a
collection of framelets.

Implementation cases were introduced during the AOCS project to
address the qualitative complexity of product lines. They are intended to
narrow the abstraction gap between the product line and individual
applications by modeling selected aspects of the product line instantiation
process. They can be used to specify the product line, to check the adequacy
of its design during the development process, and, finally, to provide
cookbook-style recipes of how to use the product line.

The objective of this paper is to introduce the framelet and
implementation case concepts, to describe how they were applied to the
AOCS project, and how they can be generally applied to product line
development.

Sections 2 to 4 present the AOCS and the AOCS project. Sections 5 and
6 introduce framelets and implementation cases and their application to the
AOCS project. Section 7 explains how these concepts were integrated in the
development process for the AOCS product line. Section 8 discusses related
work.

2 The name “framelet” derives from the term “framework” which is sometimes used as

synonymous to “product line”.

Two Novel Concepts for Systematic Product Line Development 3

2. THE ATTITUDE AND ORBIT CONTROL

SYSTEM (AOCS)

The structure of an AOCS is shown in figure 1. The AOCS is an
embedded hard real-time control system. Its chief task is to periodically
collect measurements from a set of sensors and convert them into commands
for a set of actuators. The AOCS interacts with a ground control station from
which it receives commands (telecommands) and to which it forwards
housekeeping data (telemetry). Like all satellite systems, the AOCS must
remain fully operational in the presence of any single failure and must
survive prolonged periods of ground station outage. Robustness to faults and
autonomy require the AOCS to perform failure detection and failure
recovery actions.

Figure 1. Structure of an AOCS System

The AOCS software is usually organized as a set of statically defined
tasks running under the control of a cyclical scheduler.

The AOCS code size varies from mission to mission but normally lies
between 10000 and 20000 lines of very compact code. This will certainly
increase in the near future as more powerful processors are qualified for use
in space. The software is normally written in Ada83 or C with sprinklings of
assembler.

4 Alessandro Pasetti and Wolfgang Pree

The challenges in building an AOCS product line lie in the hard real-time
aspects of the AOCS, in its high degree of reliability, and in the transition
from a conventional to an object-oriented design.

3. THE AOCS PROJECT

Work on the AOCS product line started in April of this year. At the time
of writing (Nov. 99), the architectural design of the product line has been
completed resulting in a product line comprising over 130 classes. A
prototype product line will be implemented next year and tested on a
breaboard satellite processor.

4. THE AOCS SOFTWARE ARCHITECTURE

Figure 2 shows the AOCS software architecture assumed by the product
line.

TC
Manager

Data Flow
Subsystem

FDIR
Subsystem

Data Pool

Event
Repository

TM
Manager

4: doTcAction

6: doFailureDetection

7: doFailureRecovery

5: getEvent

1: writeToTelemetry

3: writeToTelemetry
2: writeToTelemetry

Figure 2. AOCS Software Architecture

Two Novel Concepts for Systematic Product Line Development 5

The telecommand manager periodically checks whether any
telecommands have been received and, if so, it asks them to execute
themselves. The telemetry manager periodically issues messages to other
objects asking them to write their internal state to the telemetry stream. The
data flow subsystem handles the cyclical flow of data from sensors through
attitude and orbit controllers to actuators. The FDIR subsystem is responsible
for failure detection, isolation and recovery. Components communicate
through shared memory areas. Cyclical data are stored in shared data pools
and asynchronous events are stored in shared event repositories.

5. THE FRAMELET CONCEPT

Framelets are essentially small product lines that address, as self-standing
units, specific problems within the product line. The product line itself is
obtained by combining the framelets. The defining features of framelets are:

– Small size: product lines normally consist of a large number (sometimes

running into several hundreds) of interrelated and cooperating classes.
Framelets are smaller, typically including a dozen classes or so.

– No execution control assumptions: unlike product lines, that often
assume that they have control of the application execution, framelets
make no such assumption and are designed to be amenable to integration
with each other and with other software.

– Self-standing: although framelets are intended to be integrated together to
build a full product line, they should also be self-standing and in
principle usable in isolation from the other framelets. This ensures that
coupling between framelets is minimized and gives a rule for deciding
the size of a framelet: a framelet should be as small as possible while
retaining sufficient functionality to be independently usable.

Framelets address three important issues in product line development.

Firstly, and as already mentioned, they provide a way of managing the
quantitative complexity of product lines by breaking them down into smaller,
loosely coupled units. This type of complexity management is especially
valuable in mission-critical systems – like the AOCS – where framelets shift
the focus from the product line as a whole to units at a lower level of
complexity thus enhancing confidence in the results of reliability analyses.

