
Building Neural Network components
Fábio Ghignatti Beckenkamp and Wolfgang Pree

Software Research Lab
University of Constance

D-78457 Constance, Germany
E-Mail: lastname@acm.org

Abstract
The paper discusses the implementation of Artificial Neural Networks (ANN) components. In

particular the proposal of an ANN component interface necessary for these components to be

deployed by third parties. The paper starts analyzing different approaches to the software

implementation of ANN including structured and object-oriented programming paradigms. Following

the paper introduces the ANN component interface the authors consider minimal for the

implementation of ANN in a component based software environment. The proposed interface offers

the means for the object to implement basic ANN operations such as generating the neural network

architecture or testing and learning data cases. The authors’ goal, in proposing such an interface, is

to offer a means for different ANN software programmers and users to easily share their ANN

software solutions by using the proposed interface and by following a component standard. The

paper finishes commenting the importance of having ANN component software and exemplifies

some applications the already implemented ANN components have been used.

1 Introduction
The main bibliography in Artificial Neural networks generally explains the different
ANN models using mathematical representation and has no code examples on
how to implement in software the mathematical definitions. When the authors do
some sort of code example, they are compelled to do some assumptions or
reductions due to the chosen programming language or programming
representation method. Those assumptions do not mean that the implementations
are wrong or are not equivalent to the mathematical representation. However it
may mean that, when represented as programming code, some important aspects
to software construction has to be considered such as the code efficiency, the code
facility in communicating the ANN method and the code usability. Furthermore
when somebody wants to map the mathematical representation to computer
software, the concepts can be implemented in different ways.

The author that chooses to have code examples shell assume that some readers
are not familiar to the language he chooses, or that some readers does not like to
work with that language or even that he/she cannot work with it. The author’s
programming stile has to be very clear in order not to turn the code complicated to
read and consequently to understand. Finally, the reader may do not agree with
some programming choices made by the author such as the definition of certain
data structures or functions. These aspects turn difficult the communication among
the author and the reader. One example of authors that choose to have code
example is (Freeman and Skapura, 1992). They develop a complete system

2

2

infrastructure (simulation environment) to facilitate the development of different
ANN. The code is done in Pascal using structured paradigm. The coding is very
didactic, the style is clear and precise. The most complex programming structures
used are linked lists for implementing the core ANN structures such as layers of
neurons and synapses connections. But the programming paradigm they used is
structured and nowadays people are interested in object-oriented solutions.

There are also few authors that directly approach the problem of constructing
programming code to ANN. Some relevant attempts are (Rogers, 1997; and
Masters, 1993). Masters attempts to give tips on how to implement ANN in C++.
His coding is not properly object-oriented. He used classes to define ANN models
but does not have more fine-grained classes to implement more diverse ANN
aspects. The several aspects are implemented as methods much likely as in a
structured or functional programming style. Rogers goes more deeply in the object-
oriented approach, he defines ANN classes such as neurons and synapses and
has the preoccupation of appropriately apply and benefit of the object-oriented
characteristics such as polymorphism, inheritance and code reusability. The
problem of the object-oriented approaches is the code efficiency. Object-oriented
software is complex and sometimes its efficiency is dependent of appropriate
design choices.

Why there is not much published research/work directly approaching the
development of software for ANN? Is there no real preoccupation regarding the
appropriateness of programming methods for the construction of ANN software
among the ANN research community? Is it such a preoccupation a task for the
ANN community? The aim of this work is not to answer these questions. They
arose in this work because it focuses exactly in developing appropriate ANN code.

The construction of ANN in computer is clearly and naturally a reduction of the
original model, as the definition of ANN is a reduction of the biological neural
networks. For example the inherent parallelism of the ANN models is rarely
implemented or considered by most of the ANN programmers. Of course this is
part of the reductionism that people assumes that exists, and does not care much
about it.

This reductionism reveals that communicating the characteristics of an ANN model
using programming code is pretty dangerous. It is possible to induce the reader to
misunderstand important aspects of ANN. This work also does not propose a new
way of communicating the details of an ANN model to readers. This work, in fact,
just points the problem because it is analyzing several programming solutions for
ANN in order to propose a way of implementing them using the most recent
programming paradigm, the components. However one important characteristic of
component software is to nicely communicate what a software code is and is not
able to do via interfaces. Perhaps component software is an efficient way of
explaining and exploring the ANN characteristics.

