UML-F:. A Modeling Language for Object-
Oriented Frameworks

Marcus Fontoura Wolfgang Preg€ and Bernhard Rumpe

1 Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08544-2087, U.S.A
nf ont our a@cm or g
2 Software Research Lab, University of Constance
D-78457 Constance, Germany
pree@cmorg
3 Software and Systems Engineering, Munich University of Technology,
D-80290 Munich, Germany
runpe@cm or g

Abstract. The paper presents the essential features of a new member of the
UML language family especiallyuseful for working with object-oriented
frameworks. This UMLextension, called WJL-F, allows the explicit
representation of framework variation points. The paper shows hdixFU

was defined based on standard UML extension mechanisms and shows how it
can beused toassistframeworkdevelopment. A description afupporting

tools used to automate framewadrkplementationandinstantiation isalso
presented. A case studljustrates theapplication of WIL-F andthe use of

the supporting tools.

1 Introduction

Object-oriented (OO) frameworksd poduct line architectures have become popular
in the software industry during the 1990s. Numeroaméworks have beeateveloped

in industry and academia for various domains, including graphical useade®ife.g.
Java's Swing and other Javarsiard libraries, Mi@soft's MFC), gaph-based editors
(HotDraw, Stingray's Objective Views), business applications (IBM's Samcisco),
network servers (Java's Jeeves), just to mention a Yehen combined with
components, &meworks provide the most promising curresthinology supporting
large-scale reuse [16].

A framework is a collection of several fully orrgally implemented components
with largely predefinedtooperation patterns betwedrei. A famework impéments
the software architecture for a family of applications with similar characteristics [26],
which are derived by specialization eligh application-specificode. Hence,@ne of
the framework components are designed to be replaceable. These components are called
variation points or hot-spots [27] of the framework. An application based on such a
framework not only reuses its source code, but more important, its architdetiga.

This amounts to a standardization of the application structure and allows a significant
reduction of the sizend complexity of thesourcecode thathas to be written by
developers who adapt a framework.

Recent standardization efforts of the Unified Modeling Language (UML) [32] offer a
chance to harness UML as notational basis for framework development projects. UML
is a multi-purpose language with many notational constructs, however, the current
standard UML does not providgppropriate constructs to model frameworks. The
constructs provided by standard UML are nehough to assist dmework
development, as will be discussed during the rest of this papere is no indication
in UML design diagrams what are the variation pointswshdt are their instantiation
constraints. Fortunately, UML provides extension mechanisms that allow us to define
appropriate labels and markings for the UML model elements.

This paperdescribeshow to explicitly model framework variation points in UML
using class diagrams and stiarts todescribe the allowestructure and bevior of
variation points. For this purpose, a number of extensionsaoflsd UML are
introduced.The extensions have been defl mainly byapplying the UML built-in
extensibility mechanismslhese extensions form adis for a new UML profile [7,
33, 34], especially useful forssisting famework development. This new fpi® is
called UML-F.

One of the main goals of defining UML-F was to try to use the smallest set of
extensions that capture thensantics of the most common kinds of variation points
in OO frameworks. In this way the dgser can prfit from his or hers previous
experience with UMLand learn just a fewew constructs taleal with fameworks.
This paper describes how the extensions have beerdiailowing others eghsions
that deal withnew kinds of variation points to badded to UML-F ifneeded. The
current version of UML-F was refined based on theeriences of awumber of
projects [11]. These experiences hakieven how UML-F can a&sist the famework
developmentind instantiation actittes to educedevelopment csts and at the same
time increase the relimg quality of the delivered products. Thigmper presents a
condensed version of a real-application case studjusirate the benefits of UML-F
and its supporting tools.

The rest of thispaper is organized as followsSection 2 outlines the UML
extensions and disisseshow theycan be used taexplicitly repesent famework
variation points. It also shows how the extensions allow for déeelopment of
supporting tools thatan &sist famework developmerand instantiationSection 3
describes a case study of real application of UML-F, illustrating its benefits. Section 4
discusses some related work. SectioocoBcludes the paper and siets our future
research directions.

2 The Proposed UML Extensions

This section introduces UML-F thugh an example. It summarizes the new
extensions and presentsganeral description of thesemantics. It also presents a
description of the UML extensibility mechanisrasdhow theyhave been applied in
the definition of UML-F. A description of tools that use UMLdEsign descriptions
to automate framework development and instantiation is also presented.

2.1 Motivation Example

Figure 1 shows a student subsystem of a web-based education framework [12] in plain
UML, where (a) represents a static view of the system (class diagrah{p) provides

a dynamic view @uence diagram)The dynamic viewillustrates the interaction
between an instance of each of the two classes.

The showCourse(method is the one responsible fawntrolling the application
flow: it calls selectCourse()which allows the student to select thesigel course,
tipOfTheDay() which shows a start-up ti@nd finally showContent(}o present the
content of the selected course.

Method selectCourse()s the one responsible for selecting twirse the student
wants to attend. It is a variation point sincedin have ifferent implementations in
different web-basedpplications created within the framework. Different examples of
common course selection mechanisms include: requiring a student login, showing the
entire list of available courses or just the ones related to the student major, showing a
course preview, and so ofhere arenumerous possibilities thadepend on the
framework use.

ShowCourse SelectCourse aShowCourse aSelectCourse
select
+ 0— T selec . showCourse()
showCourse() ! selectCourse() selectCourse()
+selectC0urse(<) selectCourse
+tipOfTheDay(j,
+showContent() 5 tipOfTheDay ()
selectselectCourse() | showContent()
(a) (b)

Figure 1. UML representation of a framework web-based framework.