Secondly, a framelet approach simplifies the extension of a product line
since it makes it possible to add new functionalities to the product line by
adding new framelets.

6 Alessandro Pasetti and Wolfgang Pree

Finally, a framelet-based product line is easier to compose with other
product lines since it does not assume that it has control of program
execution and this assumption is a common obstacle to product line
integration [4].

5.1 Framelets in the AOCS Product Line

A total of 12 framelets were defined for the AOCS product line
consisting of an average of about 11 classes each. Their function is briefly
summarized below:

– The Monitoring Framelet proposes an architectural solution to the

problem of monitoring an object and its properties. It enhances re-
usability by decoupling the management of the monitoring process from
the execution of the monitoring checks.

– The Communication Framelet offers the infrastructure for managing data
exchanges between components. It enhances reusability by decoupling
the production of data from their consumption.

– The Data Processing Framelet provides facilities for the sequential
processing of AOCS data. It enhances reusability by providing a standard
interface for components that perform sequential processing on AOCS
data and by allowing easy combination of data processing blocks.

– The Aocs Unit Framelet defines a generic interface to all external AOCS
units (sensors and actuators). It enhances reusability by decoupling the
users of unit data from the units themselves.

– The Unit Reconfiguration Framelet proposes an architecture to handle
reconfigurations of AOCS sensors and actuators. It enhances reusability
by decoupling the management of unit reconfigurations from the
processing of unit data.

– The Mode Management Framelet proposes an architectural solution to
the problem of endowing components with mode-dependent behaviour. It
enhances reusability by separating the mode-specific algorithms from the
mode switching logic.

– The Manoeuvre Management Framelet offers a harness for managing
AOCS manoeuvres (orbit changes, attitude slews, etc). It enhances
reusability by separating the management of manoeuvres from their
execution.

– The Failure Detection Framelet defines an architecture to handle failure
detection tasks. It enhances reusability by decoupling the management of
such tasks from their implementation.

– The Failure Isolation Framelet defines an architecture to support failure
tracing in the AOCS data flow.

Two Novel Concepts for Systematic Product Line Development 7

– The Failure Recovery Framelet defines an architecture to handle failure

recovery tasks. It enhances reusability by decoupling the management of
such tasks from their implementation.

– The Telecommand Framelet defines an interface for telecommands and
an application-independent component to act as a telecommand manager.
It enhances reusability by decoupling the management of telecommands
from their execution.

– The Telemetry Framelet defines an interface for telemeterable objects
and an application-independent component to act as telemetry manager.
It enhances reusability by decoupling telemetry management from the
collection of telemetry data.

5.2 Framelet Constructs

Framelets define architectural constructs that are then available for use in
other framelets or directly in applications instantiated from the product line.
Constructs that are defined in a framelet but used elsewhere are said to be
exported by the framelet. Framelets export three types of constructs:

– Components3: pre-defined and configurable binary units that can be used

“as is”.
– Interfaces: sets of operations with their signatures.
– Design Pattern: architectural solutions for a design problem specific to

the product line application domain.

Note that these constructs exist at different levels of abstraction.

Components are concrete objects ready for use in an application. Interfaces
are like abstract classes for which implementation in the form of an
application-specific component must be provided. Design patterns are
abstract architectural solutions to design problem that must be implemented
by other components.

Components and interfaces are exported either “horizontally” to other
framelets or “vertically” to applications that must be instantiated from the
product line. Design patterns, instead, can only be exported horizontally
since they do not exist at application level.

A product line consists of abstract classes together with components
providing default (but overridable) implementations for (some of) the
abstract classes. Thus, the abstract classes and components making up the

3 In the present version of the AOCS product line, the “components” are essentially units of

compilation exposing operations that allow them to be configured. In the future, the
product line will be implemented upon a component infrastructure (probably CORBA in
its TAO implementation).

8 Alessandro Pasetti and Wolfgang Pree

product line are a subset of the interfaces and components exported by the
framelets.

An example from the AOCS product line illustrates these concepts.
Figure 3 shows three framelets with the constructs they export to each other
(horizontal arrows) and to AOCS applications (vertical lines). The telemetry
framelet, for instance, uses a design pattern defined in the mode management
framelet and an interface defined in the unit framelet and it exports the
Telemeterable interface both towards other framelets and towards
applications.

Note that some constructs (eg. the event repository component) are
exported both horizontally and vertically. Note also that not all framelets
export all three types of constructs and not all framelets export both
horizontally and vertically.

Figure 3. Example of Construct Export by Framelets

Table 1 shows the type of constructs exported by each framelet in the
AOCS product line.