The Szyperski (1998) definition of components explains how they act through
interfaces: “A software component is a unit of composition with contractually

3

3

specified interfaces”. Components have interfaces to communicate to other
components. The interfaces are contracts among the components that allow them
to communicate to each other. It is necessary that the component implement a
certain contractual interface to be able to be compound by third parties. One nice
characteristic is that components may be implemented in any computer language
and not only in object-oriented languages as some people presume. The
component interface must be respected and implemented independently of the
language of choice. This means that a programmer can use his/her language of
preference to create the component. It also means that there could exist different
implementations for the same component. This is an important characteristic
because it is possible to develop different versions of a component with different
levels of complexity or efficiency. Perhaps a component may be implemented in a
language that contemplates efficient memory allocation or in another that
contemplates efficient parallel code execution. The user may choose to use any of
the components based on his/her necessities once they properly implement the
same public interface.

Nowadays there are competing components “wiring” standards such as Object
Management Group (OMG) Common Object Request Broker Architecture
(CORBA), Sun’s JavaBeans and Microsoft’s Component Object Model (COM). At
the moment, it is not able to forecast which one is going to be the standard “de
facto” or if there will be only one actual standard. CORBA essential definition is
worried with the fundamental problem of wiring components that is how
components implemented on different languages and running on different
platforms interact. Its goal is to enable open interconnection of a wide variety of
languages, definitions and platform. Such a very open approach do not permit the
interoperation based on efficient binary level leading the definition to depend on
high-level protocols that are resource expansive. The enormous consortium that
forms the CORBA effort shows that this standard has an important contribution on
the component usage solidification.

The Sun´s JavaBeans standard is concentrated on the Java language
specification. It supports classes and interfaces where the interfaces are, in fact,
fully abstract classes. The Java interfaces took out implementation inheritance,
which favors object composition and message-forwarding techniques. The Java
distributed model restricts remote access to interfaces and relies on RMI (Remote
Method Invocation) service. Although implemented to be the Java language
component standard, JavaBeans has been designed to enable the integration of a
bean into container environments outside Java such as ActiveX and OpenDoc.

The COM components foundation was defined to the Microsoft’s platform, but its is
also available to other platforms by third parties. COM does not follow CORBA
standard and contrast very much form it because it is binary standard. It means
that COM can work more efficiently in the implemented platform. COM defines only
interfaces making the standard completely independent of programming language.
The COM distributed standard DCOM is based on the creation of client side proxy
objects and server side stub objects. Microsoft’s COM+ standard combines COM

4

4

with lightweight object models. COM+ is similar in scope to CORBA and even more
concrete than JavaBeans because it allows the binary compatibility of components,
it is a virtual-machine architecture to support dynamic languages as scripting
languages. It also provides true garbage collection, and safe in-process
cooperation between components.

The user shell distinguishes the different approaches, and makes his/her choices.
The tendency is not to converge to one universal standard but to continue the
existence of few competing standards and few bridge products among them. In this
work the used standard is JavaBeans because Java is the language of choice.
Anyway it is easy to use tools that automatically generate the CORBA interfaces
and stubs for the JavaBeans components what makes the implementation in Java
worth while. The use of the Java language restricts the solution efficiency because
its performance restrictions. Anyway the goal of this work is not to have high
performance ANN components but to test the generality of the proposed ANN
components interface. Furthermore the component ability of mobility and multi-
platform running are requirements that Java language covers with its virtual
machine and RMI facilities.

2 The CANN (Components for Artificial Neural Networks) solution
The CANN is a study that implement ideas on how neural networks can be
constructed on a component basis. The study evolves: the creation of basic ANN
components to build any ANN model at hand; the creation of ANN components that
can be reused by third parties; the construction of a simulation infra-structure that
allows to plug the several ANN components and use/test them. Furthermore there
is a component created to support the problem domain modeling and the data
sources access to the ANN learning and testing process.

The CANN components are object-oriented designed. The core parts are done as
small frameworks to improve implementation reusability and flexibility. The details
on the object design is described on (Beckenkamp and Pree, 1999).