Figure 1 showsselectCourse()as an abstract method of an abstract class,
SelectCourseDuring framework instantiation, the framework users would have to
create subclasses BelectCoursend hen provide aoncrete imgmentation of the
selectCourse(method. The problem with this representation is that there is no
indication thaselectCourse(ls a variation point in the design diagrams. There is not
also any indication of how it should be instantiated. Although the name ab#tact
methodselectCourse()s italicized this notation is not an indication of a variation
point, rather it indicates an abstract method; an abstract metesdnot necessarily
have to be a variation point.

Method tipOfTheDay()is also a framework variation poinThe reason is that
some applications created from the framework mighnt to show tips while others
will not do so. The framework should provide only the methanats information that
are useful for all the possible instantiated applicatiand the extra unctionality
should be proded only in famework insinces. Although this may seem a strong
statement, it is the ideal situation. The inclusion of method4ifik&fTheDay()could
lead to acomplex interbce forShowCoursewith many methods thavould not be
needed by everal framework insinces. Agood design principle in designing a
frameworkits to try tokeep it simple; extrauhctionality can always be pted in
component libraries.

TheActor class hierarchy is used to let new types of actors beedefepending on
the requirements of agn framework insince. The default actor types are students,
teachers, and administrators, however, new types may be needed such as librarians, and
secretaries. This means that applications created fromatmewirork alvays have at
least three kinds of actors, students, teactsrdadministrators, buteveral other
actor types may be deéiddepending on thapplication specific requirements. This
design structure is presentedHrigure 2.

Actor

+getLogin()
+getPassword ()

VAN
| |

Student I Teacher I Administrator I

Figure 2. Actor hierarchy.

The Actor class hierarchy also represents a variation poimigesit allows the
definition of new classes to fulfill the application specific requirements. However, this
is not properly indicated in the UML diagram presentedrigure 2. The famework
developer Bould be able to indicate the variation points in class hierarchies to
facilitate the job of the &mework user during the instantiatioropess. Fortunately,
UML provides a constraint callethcompletein its sandard set ofconstraints.
Incompleteindicates that new classes may bdded to a gen generalization
relationship and was adopted as part of UML-F, as will be described in subsection 2.3.

2.2UML Extensibility Mechanisms

UML provides three language extension mechanisms: stereotgggedtvalues, and
constraints. Stereotypes allow the definition of extensions to the Wdthbulary,
denoted by<stereotype-name>>Each model elment (e.g. a class or a relationship)
can have a stereotype attached. In t@se,its meaning is ecialized in a particular
way suited for the target architecture or application domain. A number of possible
uses of stereotypdsave been classified in [2], but stereotypesséite a rather new
concept and still subject of ongoing research [7].

Tagged values are used to extend thep@rties of a modeling element with a
certain kind of information. For example, a version number or certain simetific
information may be attached to a modeling element. A tagged value is basically a pair
consisting of a name (the tag) and the associated value, writttagrsvalue}'. Both
tag and value are usuallstrings only, although the value mdpave a special
interpretation, such as numbers or the TRUE value. In case of tags with TRUE
values, UML 1.3 allows us to writdtag}”’ as shortcut for{tag=TRUE}". This leads
to the fancy situation that for certain concepts a stereotypes<<eegtensible>>, and
a tag, e.g{extensible} may be used for the same purpose. Sinoeel elements can
only have one stereotype, but an unlimited numbeagded values, it is often better
to use tagged values in this kind ©ifuation. They provide more flexibility, freeing
us of defining a new stereotype for each combination of tags that mayatieedtto a
model element.

In addition to the mentioned two UML extensionechanisms, there exist
constraints. Constraints may be used to detail how a UML element may be treated.

However, like the other two, constrairitave a rather weakesantics and therefore
can be usedafid misused) in @owerful way. Constraints areotlay usually given
informally, or by a buzzword onlyThe {incomplete} constraint Figure 3) could
also be defined as tagged value.

We expect that this semantic mismataimong the extensibility mechanisms be
improved in future UML vesions. D’Souza, Sanend Bichenough sggest that all
three kinds of extensions should be stereotypes [7]. Weeain favor of this
approach, but we would like to retain the flakilp of adding tags forspecific
purposes.

2.3UML-F Extensions

This subsection introduces UML-F illustrating its applicationrtodel theweb-based
education framework [12Figure 3 models part of the framework representing and
classifying the variation points explicitly. The variation points aredeled by a
number of agged values with values of Booleaype to extnd the UML class
definitions. This diagram is called as extendemk€ldiagram, since it uses UML-F
constructs that extend standard UML class diagrams.

ShowCourse Actor
{for all new methods} - {extensible, dynamic} {static}
fSelectedCourse@pre = +showCourse() +getLogin()
fSelectedCourse@post .
+selectCourse() {variable, +getPassword()
dynamic}
+showContent()
ZF{incomplete}
Student Teacher Administrator I {appl-class} I
Librarian
—_—

Figure 3. UML-F extended class diagram.

In this example the methagklectCourse()s marked with the tagged val§eariable}
to indicate that its implementation may vamepending on the framework
instantiation. The tagged val{sariable} has the purpose to show thanfrework user
thatselectCourse(jnust be implemented with application specific behavior dach
framework insance. Methods miaed with {variable} are referred to asariable
methods

In contrast to the previous tagged val{extensible}lis applied to classes. In this
example{extensiblelis attached to th8howCourselass, indicating that its interface
may (but do not must) be extended during thefework instantiation badding new
functionality, like methods such &pOfTheDay() Classes marked witfextensible}
are referred to asxtensible classes

An important point here is that the diagram shownFigure 3 is a design
diagram, and therefore ihay implemented ineveral differenways. The fact that a
class is marked gextensibleltells us that its implementation willave to allow for

the extension of its intaate, since a gen famework insince may want to do so.
However, it does not mean that the new methods have to be added directly to the class.
The same holds for variable methods: thangesnay be defied wihout changing

the method directly, but by the addition néw classes that providappropriate
implementations for the method. Section 3 discusses some implemergatiaiqies

that may be applied to model variable methods and extensible classes.