Table 1. Constructs Exported by AOCS Framelets
Framelet Exported Constructs

Object Monitoring Design Pattern + Interface

Component Communication Components + Interfaces

Sequential Data Processing Components + Interface

AOCS Unit Management Interfaces

AOCS Unit Reconfiguration Interface

Mode Management Design Pattern

Two Novel Concepts for Systematic Product Line Development 9

Framelet Exported Constructs

Manoeuvre Management Component + Interface

Failure Detection Comp.+ Des.Patt.+ Interface

Failure Isolation Components + Interface

Failure Recovery Comp.+ Des.Patt.+ Interface

Telecommand Management Component + Interfaces

Telemetry Management Component + Interface

5.3 Framelets in the Design Process

Section 7 describes the development process followed in the AOCS
project which could serve as a blueprint for a product line development
methodology centered around framelets and implementation cases.

Framelets play a role in each stage of this development process. At the
very early system concept definition phase they are identified (section 5.4
offers some heuristics on how this can be done) and their broad
functionalities are defined.

In the following phase – the framelet concept definition phase – the
external interfaces of the framelets are defined. This requires definition of
the constructs exported by the framelets of the hot-spots exposed by them.

A product line is developed to improve reusability and each framelet
should give a distinct contribution to enhancing the product line reusability.
In this phase, the contribution to overall reusability of each framelet is
analyzed. This helps identify redundant framelets.

In the case of the AOCS project, at the end of the system-level concept
definition phase a total of 14 framelets had been identified. Going through
the exercise of defining their individual contributions to reusability showed
that two framelets were in fact not required thus leading to a reduction in the
number of framelets from 14 to 12.

Finally, in the framelet architectural definition phase, the internal
architecture of each framelet is worked out down to class level.

5.4 Heuristics for Framelet Identification

The breaking up of the product line into framelets is one of the crucial
steps in the early part of product line design. In importance – and in
difficulty – this task is comparable to that of identifying key application
abstractions and mapping them to objects in conventional application design.

10 Alessandro Pasetti and Wolfgang Pree

The experience gained in the AOCS project suggests five guidelines to
facilitate this task presented in the following five subsections.

5.4.1 Mapping clusters of related requirements to framelets

In the AOCS project, the product line was derived from an analysis of a
set of AOCS applications each described by a set of user requirements.

User requirements are often organized in groups of related requirements.
One useful heuristic for identifying framelets is to find the requirement
groupings that recur in many applications. In practice, this can often be done
by inspecting the table of contents of several user requirement documents
and identifying recurring sections.

Many methodologies for application development suggest that potential
objects can be recognized by underlining often-recurring nouns in
requirement specifications [5]. The heuristic proposed here to isolate
potential framelets is similar but operates at a higher level of abstraction.

5.4.2 Building framelets around single or related hot-spots

A hot-spot (or hook) is a point where behaviour adaptation takes place
[6]. Applications are instantiated from a product line by adapting the hot-
spots.

The identification of hot spots is one of the early tasks in the product line
design process. A major hot-spot can be the core around which a framelet is
built.

5.4.3 Building framelets around design patterns

Design patterns are among the “building blocks” of product lines [16].
Applicable design patterns are identified at the beginning of the product line
design process. Since design patterns typically consist of a handful of
cooperating classes addressing a localized design problem without making
any assumptions about execution control, they can serve as the basis for a
framelet.

Note that this heuristic is related to the previous one because one
important reason why design patterns are introduced in product lines is to
model hot-spot variability [17].

5.4.4 Mapping tasks to framelets

Real-time applications are often organized around tasks representing
separate threads of control. In most cases, tasks are created statically and

Two Novel Concepts for Systematic Product Line Development 11

therefore their number and function is defined at design time. Tasks typically
encapsulate self-contained functionalities and have well-defined boundaries
with each other. They are thus good candidate for framelets and one natural
guideline in framelet identification is to look for typical application tasks and
to map them to framelets.

Mapping framelets to tasks ensures that the framelets are functionally
decoupled (thus facilitating their design) and that they do not make any
assumptions about the control of their own execution which is explicitly
delegated to a scheduler (thus facilitating their integration into a single
product line).

Basing framelets on tasks, incidentally, solves one of the thorniest
problems in the design of product lines for real-time applications. This type
of product lines presents two intersecting architectural challenges: the design
of the software architecture – ie. the definition of the classes and their
relationships – and the design of the scheduling architecture – ie. the
definition of the threads of control and of their relationships. Using a task-
based approach and mapping tasks to framelets decouples these two
architectural problems as it allows the system of classes to be designed
independently of the scheduling policy. The latter affects the sequence and
the manner in which the tasks are called but not their internal structure (with
the possible exception of synchronization mechanisms for access control to
shared resources).