In the realm of CANN development, because of time constrains, it is not possible to
approach many existent ANN models. Few models were picked up among the
most important ones, based on criteria such as: application interest (potential),
architecture and kind of learning. The idea is to be able to cover a good variety of
situations, being able to implement enough generalizations that could be useful for
the most of the ANN models without having to implement many models.

The first chosen model was the Backpropagation (Rumelhart et al., 1986). This
model was chosen because it implements a supervised learning based on error
correction learning algorithm, and its architecture is feedforward multilayer and it is
fully connected. The second chosen model is the Combinatorial Neural Model
(CNM) (Machado and Rocha 1990). This model also implements supervised
learning based on a variation of the error backpropagation learning algorithm. The
network is feedforward and not fully connected. Besides being an important and
interesting neural model by its concepts, the reasons to implemented it in this work

5

5

were twofold: the profound knowledge of the author on this model; and the special
interest on the application of this model on the credit scoring problem by some
European companies. The third ANN is a typical unsupervised competitive learning
model, the Self-Organizing Feature Maps (SOM) (Kohonen, 1982). The SOM
architecture is based in a lattice two-dimensional map. Finally, another
unsupervised competitive learning model was chosen, the Adaptive Resonance
Theory (ART) (Carpenter and Grossberg, 1987). The extra important architectural
aspect implemented by this model is the presence of feedback connections among
its neurons, so the network has a recurrent architecture.

2.1 The ANN component interfaces

Each ANN component relies in a general interface that allows them to
communicate to other components of the CANN environment. One interface was
created to act as the ANN components core communication: INetImplementation.
This interface defines a set of methods that an ANN component shell implement to
be able to be deployed in a third part software solution. It defines methods for
general ANN tasks such as learning or testing a case, generating the ANN
structure, etc. It also defines essential methods that an ANN component must
implement to be able to work on the CANN distribution facility. The ANN
component also implements the interface java.io.Serializable, which allows the
component to be persisted. The Figure XX shows a schematic design of an ANN
component with its two “wiring” interfaces.

ANN
Component

Serializable

INetImplementation

Figure 1 – ANN Component.

The code Example 1 shows the INetImplementation interface definition in Java.

Example 1 – INetImplementation interface.

public interface INetImplementation {
 public void setLearningParameters(Vector parameters);
 public Vector getLearningParameters();
 public int generateNet(IDomainAttributes domain)

 throws java.rmi.RemoteException;
 public int getNetSize(IDomainAttributes domain);
 public void learnCase();
 public Vector testCase();
 public Vector getOutputActivations();
 public boolean getStopLearning();
 public void setProxies(IDomainAttributes domain)

 throws java.rmi.RemoteException;
 public boolean restoreObjectsReferences();
}

6

6

The INetImplementation interface defines the basic messages an ANN component
shell be required to implement. Those messages are, in fact, tasks that most ANN
implementations shell do such as setting learning parameters or learning a case.

The first methods defined are setLearningParameters(Vector parameters) and
getLearningParameters(). An ANN component implements these methods
accordingly to its necessities. For example the parameters for a Backpropagation
neural network may include the learning-rate (eta) and the momentum (alpha). The
parameters are informed to the component via a java.util.Vector parameter of the
setLearningParameters method and its actual state can be retrieved from the
component using the getLearningParameters method. The parameters vector shell
be populated with Java’s java.lang.Number subclasses instances such as
java.lang.Integer or java.lang.Float. The order of how the vector shell be populated
is free to the ANN component developer. For example he/she is implementing a
Backpropagation component, the Vector parameter can be generated in the
sequence as the code Example 2.

Example 2 – Populating the vector parameters.

parameters = new Vector();
parameters.addElement(new Integer(250)); // number of iterations
parameters.addElement(new Integer(2)); // number of hidden neurons
parameters.addElement(new Float(0.9f)); // alpha
parameters.addElement(new Float(0.5f)); // eta
parameters.addElement(new Float(0.01f)); // stop error
setLearningParameters(parameters);

The ANN component developer defines the order the vector is populated and must
then implement setLearningParameters and getLearningParameters methods
respecting this order. The order shell be documented in a way that the component
users can properly use those methods.