Figure 3 uses the taincomplete}to indicate a third kind of variation point: an
extensible interfacglncomplete}is applied to a generalization relationship, meaning
that new subclassenay be defined by fimework insinces. In this example it
indicates that new subclassesAaftor may be prowed to fufill the requirements of
applications created from the framework. Please note {ihabmplete}is already
provided by the UML as a constraint, with exactly the same meaning used here.

The tag{appl-class}is used to indicate a placeholder in the framework structure
where application specific classesay beadded. Itcomplements the definition of
extensible interfaces: the generalization relationship between an extensible interface
and an application class is alwdgyscomplete}.ClassLibrarian is an example of an
application class The{incomplete}tag allows the framework user to create several
application classes from a given extensible iatafduring framework instantiation.

In contrast to the other two kinds of variation points, extensible actsfhave a
direct mapping fromdesign to impmmentation since current OO programming
languages provide constructs for modeling generalization relationships directly.

Two other Boolean-value tags, calleftlynamic} and {static}, complement the
variation point definition by indicating whether runtime instantiationetguired. Each
variation points has to be identified either by ftignamic}or by the{static} tag (but
not both). Variable methods are instantiated by providing the methodrreptation.
Extensible classes are instantiated by the addition of new methods. Extension
interfaces are instantiated by the creation of application classes. Interpreted languages,
such as Smalltalkand CLOS, give full support for runtime, ofdynamic}
instantiation. Java offers dynamic class loading and reflection that also ceedéo
allow dynamic instantiation of variation points. In teample shown irFigure 3
the tag {dynamic} is used because it is a user requirement to ldywemic
reconfiguration for the variation points thdéal with course exhibition. The tag
{static} is used for théctor extensible interface since new actor types doneet to
be defined during runtime.

The note atiched to theShowCourseextensible class is an OCL [25, 33, 34]
formula that defines that the cladtribute fSelectedCoursshall not be changed by
any of the new methods that may be added toStimwvCourseextensible class during
framework instantiation. This kind of teistions over variation points is called
instantiation restrictions. To be able describe certai®©CL constraints for mhbds
that have neither been iottuced nor named yet, the t@for all new methodsjis
introduced, indicating that this constraint is to hold for all new methods. This kind of
tag strongly enhances the power of description of the design language, as it allows us
to talk about methods that have not even been named yet.

Another way of limiting the possible structuaad behavior of variation points is
the use ofstatechart émplates An example is presented ihigure 4, where the
{optional} tag indicates states whoseecurrence is optinal, and depends dmow the

framework is instantiatedzigure 4 tells us that aoncrete method that instantiates
selectCourse()nust have the following behavior:

1. It may display a login web page;
2. It must show a web page for the selection of the desired course;

3. It may validate the data by checking if the login is vahddwhether the student
is assigned to the course or not. This step is optional sincectiredge courses
that do not require student identification;

The exeénded class diagrams and theestharts templates complemesdach other
providing a rather useful specification of variation points and their instantiation
restrictions. It is important thatdmework developers providdocumentation that
describeswhat parts of the system should aéapted to create a validafnework
instances. It is quite cumbersome that framework users todayrefento browse the
framework code, which generally hasmplex and large class hierarchies to try to
identify the variation poits. The diagramand diagram extensions introduced in this
example address this problem. Section 3 will further discuss these ideas, showing how
UML-F can assist framework implementation and instantiation.

Student selecting
course

Figure 4. Statechart template for selectCourse().

Initial state

{optional}
Student Logging-in

{optional}
Validating data

2.4Language Description

Once the extensions are defined it is crucial to specify their exaahing. As a side-

note, it is important to mention that in most languages (such as natural language, like
English), new vocabulary is explained through a definition using existing vocabulary.
This even holds for programming languages, likwa)where new classes and
methods are defed using eisting classes, methodsand basic constructs.
Unfortunately, UML 1.3and high likely also UML 1.sas not yet proded a clear

path for defining the precise semantics of new stereotypegied values, and
constraints.Therefore, this section describes timeanings of our newly imiduced
elements mainly informally. A formal definition of these elements based ohexei/ t

is presented in [11].

Currently UML-F deals with three kinds of variation pointariable methods
extensible classeandextensible interface¥ariable methods are methods that have a
well-defined sgnature, but whose implementation varies fesch instantiated

application. In the exampkelectCourse(js a variable method. Extensible classes are
classes that mahave their interfaces exided during the dmework instantiation.
ShowCoursge for example, may equire the addition of new methods (like
tipOfTheDay())for each differentapplication. Extensible interfaces are interfaces or
abstract classes that allow the creation of con@ebelasses during theamework
instantiation. The instantiation of this last kind of variation point takasepthough

the creation of new classes, callggplication classeswhich exist only in framework
instances.

It should be clear that these three kinds of variation points hHtigeekt purposes:
in variable methods the method implementation varies, in extensible classes the class
interface varies, finally, in extensible interfaces thipes in the system vary (new
application classes may be puaed). All three kinds may either be static (do not
require runtime instantiation) or dynamic (require runtime instantiation).

There are other kinds of variation points ianfiework design,ush as variation in
structure (attribute types for example). Coplien describes several kinds of variability
problems in his multi-paradigm design work [6]. They may be afled to UML-F
using similar principles to the ones described in this papeavda theexplosion of
the number of extensiored tokeep UML-F simple we haveodused in the most
common kinds of variation points, which are enougltdwger the great majiy of
frameworks.

The new UML-F constructs are represented as extensions to UML by:
» Extending class diagrams to explicitly identify and classify the variation points;
* Extending statechart diagrams to model instantiation restrictions.