5.4.5 Mapping abstract use cases to framelets

Abstract use cases are introduced in [7]. They are found by searching for
patterns in a large number of use cases for applications in the product line
domain. They embody abstract forms of behaviour that are common to many
applications in the domain. Reference [7] proposes them as a way of
identifying abstract classes in a product line but they could also be used to
identify framelets since a framelet should ideally encapsulate one particular
form of behaviour variability.

5.4.6 Framelet Heuristics in the AOCS Project

The above heuristics can be illustrated with examples from the AOCS
project. Of the twelve framelets proposed for the AOCS product line, five –
the manoeuvre management, telemetry, telecommand, failure detection and
failure recovery framelets – correspond to clusters of requirements that will
be found in virtually all user requirement documents for AOCS software.

The telemetry and telecommand framelets map directly to tasks in the
AOCS software which normally devolves telemetry and telecommand

12 Alessandro Pasetti and Wolfgang Pree

management to dedicated tasks. The data processing framelet does the same
as its function is to provide a component to implement attitude and orbit
control algorithms and the implementation of these algorithms is usually
allocated to a dedicated task.

The structure of AOCS units (sensors and actuators) is very application-
specific and therefore unit management is a natural hot-spot in an AOCS
product line. The AOCS unit framelet was built around this hot-spot. It
consists of an abstract interface that encapsulates the generic operations that
can be performed on any AOCS sensor or actuator but leaves the
implementation open to individual applications.

Failure detection, failure recovery and manoeuvre management are also
highly application-specific and gave rise to hot-spots in the AOCS product
line which then became the basis for three framelets. In their case, however,
it was possible to identify some application-independent behaviour that was
packaged as components exported by the framelets to end-applications.

The algorithms used to process the AOCS data are another obvious hot-
spot which was encapsulated in the data processing framelet.

Most components in an AOCS software are required to adapt their
behaviour in response to changes in their environment. This effect is usually
achieved by endowing them with mode-dependent behaviour: components
are given control over several algorithms – one for each mode – and employ
application-specific rules to select the one to be executed at any given time.
The selection is a function of the state of other components. A design pattern
(derived from the strategy pattern of [9]) was devised to provide components
with mode-dependent behaviour and became the basis of the mode framelet.

Monitoring of component properties is another common task in AOCS
systems and for it, too, a generic design pattern was devised that became the
basis of the monitoring framelet.

Table 2. Heuristics for AOCS Framelets
Framelet Heuristics

Object Monitoring Design Pattern

Component Communication Hot-Spot

Sequential Data Processing Hot-Spot + Task

AOCS Unit Management Hot-Spot

AOCS Unit Reconfiguration Hot-Spot

Mode Management Design Pattern

Manoeuvre Management Hot-Spot + Requirement Cluster

Failure Detection Hot-Spot + Requirement Cluster

Two Novel Concepts for Systematic Product Line Development 13

Framelet Heuristics

Failure Isolation Hot-Spot

Failure Recovery Hot-Spot + Requirement Cluster

Telecommand Management Task + Requirement Cluster

Telemetry Management Task + Requirement Cluster

Table 2 shows the heuristics used for each framelet in the AOCS product

line. Note that the last heuristic – based on abstract use cases – was not used
in the AOCS project because AOCS systems are not normally described by
use cases.

5.5 Expressing the Framelet Design

The problem of expressing the design of a framelet is akin to the more
general problem of expressing the design of a product line which remains an
area of on-going research [8]. In the AOCS project, the framelets were
described in informal language supported by UML diagrams and pseudo-
code. This descriptive style, however, is unsuitable for purposes of design
review and documentation. For the second part of the project, more formal
modeling guidelines have been developed.

The following aspects of a framelet need to be modelled:

– The constructs exported by the framelet
– The framelet hot-spots
– The framelet internal architecture

As discussed in section 5.2, framelets export three types of architectural

constructs: abstract classes, components and design patterns.
Abstract classes and components can be described with any of several

available formalisms for object-oriented design modeling. In the AOCS
project, UML is used but other choices are possible.

Description of the framelet design patterns is problematic since no
accepted formalism exists for design pattern modeling. In some cases, the
design patterns come from a pattern catalogue in which case reference can
be made to the description in the catalogue. When new patterns are instead
used, they can be described in informal language following the model of [9]
that has becomes a de facto standard for design pattern description.