Following, the user can require the ANN component to generate the ANN
architecture using the method generateNet(IDomainAttributes domain). This
method throws java.rmi.RemoteException because the neural network can be
generated in a remote program using the distribution facility that is going to be
explained later. The method returns an integer number where zero means that the
generation did not succeed, any other number means that the generation succeed.
This returning value can be the number of generated neurons or synapses or any
other relevant information; indeed, it is free to the ANN component developer to
use this returning value as he needs. The parameter domain must implement the
interface IDomainAttributes. This interface can be seen in the code Example 3
below.

Example 3 – IDomainAttributes interface.

public interface IDomainAttributes extends
java.io.Serializable, com.objectspace.voyager.IRemote {

 java.util.Vector getInputAttributes();
 java.util.Vector getOutputAttributes();

7

7

 void setInputAttributes(java.util.Vector ia);
 void setOutputAttributes(java.util.Vector oa);
}

The IDomainAttributes is an interface created to facilitate the generation of the
problem domain model. This interface defines methods to access the structures
that define the learning and testing data. The data attributes at the data sources
like ASCII files or databases have to be preprocessed to be useful by the neural
network. Similar to the learning parameters getter and setter process previously
seen, this interface has methods to populate a vector with objects of the class
Attribute. Each attribute object in the vector will be associated to its correspondent
input or output neuron on the ANN structure that shell be created by the ANN
component. If the user creates 10 input attributes and 5 output attributes, the
neural network will be created with 10 input neurons and 5 output neurons and the
attributes will be associated to them. Attribute objects shell prepare the data from
external sources so that the data can be directly fed to the input or output neurons
of the ANN. Using the Attribute method setActivation(), the user can feed data into
the attribute. Always the network needs data for learning or testing, it will ask its
associated Attribute for the data via a method called getActivation(). So that the
ANN component user shell take care of creating appropriate instances of Attribute
and populate vectors that shell be handled by the object that implements the
IDomainAttributes interface. The reference to this object is the way the ANN
component user has to feed data to the network for learning or testing processes.
Furthermore, the user also shell takes care of accessing the appropriate data files
and takes care of setting the Attributes activation. A detailed explanation of the
Domain framework of CANN is to long for the goal of this paper, complementary
information can be found on (Beckenkamp and Pree, wiley).

The forth method on the INetImplementation interface is the getNetSize(IDomain
domain). This method simply calculates the memory footprint of a neural network
based on its parameters and on the modeled domain.

Following the INetImplementation interface appears the methods learnCase() and
testCase(). As the name says the methods shell be called when the user wants the
neural network to learn or test a case. The case shell has been already fed into the
ANN component by setting the attributes activation as explained before. Then the
user just call the appropriate learn or test method that the neural network will start
an interaction processing the data fed from the input neurons via its associated
attributes. For instance when the neural model implements supervised learning,
also the output neurons target activations shell be fed. The testCase() method
returns a vector that contains a list of java.lang.String objects with the detailed
result explanation. This vector also may return relevant result data, it is up to the
ANN component developer to decide what is more important to return.

The method getOutputActivations() was developed to provide a means for the user
to get the ANN output neurons activations at any time, before or after a learning or
testing cycle. Finally the method getStopLearning() was defined to provide to the
ANN component user a way to check it the learning process was already finished.

8

8

When the ANN component implements parallel learning procedure then it is
necessary to check a flag that indicates that the learning has got to the end and
that the user can go for another learning case or verify the ANN results.

The CANN simulation environment should be able to manage various ANN models
while testing the solution of a specific problem in a distributed way. Several neural
models can then run at the same time. As explained before, each ANN component
that implements INetImplementation creates its own ANN structure and is able to
handle it. Each created ANN structure can allocate significant amounts of memory
and its processing can take significant CPU time. Those are the two main reasons
to distribute ANN instances. By sending different ANN instances to different
machines, the computational capability is multiplied. Therefore, different ANN
instances with different configurations can be built and tested in parallel. The ANN
components that implement the INetImplementation interface can be created either
locally or remotely. In both cases, the instance can be moved later.

The distribution implementation is based on the Objectspace's Voyager library
(www.objectspace.com). The library is written in Java and allows the creation of
mobile Java code. Voyager uses Java interfaces to simplify the distribution of
objects. A special proxy object that implements the same interface as the local
object represents the remote object. Therefore, a variable whose static type is an
interface may either refer to an instance of the actual object or a proxy object. The
ANN components then are referred using the interface INetImplementation that
allows the object to be either on the local or remote program.