Both diagrams are extended with appropriate set of tagsafijged valug). Class
diagrams are extended by ttagys {variable}, {extensible}, {incomplete},appl-class},
{static}, and {dynamic}. The first two represent variable methodsd extensible
classes, respectivelyStatic} and {dynamic} are used to classify thenegarding to
their runtime requirements. THacomplete}tag (in UML 1.3 known as constraint)
has beenadapted to dentify extensible interfaces. Thkeywords {extensible},
{variable}, and {incomplete},indicate what are the variation poinasd their exact
meaning. Théappl-class}stereotype indicates placeholders for classes that are part of
instantiated applications only.

OCL specifications [25, 33, 34] may be written on notes asandatd UML,
however, they have an enhanced meaning if the notes acbesttto variation points.
In the case of variable methods, it means that all method implementations that may be
defined during instantiationhsuld follow the specification. If an OCL constraint is
attached to an extensible class, in order to describe the behavior of methods that do not
even have a name yet, the speciaffagall new methodsis used. This tag indicates
that the constraint applies to all methods that mightadded during instantiation.
Similarly, if attached to an extensible inta&, theOCL constraint applies to all
methods that can be overridden in or added to each application class.

The new tagoptional} extends the ahdard stachart diagrams to indicate that a
state is not obliged to not occur. Statechat templates mapded to all kinds of
variation points. Generally, they are used to describ&ttarn behavioithat should be
followed by the variation point inshces, as shown inFigure 4. OCL

specifications, on the other hand, are generally used to specify invariantadhlat s
be satisfied by the variation point instances, as showrigare 3. Thus, stachart
templatesand OCL constraints complemeptaich other inconstraining the possible
instantiations of variation points, and may therefore be used together.

Table 1 summarizes the new UML-F elemestsd informally defies their

semantics.
Table 1. Summary of the new elements and their meanings
Name off Type of| Applies to| Description
extension extension| notational
element o
UML
{appl-class} Boolean | Class Classes that exist only inarfrework
Tag instances. New application classes may
be defined during the dmework
instantiation. They are placeholders that
complement the description [of
extensible interfaces to indicatehere
the new classes should be added.
{variable} Boolean | Method The methodmust be implemented
Tag during the framework instantiatiop.
This element identifies variabje
methods.
{extensible} | Boolean | Class The class interfacdepends on the
Tag framework instantiation: new methods
may be defined to ernhd the clasp
functionality. This elementdentifies
extensible classes.
{static} Boolean | Extensible | The variation pointdoes not equire
Tag Interface, runtime instantiation. The issing
Variable information must be provided 4t
Method, and compile time.
Extensible
Class.
{dynamic} Boolean | Extensible | The variation point equires runtimg
Tag Interface, instantiation. The missing informatign
Variable may be provided only during runtime
Method, ang
Extensible
Class.
{incomplete} | Boolean | Generalizatio] New clases, which are the applicatipn
Tag n and| classes,may be added during the
Realization | framework instantiation. This elemgnt
identifies extensible interfaces.
{for all new | Boolean | OCL Indicates that the OCL constraint |is
methods} Tag Constraint | meant to hold for all newly irdduced

methods.

{optional} Boolean | States Indicates that a given state is optignal.
Tag It is useful for specifying a template
behavior that should be followed by the
instantited variation point.

2.5Tool Support

This subsection shows how tools that benefit from the UML-F design diagrams may
be defined to assist both framework development and instantiation. Thedésolibed

here are implemented IRROLOG, however, most of the currently available UML
case tools support reasoning abagged valueandcould beadapted to work with
UML-F. This subsection gives information to allow the customization of Wdée

tools for working with OO frameworks.

Assisting Framework Development. Standard OQdesign languages do not
provide constructs for representing flexibility and variability requirements, wideh

to be represented as a combination ahdard OCconstructs. UML-F addresses this
problem representing variation points as first-class citizens and makingarieniork
design more explicit and simpl@he new language elements are notcerned with
how to implement the variability and extensibility aspects of tamdéwork, but just
with how to appropriately repsent hem at thedesign ével. Consequently, the
diagrams are more abstract (and mamencise) han sandard OO diagms.
Unfortunately some of the newesign etments cannot be directimapped into
existing OO programming languages.

Extensible interfaces can be directly implementecugh sandard mheritance.
Although dynamic extensible interfaces are not supported in compiled languages such
as C++, they may be simulated througymamic linking (Microsoft Window®LLs,
for example). Variable methodsd extensible class, on the othdrand, cannot be
directly implemented, since astdard OO progimming languages do not provide
appropriate constructs to model them.

To bridge this design-implementation gap, severethniquesnay be used. Design
patterns are a possible solution, since several patterns provide solutions for flexibility
and exénsibility problemsand are based only on extensible irstees. Thus, design
patterns may be used to transform variable metlaabs extensible classes into
extensible interface variation poén Figure 5 illustrates the use of the Strategy
design pattern [15] to implement this mapping. Clas&sowCourse and
SelectStrategyre identified with the aigs {separation, émplate} and {separation,
hook} to indicate the roles they play in the pattern. Strategy is based on the
Separation meta-pattern [28], in which a template class is responsible for invoking the
variable method in thbook class. The use of tags that indicate meta-pattern roles
complement the UML-F description for variation points implemented by design
patterns, further clarifying the design. A similar solution for identifying design
diagrams with pattern roles is described in [30].

The transformations used to map variable methants extensible class into
implementation level constructs must Wehavior-preserving, since the system
functionality is hdependent of the im@ientation @échnique used to model the

10

variation points. A description of how these transformations may be formaifiedre
is presented in [11].

ShowCourse ShowCourse SelectStrategy
{separation, template } select | {separation, hook}

+showCourse >———] .
0 +showCourse() U+ select() {dynamic}
tselectCourse() I

+selectCourse()

{variable, tshowC 0
dynamic} showConten
+showContent () Al
{incomplete}
, Framework
Framework design . . ConcreteSelect
implementation {appl -class}

+select()

Figure 5. Transforming variable methods into extension interface variation points.