Description of framelet hot-spots is also problematic and for the same
reason: a lack of accepted modeling formalisms. Here, two levels of
description are proposed corresponding to two different phases in the

14 Alessandro Pasetti and Wolfgang Pree

framelet design process (see section 7). At the early concept-definition
phase, hot-spots are not yet mapped to concrete syntactic constructs and
cannot be easily modeled through class diagrams. A systematic classification
(partially derived from [13] and [14]) is therefore proposed that provides the
following information for each hot-spot:

– Visibility level: two values are possible: framelet-level or product line

level. Some hot-spots exist only at the framelet level as they are intended
to provide hooks for other framelets during the product line assembly
process. Such hot-spots are said to have a framelet-level visibility. Other
hot-spots instead carry over to the product line as they are intended as
hooks where application developers can insert application-specific items
during the application instantiation process. Such hot-spots are said to
have a product line-level visibility.

– Adaptation time: hot-spots provide a means of adapting framelet
behaviour. Two adaptation times are possible compile-time and run-time,
depending on whether behaviour adaptation is done statically (eg. using
inheritance or template instantiation) or dynamically (eg. using object
composition).

– Adaptation method: a hot-spot is a point where framelet behaviour can be
adapted. The following adaptation mechanisms are possible:
enabling\disabling a feature; tuning an existing feature; replacing a
feature; augmenting a feature; adding a new feature

– Pre-defined options: in some cases, the framelet itself offers pre-defined
options for a hot-spot. For instance, the control algorithm in an satellite
attitude controller component is clearly a hot-spot because different
satellites have different types of control algorithms. However, the
product line may offer some plug-in components implementing common
types of control algorithms.

At the later architectural design phase – when the internal framelet

architecture takes shape – hot-spots acquire a more specific form as they
become overridable methods or plug-in points for components. Hence, at
this stage, they are amenable to formal description using a formalism such as
UML suitably extended for this purpose. In the AOCS project, the approach
of reference [10] is adopted where UML stereotypes are introduced to model
the following adaptation mechanism:

– variation methods (methods that can be overridden during product line

instantiation)
– extension classes (classes whose interface is extended during product line

instantiation)

Two Novel Concepts for Systematic Product Line Development 15

– extension interfaces (classes or interfaces from which concrete classes

are derived during product line instantiation)

These adaptation mechanisms cover all forms of framelet hot-spots.
Figure 4 shows the framelet design description techniques as a function

of the design phase. The design phases are as described in section 7.

Figure 4. Framelet Design Description

5.6 Product Line Design Modelling

The modelling guidelines laid down in the previous section, address the
problem of describing individual framelets. They need to be complemented
by rules to model the product line as a whole.

In a framelet-based approach, the product line is obtained as a
combination of framelets. To describe the product line architecture therefore
means to describe the interactions of the framelets. Framelets interact
through the architectural constructs they import from each other (see section
5.2) and through the framelet-level hot-spots. There are at present no
established formalisms to describe these kinds of framelet-level interactions.

A suitable formalism should convey, at the very least, the information
shown in figure 3 for a subset of the AOCS framelets: it should show the
framelets with the constructs they export either to other framelets or to end-

16 Alessandro Pasetti and Wolfgang Pree

applications. A supporting tool should allow users to select framelet subsets
or to zoom in on the internal architecture of individual framelets (which, as
discussed in section 5.5, can be represented using UML).

Figure 3 does not explicitly portray framelet hot-spots although some
hot-spots are shown implicitly (eg. exported interface are obviously hot-
spots). Its formalism should therefore be augmented with a descriptions of
other types of hot-spots such as plug-in points in exported components.

In summary then, available modelling techniques – complemented by
formal classification schemes – are suitable to describe individual framelets
but there are no good ways to represent the interactions of framelets and
hence the product line architecture as a whole.

6. IMPLEMENTATION CASES

As the design of the framelets for the AOCS project was proceeding, the
need was felt to check its adequacy without having to wait for the
prototyping phase. The concept of implementation case was introduced to
cover this need.

A product line is a tool to help developers rapidly build an application
within the product line domain. An implementation case describes an aspect
of this application instantiation process by specifying how a component, an
architectural feature, or a functionality for an application in the product line
domain can be implemented using the constructs offered by the product line.

An example from the AOCS project will clarify this definition. The
AOCS product line is a tool to assist the development of AOCS applications.
An important functionality of any AOCS application is the ability to perform
satellite attitude and orbit control. Accordingly, the following
implementation case was formulated: “build a component implementing the
attitude and orbit control algorithms”. This implementation case was then
worked out by showing how the constructs offered by the product line can be
combined to build the required component.

Thus, implementation cases define an objective for a localized
instantiation action. They are said to be worked out when they are
accompanied by a description of how their instantiation objective can be
achieved using the product line.