The ANN component user will be responsible for implementing the Voyager
mobility using its facilities such as requesting a proxy to the ANN component,
moving the component back and forth, etc. Though the component moving is
responsibility of the application. What the INetImplementation interface offers is the
necessary methods to maintain the internal object references of the moved
component to the rest of the application. When the ANN component is moved,
Voyager makes, in fact, a copy of the object and all the objects it refers internally
and move them to the remote program. Sometimes a copy of objects referred
internally is not enough to maintain the proper component functionality. It is the
case of the references the input and output neurons has to the domain attributes. It
is important that the component located on the remote program refer to the local
appropriate application attributes. Appropriate object proxies must restore those
references. This will allow the moved ANN component to continue being properly
controlled by the main application that is running on the local program.

The method setProxies(IDomainAttributes domain) shell be implemented to restore
the references the ANN component has to the domain attributes. As explained
before, when the ANN component is moved, the attributes references that the input
and output neurons maintain are lost. Those references are restored be calling the
remote ANN component method setProxies and passing as parameter the domain
variable. The domain variable implements the interface IDomainAttributes that
extends the voyager interface com.objectspace.voyager.IRemote. This interface
extends the Java interface java.rmi.Remote that serves to identify all remote

9

9

objects. The methods specified in a Remote interface are available remotely. So
that the application is able to call those methods implemented by this interface and
get from the local program the proper proxies to the attribute objects. The attribute
objects also implement the Remote interface to allow its methods to be called.

The method restoreObjectsReferences() does the opposite job. When an ANN
component that was located on the remote program is returned to the local
program its proxy references to the application objects are restored to the original
objects. The ANN component developer also must implement those two methods.
The ANN component user must only take care of properly calling them after
moving the ANN component to a remote program or after moving it back to the
local program.

3 Conclusion

The ANN interface shown here is a first draft definition of a possible ANN
components interface. We invite the ANN community to analyze and construtively
criticize this proposition. Our goal is to incite the ANN community to worry about
the possibilities of having a wiring standard for ANN components. Such a standard
would certainly facilitate ANN use and study to the public in general.

Software developers goal is to improve the applicability and the reuse of his/her
software. The proper use of object-oriented and component technologies deserves
these characteristics. The definition of a wiring standard for ANN software
components is the initial condition in having ANN software components available to
be used in the enormous variety of situations the neural networks technology can
be applied. The CANN components and simulation environment have been used
by different researchers and companies, here some examples:

• The ANN components were applied in a credit analysis problem for an Austrian
retail company.

• The ANN components were included in a data mining tool developed by a
Brazilian software company.

• The CANN simulation environment has been used in a Brazilian academic
research to evaluate the applicability of the ANN models in the area of text
subject recognition for the web.

• The CANN simulation environment has been considered in a research project
on weather forecast in Australia.

References

Beckenkamp F. and Pree W., 1999. Neural Network Framework Components. Book chapter in
Fayad M., Schmidt D.C. and Johnson R. editors, Object-Oriented Application Framework:
Applications and Experiences, John Wiley.

Carpenter, G. and Grossberg, S. 1987. A massively parallel architecture for a self-organizing neural
pattern recognition machine. Computer Vision, Graphics, and Image Understanding, vol. 37,
p. 54-115.

10

10

Freeman, J. A. and Skapura, D. M., 1992. Neural Networks: Algorithms, Applications, and
Programming Techniques. Addison-Wesley.

Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological
Cybernetics 43, 59-69.

Machado, R. J. and Rocha, A. F., 1990. The combinatorial neural network: a connectionist model
for knowledge based systems. In B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, editors,
Uncertainty in knowledge bases. Springer Verlag.

Masters, T. 1993. Practical Neural Networks Recipes in C++. Academic Press.

Rogers, J. 1997. Object-Oriented Neural Networks in C++. Academic Press.

Rumelhart, D.E., and McClelland, J.L., 1986. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1. Cambridge, Ma: MIT Press.

Szyperski, C. 1998. Component Software: Beyond Object-Oriented Programming. Addison-Wesley.