The code generation tool [11] is used to automate design-implementation
transformations. It is responsible for mapping the new design elements of UML-F
into appropriate imgmentation level structures. More specifically, it is responsible

for eliminating the variable methodmd extensible classes from tlesign. The
standard UML artifactand extensible inteates do noheed to bemapped sice they

have a direct corrpendence to imgimentation level constructs. This mapping is
based on meta-artifacts that describe the transformations. These meta-artifacts are called
implementation models. ifferent implkementation models defindffdrent mappings.

The tool supports the definition of new implementation models, allowing
experimentation with several approaches for modeling variation points.

The transformation illustrated iRigure 5is an example of a mappirsypported
by the codegenerationtool. The implementationmodel that spports this
transformation describes hodynamic variable methods aneodeled by the Strategy
design patternFigure 6 illustrates thecode for this impmentation model, which
searches for all variable methods in the design diagrams and applies Strategy to them.

The implementation transformations (illustratedrigure 6) preserve the design
structure described roject and creatéNewProjectto store the generatecamework.
All the design elements that are not transfed, the kernel ementsand the
extensible interfaces, are copied fremojectto NewProject.The variable methods and
extensible classes are transformed in the way described by the selecwddntption
model.

11

applyStrategy (Project, NewProject) :- ¢ Searches for

[...] .
forall (variableMethod(Project, Class, Method, _), variable
strategy(Project, NewProject, Class, Method)), methods
[...]

Uses strategy

strategy(Project, NewProject, Class, Method) :- f————
concat (Method, 'Strategy', NewClass), to model them

createExtensibleInterface(NewProject, NewClass, dynamic),
createMethod (NewProject, NewClass, Method, public, none, abstract),
createAggregation (NewProject, Class, NewClass, strategy),

[...]

Figure 6. Strategy implementation model.

Each valid impémentationmodel artifact has to define at least four transformations:
(static and dynamic) variable mabds and (static and dynamic) extensible class.
Examples of implementation models thiadve been successfully used tosisis
framework impémentation inelde differentcombinations ofdesign patterns, meta-
programming [21], g®ect-oriented programming (AOP) [204nd subject-oriented
programming (SOP) [17], as deserl in [11]. The case study section also describes
some other mappings.

The selection of the most appropriagéehnique to be used modehch variation
point is a creative task anchnnot be completely automated. However, UML-F
diagrams and the set of ingphentation models available feach kind of variation
point may help the &mework designer to narrow his or hers search for appropriate
implementations. Moreover, theode generation tool automatically applies the
transformation once the implementation model has been selected, making the mapping
from design to implementation less error prone.

Some UML case tools, such as Rational Rose (http://www.rational.com), allow
the customization of how code generated from the design diagrs. Therefore, it is
possible to specify how code should be generated for the new UML-F elements.

Assisting Framework Instantiation. During the framework instantiation,
application classes must be providedcmmplete the definition of the extensible
interface variation points (at this point this is the only kind of variation points in the
system, given that the other two have already been eliminated during implementation).
Figure 7 illustrates a framework instantiation. After the instantiation all extensible
interfaces disappear from the desigmcsi the{incomplete} generalizationdecome
“complete.” In this example the variation point was instantiated by justamezete
application classSimpleSelectyhich is marked by théc-hook} tag to indicate that

it plays the role of a concret®ok. In ageneral case, however, several application
classes may be provided for each extensible interface.

The instantiation tool[11] is used to assist the applicatideveloper to create
applications from the framework. The tokhows what are thexact pocedures to
instantiate extensible interfaces: it has to create a new subclass, ask for the
implementation of each of the intace mdtods, andask for the definitior(signature
and impkementation) foreachnew method that might badded, if any. The tool
prompts the application developebout all the equired information to complete the
missing information for each variation point in the framework structure.

12

Note that the tags that indicate the meta pattern roles are useful jesthémcing
the design understating, and are not processed by the implementation and instantiation

tools.

Depending on the implementation model selectéf&rent instantiation tasks may
be required for the same variation point, as willilestrated in Section 3. UML-F
descriptions can be seen as more structured cookbooks [22] that precisely inform were
application specific code should be added. The instantiation tool is a wizard ket ass
the execution of these cookboolk3nce again thecode generation part of atdard
UML case tools may be adapted to mark the points in wtode fiould beadded by
using the information provided by the extensible interface tags.

ShowCourse
(separation, template

select

+showCourse ()
+selectCourse()
+showContent()

Framework
implementation

SelectStrategy
{separation, hook}

+select() {dynamic |

{incomplete}

ConcreteSelect

{appl-class} ShowCourse SelectStrategy
separation, template select | {separation, hook}
+select() > -
+showCourse () +select()

+selectCourse()

+showContent() ?

Application SimpleSelect

{separation, c-hook}

+select()

Figure 7. Instantiation example.

3 Case Study

This section details the inmhentationand instantiation of the web-education
framework modeled ifrigure 3. It starts from the UML-F specification, dezs the
final framework implementation, and shows how it may be instantiatedbdinefits
of UML-F and its supporting tools are discussed throughout the example.

3.1Framework Implementation

Let us consider that the only variation points of the framework arertes presented
in Figure 3. Since all the variation pointsave been identifiedind marked in the
UML-F design diagrams, the next step is to provide implementation solutions to

13

model hem. As discussed before, extensible iafa§and the famework kernel
(modeled only by andard UML constructs) have a straightforwarthpping into OO
programming languagesTherefore the framework designeioctis during the
implementation phase should be on howntodel variable methodand extensible
classes. In this example two variation poihts/e to be examined: thleelectCourse()
variable method and tlghowCoursextensible class.