When product line design is completed, implementation cases can be
worked out in detail, essentially resulting in cookbook-style recipes for using
the product line. When the design is still underway, only partial working out
of the implementation case is possible since not all the product line
constructs are yet available or finalized. However, even at early design
stages, going through the implementation cases remains very useful because

Two Novel Concepts for Systematic Product Line Development 17

the exercise can reveal shortcomings in the already defined constructs and
can point towards constructs that are still needed.

In the AOCS project, implementation cases were defined early in the
design and were then gradually worked out as the design progressed.
Typically, whenever a new construct was introduced, its effectiveness was
tested by working out an implementation case that used it. Where necessary,
new implementation cases were introduced to cover the functionalities
introduced by newly defined constructs. This process of refinement of
implementation cases was the single most important source of changes in the
framelet design and it is believed that it replaced at least one iteration cycle
in the product line design.

Thus used, implementation cases address the qualitative aspect of product
line complexity which stem from their high level of abstraction. They force
designers to think about the reification of the abstractions they are creating
while at the same time giving them the opportunity to test their adequacy in
concrete application development settings.

The term “implementation case” was coined by analogy to the term “use
case” as employed by some methodologies for application development. A
use case describes the way an application is intended to be used [12]. Use
cases cannot be defined for a product line because a product line is not a
working application and it is not used in the same sense in which an
application is used. An implementation case is its equivalent in the sense that
a product line is a tool to help implement applications and implementation
cases describe how a feature of an application can be implemented.

6.1 Implementation Cases in the Design Process

In the AOCS project, implementation cases were used primarily to
continuously check the adequacy of the product line design. During the
system-level concept definition phase, implementation cases were defined at
a very high level by simply describing the objective of the instantiation
action they represented. They were then periodically revisited during the
design process and progressively refined to reflect the advancing state of the
product line definition. At the end of the architectural design phase, they
were described at the pseudo-code level. Typically, the pseudo-code was
intended to demonstrate how pre-defined product line constructs –
components and abstract classes – could be used to achieve the objective
prescribed by the implementation case.

Implementation cases could play at least two additional roles in the
product line development process. Firstly, like use cases, they could help
describe the product line since a sufficient number of them could cover all
the functionalities of a product line and could thus be used as a way of

18 Alessandro Pasetti and Wolfgang Pree

specifying it. The acceptance test for the product line then becomes its
ability to achieve the instantiation objectives specified by the
implementation cases. The ease with which this can be done is a measure of
the quality of the product line: a well-designed product line should offer
abstractions and components that let users quickly and naturally work out the
implementation cases.

Secondly, implementation cases can become part of the product line user
manual. At the end of the product line development process, they are
available as commented pseudo-code. They are therefore ready for inclusion
in the product line user manual where they can serve as cookbook-type
recipes showing how small applications or fragments of applications can be
constructed.

6.2 Identification of Implementation Cases

Implementation cases should cover all the functionalities offered by the
product line. In the early concept definition phase, an implementation case
should be defined for each framelet. Subsequently, as the framelet design
matures, implementation cases should be defined to cover all the constructs
exported by the framelets (see section 5.2) and all the hot-spots exposed by
them. Full coverage is verified by generating a traceability matrix mapping
the framelet constructs and hot-spots to the implementation cases.

6.3 Implementation Case Description

There is no formalism for describing implementation cases. In the AOCS
project, implementation cases are described in an informal but systematic
manner. UML cooperation diagrams support the description. For each
implementation case, the following information is provided:

– Implementation case objective
– Implementation case description
– Framelets involved in implementation case
– Framelet constructs involved in implementation case
– Framelet hot-spots involved in implementation case
– Related implementation cases
– Pseudo-code showing how implementation case is worked out

Note that in the approach proposed here implementation cases are

defined incrementally during the design process. Hence, the information
items listed above are not all supplied at the same time. They are instead
provided gradually as the product line design matures and the constructs for

Two Novel Concepts for Systematic Product Line Development 19

working out the implementation cases become available. The degree of
maturity of implementation case description can be used as a measure of the
maturity of the product line design.

6.4 Implementation Cases in the AOCS Project

At the time of writing, 14 implementation cases are defined for the
AOCS product line. An example definition that follows the description
guidelines of section 6.3 is shown in table 3.

Table 3. First Implementation Case Example

Objective
Implement an attitude slew manoeuvre

Description
Attitude slews are common types of manoeuvres performed by satellites. The
AOCS product line encapsulates manoeuvres in components. This
implementation case shows how to build a component encapsulating an attitude
slew manoeuvre.