The designer has to select an appropriate technique based on his expkeece.
If a supporting tool with a set of implementation models is available, the analysis of
these models may facilitate this task. One of the models available icotkee
generation tool is the use of the Strategy design pattern [15] termept dynamic
variable methodand aslightly changed usion of the Separation meta-pattern [28],
which allows the invocation zero or more hook methods, to implerdgmamic
extensible classes. Since the transformations are automatpaligd by the tool let
us try this solution and see what happens. The resulting design is sh&aguire
8.

ExtensionMethods ShowCourse SelectStrategy
{separation, hook} | extend PR (separation, template} select| {separation, hook}
+void op() {dynamic ¥ fSelectedCourse <>—r + int select()
+void showCourse () {dynamic}
,| +int selectCourse()

4 l / +showContent(int)

{incomplete} / {incomplete}
ConcreteExtension - ConcreteSelect
{appl-class! fSelectedCourse = selectCourse(); {appl-class}
forall (extend) { extend.op();}
+ void op() showContent(fSelectedCourse); +int select()

Figure 8. A pattern-based implementation.

This solution worked quite well. The solution for extending $mwCourseénterface
allows the addition of new methods hout directly changing the class inté. It
allows an instance application to define zero or more methods iliabevinvoked
before the actual content of the course is digal,and that is the expectedhaior.

An important point to make is that the instantiation restrictjgatified by the OCL
constraint in Figure 3 is automatically assured by this solution, since the new
methods do not haveccess to thefSelectCourseattribute that is private to
ShowCourse

In the case obelectCourse()however, the Strategy solutiaoes not guarantee
that the behaviorpgcified by the statechart templateRigure 4 will be followed.
Stategy is a white-box pattern since it allows the definition of any behavior for the
hook method. The verification of this kind of instantiation restrictions is not an easy
task (and isgenerally anundecidableone), however there ar®rae implementation
solutions that may be more restrictive, or more black-box.

14

A solution that might be more appropriate $slectCourse()s the definition of a
meta-object protocol (MOP) [18]. MOPs allow meta-level concepts tdybamically
defined in terms of base-level ones. Thus, the use of MOP maygbedaalternative
since it is a more restrictive solution than the Strategy pattern: the possible
instantiations are just the ones defl by the pratcol. Figure 9 illustrates the use
of MOP for this example. Whenever instances ofSakctMORclass are created a set
of Boolean parameters that complete the variation point behavior have to lakegirovi
login (TRUE if login is required)major (TRUE if a student can attd only the
courses related to his or hers majand validate (TRUE if it is required that the
student have to be assigned to be able to attend the course). The combination of these
parameters provides all the possible instantiations allowed by the MOP. Note that this
solution is much more restrictive than the Strategy solution, but it hesdWaatage
that it always preserves the instantiation restrictiopsciBed in the statechart
template.

Extensianethods ShowCourse SelectMOP
{separation, hook} |{extend separation, template} select
[+ void op(){dynamic | _fSelectedCourse 1|+ voidselectMORBooleanlogin,

Boolean major, Boolean validate)
+void showCours¢) tint select()
int selec

| int selectCours€)

Ll v "‘ +showContenfint)

{incomplete}

ConcreteExtension | 1 I :
{appkclass} fSelectedCourse=selectCoursgl, m, v);

forall(extend) { extend.op();}
+ void op() showContenfSelectedCoursg;

Figure 9. Using MOP to model selectCourse().

The implementation of MOPs cannot be automated bycdkdegeneration tool, since
each MOP is specific for a given variation point. However, the UML-F instantiation
restrictions provide a good documentation that can be used By @fredevelopers. In

this example the parametéogin andvalidatecan be directly derived frofigure 4.

In generaMOPs may equire objets more complex th&woleanones as pameters
and reflection may be required in their implementation.

Note that the runtime constraiqStatic} and{Dynamic}play a crucial role during
framework development. In thisxample, if the variation points were defil as
{Static} a much simpledesign solution based on the Unification meta-pattern [28]
could be used for both cases. In Unification-based patternsethplateand hook
methods belong to the same clagsgding to a less flexible but simpler design
solution.

3.2 Framework Instantiation

During instantiation the variation points missing information have to be fulfilled with
application specific code. Since the variable mettaakextensible class havéeen

15

eliminated during implementation, only extensible classes are left to be instantiated by
the application developers.

Tools such as the instantiation tool may facilitate this task by identifying all the
points in which code has to beitten. However, even if no tools are available, the
UML-F diagrams make this task very straightforward since all the extensibladeterf
and their corresponding instantiation restrictions are marked in the diagrams.

Figure 10 shows an example of application created from #meefvork defied in
Figure 8. Application classes are provided domplete the definition of the two
variation points. Note that if the MOP solution Hssbnadopted theselectCourse()
variation point would not require new application classes, since MORmgetely
instantiated during runtime by parametrization. This illustrates thieredt
implementation modelapplied to the same variation point magmand different
instantiation procedures.

ExtensionMethods ShowCourse SelectStrategy
{separation, hook} | extend {separation, template} select| {separation, hook}
Hvoid op() {dynamic * _fSelectedCourse 1 + int select()

+void showCourse()

+int selectCourse()

Z 5 +showContent(int) z 5

TipOfDay Announcement SimpleSelect LoginSelect
{separation, c-hook} {separation, c-hook} {separation, c-hook} {separation, c-hook}

Figure 10. An application created from the framework.

4 Related Work

This section describesome of the current designedhniques used tamodel
frameworks, and relatehém to UML-F. It shows that currentlygposed constructs
used to represent framework variation points have not adequately met our expectations.

Early OO design methods, like OMT [31], as well as the current UML 1.3, provide
a number of diagrams for structure, behavag interaction. Bferent OO design
notations include different rifacts, such as the representation of object
responsibilities as CRC cards [1, 36Jowevernone of these artifacts has explicit
support for the representation of the variation points of a framework.

UML represents design patterns as collaborations (or mecharaschgyovides a
way of modeling framework adaptation through the binding stereotype Ha®2Jever,
framework instantiation usually is mommplex than simply assigningoncrete
classes to roles: variation points might have interdependencies, might be optional, and
so on. Catalysis uses the UML notatiand poposes a design method based on
frameworks and components [8]. Frameworks are treated in Catalysis as collaborations
that allow substitutionHowever, as discussed tlughout the paper, OO application

16

frameworksmay equire different instantiatiomechanismsTherefore, Catalis and
standard UML only partly address the problems identified in this paper due to a lack of
support for explicit marking variation points and their semantics.

Design patterns [4, 15, 35] are usually described using standard OO diagrams. Since
various design patterns provide solutions to variability and extensibility problems [15]
they define a common vocabulary to takout these concepts [3&hd may enhance
the understanding of framework desig8emetimes design pattern namesaed as
part of the class names allowing thenfiework user to identify variation points
through the used namedowever, in a typical framework design a single variation
point class can participate in various design pattefhen theapproach of using
design pattern names as class names becomes obfuscatgub<3ite solution for
this problem is the use of role-based modeling technique, as shown in [30].

Meta-level programming [21], whicban be seen as an architectural pattern [4],
provides a good design solution for allowing runtime system reconfiguration.
Therefore, the use of meta-level pragiming is a usefulethnique for modeling
variation points that require runtime instantiatiand (with appropriate conventions)
it may facilitate the identification of variation points in thanfreworkstructure. The
case study shown in section 3 has shown that both design pattelmeetadvel
programming can be used in conjunction with UML-F, during the implementation of
variation points.

The use of role diagrams to repent object cadboration is a promising field in
OO design research [5]. Riehle and Grossppse an extension of the OOram
methodology [29] to facilitate #mework desigrand documentation [30]. His work
proposes a solution for an explicit division of the design, highlighting the interaction
of the framework withits clients. The use of roledoes simfify the modeling of
patterns that require several object abtirationsand provides a solution for
documenting classes that participate in several design patterns. However, no
distinction is made between the keraed variation point elments. This problem is
handled using design patterns: if the framework user knows what patternsseerto
model each of the variation points he or she damve an intilion on how the
framework should be instantiated. On the other hand, if the pattern selections are not
explicitly represented, the identification of the variation poibscomes again
difficult. Another dimdvantage of this approach is the solution fapdeling
unforeseen extensions proposed in [30], whitdly kad to a veryangled design.
Although it can be a good solution it should have a more concise representation at
design level. This paper has shown how to use roles to complement the description of
variation points implemented by design patterns.

Contracts [18, 19] anddaptable plug-and-plasomponents (APPCs) [24] provide
linguistic constructs for implementing calloration-based (or rolmsed) diagrams in
a straightforward manner. They may be used to implement variation points since they
represent instantiation as first-class citizédswever, these concepts a8ll quite
new and their use for impmenting fameworksneeds further nvestigation. Also
Lieberherrand the researchers of tieemeter Project [24] havdeveloped a set of
conceptsand tools to help andvaluate OO design that can heed to enhance
framework development.

The Hook tool [13, 14] uses an emtled version of UML in which the variation
point classes are represented in gray. This differentiation between kernel and variation

17

points helps framework desigmd instantiation, but itloes not solve the problem
completely. Framework designers still have to provide the solutions for mo@elhg

variation point without any tool support. §ood point of this approach is that
instantiation constraints are treated as first-class citizens in the definition of hooks.

Several design pattern tools [3, 9, 10, 23] have been proposed to facilitate the
definition of design patterns, to allow the incorporation of patterns $peecific
projects, to instantiate design descripticas] togenerate code. Howevehely kave
the selection of the most adequate pattern to model each variation point in the hands of
the framework designer. Although this is obviously a creative task, if variation points
are modeled during design tools thasiat the systematization of the selection of the
best modeling technique feach variation pointmay beconstructed, simplifying the
job of the framework designer.

5 Conclusions and Future Work

The sandardization of the UMLmodeling language makes it attractive as a design
notation for modeling OO frameworks. This paper shows that Uddiayt hcks some
constructs to explicitly represeanhd clasify framework variation pointand their
instantiation restrictions. The gposed extensions to the UML design language
address this problem representing variation points through appropriate maikiaygs.
make the famework design morexplicit and therefore easier to understand and
instantiate. The extensions have beennddfiby applying the UML extension
mechanisms.

Although the extensions describe in this paper have been used to racuadrks
successfully [11], they are not the only ones that mayapygied to framework
development. Other extensions thigal with new kinds of variability problems may
be added to UML-F, using a similapproach to thene desched in thispaper. A
description of several kinds of variation problems is presented in [6].

The new UML-F elements are not concerned with how to implement the variability
and extensiltity aspects of the &mework, but just withhow to appropriately
represent them at the design level. Furthermore, through use of this kind of extensions
it is more likely that the framework user will not have to go into the detailed internals
of a framework, being able to use it in a more black-box manner. Consequently, the
diagrams give us a more abstract aodcise representation of a framewonken
compared to standard OOADM diagrams.

One of the most important claims of thigper is that frameworkshsuld be
modeled though appropriate design constructs that allow the representation of
variation points and their intended behavior. The extended class disgmdrstatchart
templates facilitate the definition eflequatelocumentation, which may be used to
assist the imework developer imodeling the variation pointand the framework
user in identifying these points during instantiation.

The extensions also allow for the definition of supporting tools that may partially
automate the development and instantiation activities, as describedpapkignd in
[11] with more detail. Appropriate tool assistance should @ad to a better time-to-
market, reduced software costs, and higher software quality.

18

References

1. D. Bellin and S. Simonélhe CRC Card BogkAddison Wesley Longman, 1997.

N

S. Berner, M. Glinz, SJoos, “A Classification of Stereotypdsr Object-Oriented

Modeling Languages”, UML'99LNCS 1723 Springer-Verlag, 249-264, 1999.