Framelets
Manoeuvre Management Framelet

Framelet Constructs
AocsManoeuvre Interface
 (exported from Manoeuvre Management Framelet)

Framelet Hot Spots
AOCS Manoeuvre Definition
 (exposed by Manoeuvre Management Framelet)

The level of description is that adequate to the early phase of the framelet

design process. As the framelet design proceeded, pseudo-code was added to
concretely show how the attitude slew manoeuvre component is built. The
pseudo-code is not shown as understanding it would require more
background on the AOCS product line than can be provided here.

Table 4 shows a second example of implementation case from the AOCS
project. The level of description is the same as in the previous example. Note
how this implementation case extends the previous one in the sense that it
uses its output and logically follows it up. The relationship of extension
among implementation cases is conceptually similar to the relationship of
extension for use cases.

20 Alessandro Pasetti and Wolfgang Pree

Table 4. Second Implementation Case Example

Objective
Build a telecommand to perform an attitude slew manoeuvre

Description
Attitude slews are normally started by a ground command (telecommand). This
implementation case shows how to build a telecommand to perform an attitude
slew manoeuvre. It is assumed that the attitude slew manoeuvre is encapsulated
in the component built in the implementation case of table 3.

Framelets
Telecommand Framelet
Manoeuvre Management Framelet

Framelet Constructs
Telecommand Interface
 (exported from Telecommand Framelet)
AocsManoeuvre Interface
ManoeuvreManager Component
 (exported from Manoeuvre Management Framelet)

Framelet Hot Spots
Telecommand Definition
 (exposed by Telecommand Framelet)

Related Implementation Cases
Attitude Slew Manoeuvre Implementation Case

(this implementation case uses the component built in the attitude slew
manoeuvre implementation case)

7. DESIGN PROCESS

Figure 5 shows the design process followed in the AOCS product line
project. Design began with a system-level concept definition phase whose
main tasks were:

– definition of product line functionalities
– definition of overall design constraints
– identification of product line hot-spots
– identification of applicable design patterns
– identification of framelets

The design then split into two parallel branches with the left branch being

in turn subdivided into sub-branches each corresponding to a framelet.

Two Novel Concepts for Systematic Product Line Development 21

Framelet development proceeded in two phases. In the framelet-level
concept definition phase the external interfaces of the framelet were defined
in terms of the architectural constructs they exported (section 5.2) and of the
hot-spots they offered. In the framelet architectural design phase, the
internal class architecture of the framelets was defined.

Figure 5. AOCS Product Line Design Process

In the right branch of the design process tree, implementation cases were
defined and then gradually worked out in parallel to the definition of the
framelet architecture. There was a constant interaction between the two
branches. On the one hand, the insights gained while working out the
implementation cases prompted changes in the framelet design while on the
other hand the introduction of new architectural constructs in the framelets
resulted in the definition of new implementation cases to cover them (see
section 6.2).

More work is required to ascertain whether this design process can
constitute a general product line methodology applicable in other contexts.
However, since the primary purpose of a design methodology for product
lines must be to manage their intrinsic development complexity, it seems
clear that the framelet and implementation case concepts, which address both
dimensions of product line complexity, should play a prominent role in it.

22 Alessandro Pasetti and Wolfgang Pree

8. RELATED WORK

Framelets were introduced in [3,22]. The work reported here goes beyond
these references in that it refines the framelet concept in the light of
experience from a real product line.

The relationship of implementation cases to use cases has already been
mentioned. Additionally, implementation cases have an antecedent in the
cookbook recipes of [11,21]. The latter, however, were proposed as ways of
documenting product lines providing “how to” examples of their use for
application developers. Implementation cases are more ambitious. They can
certainly serve as cookbook recipes but their primary value is as tools for the
continuous verification of product line design. Furthermore, like the use
cases after which they were named, they could be used to specify a product
line.

Implementation cases are also related to the Software Architecture
Analysis Method (SAAM) scenarios [15]. SAAM scenarios can act as tools
to measure the adaptability of an application to future changes. A SAAM
scenario describes a hypothetical change in the application specification and
considers the ease with which the application design and implementation can
be modified to meet the new specifications. An implementation case is
similar in that it describes a scenario for adapting an architecture to a
particular set of requirements. The difference is that SAAM scenarios are
targeted at individual applications which are not specifically designed to be
adapted whereas implementation cases are targeted at product lines that exist
precisely to be adapted. Both SAAM scenarios and implementation cases
resemble use cases in modeling an interaction with a software system but the
latter focus on runtime interactions (the use of an application) whereas the
former focus on static interaction between the software designer and the
software architecture.