3. F. Budinsky, M. Finnie, J. Vlissidesnd P. Yu,“Automatic Code Generation from
Design Patterns”Object Technology35(2), 1996.

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerad, M. Stal, Pattern-Oriented
Software Architecture: A System of Patterdshn Wiley & Sons, 1996.

5. J. Coplien, “Broadening beyond objects to pattearsl other paradigms”,ACM
Computing Survey28(4es), 152, 1996.

6. J. CoplienMulti-Paradigm Design for C++ Addison-Wesley, 1999.

7. D. D'Souza, A. Saneand A. Birchenough, “First-class Extensibilityfor UML —
Packaging of Profiles, Stereotypes, PatternsiLt99, LNCS1723 Springer-Verlag,
265-277, 1999.

8. D. D'Souza and AWills, Objects, Components,and Frameworks withUML: The
Catalysis ApproachAddison-Wesley, 1997.

9. A Eden, J. Gil,and A. Yehudai;'Precise Specification and Automatic Application of
Design Patterns”, ASE'9TEEE Press]1997.

10. G. Florijin, M. Meijers, P. van Winsen, “Tool Suppddr Object-OrientedPatterns”,
ECOOP’97,LNCS 1241 Springer-Verlag, 472-495, 1997.

11. M. Fontoura, “A Systematic Approador FrameworkDevelopment®, Ph.D.Thesis,
Computer Science Department, Pontifical Catholic University of Rio de Jariiazjl
(PUC-Rio), 1999.

12. M. Fontoura, L. Moura, S. Cresp@and C. Lucena/ALADIN: An Architecture for
LearningwareApplications Design and Instantiation”, Technical ReportMCC34/98,
Computer Science Department, Computer Science Departnioritifical Catholic
University of Rio de Janeiro, Brazil (PUC-Rio), 1998.

13. G. Froehlich, H. Hoover, LLiu, and P.Sorenson, “Hooking into Object-Oriented

Application Frameworks”, ICSE'9MEEE Press491-501, 1997.

19

14. G. Froehlich, H. Hoover, L. Liuand P.Sorenson,"Requirements for a Hook3ool”,
(http://www.cs.ualberta.ca/~softeng/papers/papers.htm).

15. E. Gamma, R. Helm, R. Hohnson,and J.Vlissides, Design Patterns, Elements of
Reusable Object-Oriented Softwareddison-Wesley, 1995.

16. D. Hamu and M. Fayad, "Achieving Bottom-Linelmprovements with Enterprise
Frameworks",Communications of ACMA1(8), 110-113, 1998.

17. W. Harrison and H. Ossher, “Subject-Oriented Programming @kitique of Pure
Objects)”, OOPSLA'93ACM Press 411-428, 1993.

18. R. Helm, I. Holland, and D. Gangopadhyay, “Contracts: SpecifyinBehavioral
Composition inObject-Oriented Systems’DOPSLA/ECOOP’98,Norman Meyrowitz
(ed.),ACM Press 169-180, 1990.

19. I. Holland, “The Design and Representation oDbject-OrientedComponents”, Ph.D.
Dissertation, Computer Science Department, Northeastern University, 1993.

20. G. Kiczales, J. Lamping, A. Mendhekar, ®laeda, C.Lopes, J. Loingtier,and J.
Irwin, “Aspect-Oriented Programming”, ECOOP’96NCS 1241 220-242, 1997.

21. G. Kiczales, JdesRivieres, and D.Bobrow, The Art of Meta-objectProtocol, MIT
Press, 1991.

22. G. Krasnerand S.Pope, “A Cookbookfor Using the Model-View-Controller User
Interface Paradigm in Smalltalk-8QJpurnal of Object-Oriented Programmingy(3), 26-
49, 1988.

23. T. Meijler, S. Demeyer, and R. Engel, “Making Design Patterns ExplicRAGE — A
Framework AdaptativeComposition Environment” ESEC’97, LNCS 1301, Springer-
Verlag, 94-111, 1997.

24. M. Mezini and K. Lieberherr, “Adaptative Plug-and-Play ComponentEfaslutionary
Software Development”, OOPSLA'9&CM Press 97-116, 1998.

25. OMG, “OMG Unified Modeling Language Specification V.1.3", 1999
(http://www.rational.com/uml).

26. D. Parnas, P. Clementand D.Weiss, “The Modular Structure o€omplex Systems”,

IEEE Transactions on Software Engineeriigi-11, 259-266, 1985.

20

27. W. PreeDesign Patterns for Object-Oriented SoftwddevelopmentAddison-Wesley,
1995.

28. W. Pree Framework PatternsSigs Management Briefings, 1996.

29. T. Reenskaug, P. Wold, and O. LehMégrking with objectsManning, 1996.

30. D. Riehle and T.Gross, “Role ModelBased FrameworkDesign and Integration”,
OOPSLA'98,ACM Press 117-133, 1998.

31. J. Rumbaugh, M. Blaha, W. Premerlani, Eeldy, and W.Lorensen, Object-Oriented
Modeling and DesignPrentice Hall, Englewood Clifs, 1994.

32. J. Rumbaugh, IJacobson,and G.Booch, The UnifiedModeling LanguageReference
Manual, Addison-Wesley, 1998.

33. S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmeard A. Wills, The Amsterdam
Manifesto on OCL, Technical Repoftp appear 1999).

34. S. Cook, A. Kleppe, R. Mitchell, BRumpe, J. Warmer, AWills, Defining UML
Family Members with Prefaces, TOOLS Pacific’#EE Press(to appear 1999).

35. J. Vlissides, Pattern Hatching: Design Pattern#\pplied Software PatternsSeries,
Addison-Wesley, 1998.

36. R. Wirfs-Brock, B. Wilkerson,and L. Wiener, Designing Object-OrientedSoftware
Prentice Hall, 1990.

21