9. CONCLUSIONS AND FUTURE WORK

This paper presented the framelet and implementation case concepts and
discussed their application to the AOCS project. The architectural design of
the AOCS product line was completed in about nine months. Basing the
design on framelets and monitoring it with implementation cases were the
keys to achieving such a rapid turnaround time probably avoiding at least
one design iteration cycle.

Framelets and implementation cases are regarded as mature concepts.
Further work will probably have to concentrate on developing formalisms to
express them and tools to support product line design based on their use.

Two Novel Concepts for Systematic Product Line Development 23

Methodological issues are a second area requiring attention. Section 7
outlined the development process adopted in the AOCS project but this falls
far short of a comprehensive methodology. Defining such methodology is an
urgent task if framelets and implementation cases are to yield the same
benefits to other product line projects as they did to the AOCS project.

REFERENCES

[1] M. Fayad, D. Schmidt, R. Johnson, Application Frameworks, p. 3-28, M. Fayad, D.
Schmidt, R. Johnson, Building Application Frameworks, Wiley Computing Publishing,
1999

[2] G. Pomberger, W. Pree, Quantitative and Qualitative Aspects of Object-Oriented Software
Development, International Symposium on Object-Oriented Methodologies and Systems
(ISOOMS ‘94, Springer-Verlag), Palermo, 21-23 September 1994

[3] W. Pree, K. Koskimies, Framelets – Small is Beautiful, p. 411-414, M. Fayad, D. Schmidt,
R. Johnson, Building Application Frameworks, Wiley Computing Publishing, 1999

[4] M. Mattsson, J. Bosch, Composition Problems, Causes, and Solutions, p.467-487, M.
Fayad, D. Schmidt, R. Johnson, Building Application Frameworks, Wiley Computing
Publishing, 1999

[5] M. Awad, J. Kuusela, J. Ziegler, Object Oriented Technology for Real Time Systems,
Prentice Hall, 1996

[6] W. Pree, Meta Patterns – A Means of Capturing the Essential of Reusable Object Oriented
Design, Proceedings of the 8th European Conference on Object-Oriented Programming,
Bologna, Italy, July 1994

[7] G. Miller et al., Capturing Framework Requirements, p. 309-324, M. Fayad, D. Schmidt,
R. Johnson, Building Application Frameworks, Wiley Computing Publishing, 1999

[8] J. Bosch et al., Framework Problems and Experiences , p. 55-82, M. Fayad, D. Schmidt,
R. Johnson, Building Application Frameworks, Wiley Computing Publishing, 1999

[9] E. Gamma et al., Design Patterns – Elements of Reusable Object Oriented Software,
Reading, Massachusetts: Addison-Wesley, 1995

[10] M. Fontoura, A Systematic Approach to Framework Development, PhD Thesis,
Computer Science Department, Pontificial Catholic University of Rio de Janeiro, 5 July
1999

[11] G. Krasner, S. Pope, A Cookbook for Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80, Journal of Object-Oriented Programming, 1(3), 1988

[12] J. Jacobson et al, Object-Oriented Software Engineering – A Use Case Driven Approach,
Reading MA, Addison-Wesley, 1992

[13] W. Pree, Hot-Spot Driven Development, p. 379-394, M. Fayad, D. Schmidt, R. Johnson,
Building Application Frameworks, Wiley Computing Publishing, 1999

[14] G. Froelich et al., Reusing Hooks, p.219-236, M. Fayad, D. Schmidt, R. Johnson,
Building Application Frameworks, Wiley Computing Publishing, 1999

[15] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison Wesley
Longman, 1998

[16] R. Johnson, Frameworks=(Components+Patterns), Communications of the ACM, Vol.
40, N. 10, p. 39-42, Oct. 1997

[17] W Pree, Design Patterns for Object-Oriented Software Development, Addison-Wesley,
1995

24 Alessandro Pasetti and Wolfgang Pree

[18] A. Weinand, E. Gamma, R. Marty, ET++ - An Object-Oriented Application Framework

in C++, OOPSLA’88, Special Issue of SIGPLAN Notices, Vol. 23, No. 11, 1988
[19] Taligent, Inc., The Power of Frameworks, Reading, Massachusetts: Addison-Wesley,

1995
[20] K. Pirklbauer, R. Plösch, R. Weinreich, Object-Oriented Process Control Software,

Journal of Object-Oriented Programming, April 1994
[21] A. Goldberg, Smalltalk-80 / The Interactive Programming Environment, Addison-

Wesley, 1984
[22] W. Pree, K. Koskimies, Rearchitecturing Legacy Systems—Concepts & Case Study,

WICSA ‘99: First Working IFIP Conference on Software Architecture, San Antonio,
Texas, 22-24 Feb. 1999

