
An empirical study of distribution based on Voyager: A performance
analysis

Sérgio Viademonte, Frada Burstein
School of Information Management & Systems

Monash University, Australia
sergio@ponderosa.is.monash.edu.au; frada.burstein@sims.monash.edu.au

Fábio G. Beckenkamp
Software Research Lab

University of Constance - Germany
beckenkamp@acm.org

Abstract
The paper describes the model, implementation

and experimental evaluation of a distributed
Kohonen Neural Network application (Kohonen
Application). The aim of this research is to
empirically verify the suitability and the
performance of a distributed application based on
mobile objects and, in perspective, intelligent
agents. This research is aims to provide
distribution features in decision support systems.
The experiment was based in the Java-ABC
project. The Java-ABC project is concerned with
flexible software architecture for decision support
systems which rely on artificial neural network
(ANN) technology. Three parameters: used CPU,
used memory (RAM) and time consumed by each
Kohonen Application, were taken as evaluation
measures in this experiment. Three hardware
environments were used: two PCs (one local and
one remote) under Windows NT with different
RAM capacity and a SUN Ultra under SunOS 5.6.
This paper presents the comparison of
performance measures from our experimental
studies and the analysis of the results. In
conclusion, the paper presents the implications of
these results for the area of distributed intelligent
decision support and future directions of this work.

1. Introduction
During the middle of 1980s the Artificial

Intelligent (AI) community began to explore new
approaches in which the AI systems were applied
to dynamic domains. Generating long-term
solutions within a decision support context in
dynamic domains needs special care in order to
accommodate changes in reaction to the conditions
of the outside world. It requires some mechanisms
which can respond to rapid change in the
environment, and development of a software
architecture that allows it to integrate these

reactions [1]. Because of its adaptive
characteristics, Artificial Neural Networks (ANN)
represent an example of a technology that when
embedded in a system gives it a capacity to react to
the changing environment. Such capabilities of
ANN make them attractive for inclusion in
decision support system (DSS) frameworks.

Implementation of ANN models requires large
computational resources, such as time of
processing, CPU capacity and memory allocation;
mainly for the training and visualization
procedures [2]. Distributed software development
paradigms seems to be a suitable way to
implement ANN models, providing the means to
increase the efficiency of the algorithms by
allocating and sharing distributed computational
resources.

The motivation of this research is to
empirically verify the suitability and the
performance of a distributed application based on
mobile objects and, in perspective, intelligent
agents. This research is investigating the
possibility of provision of distributed features to
decision support systems. This experiment was
conducted as part of the Java-ABC project [3]. The
Java-ABC project is concerned with the
construction of a DSS, which rely on artificial
neural networks technology. The paper is
organized as follows: Section 2 presents an
overview about the Java-ABC project. Section 3
presents an overview of Kohonen Neural Network
model. Section 4 describes the design and
implementation issues concerned with distributed
ANN (Kohonen Agent and Kohonen Application).
Section 5 presents the measurements and the
environment used on the experimental evaluation
of the implemented components. Section 6
evaluates the achieved results and Section 7
concludes the paper with future directions and
proposed work.

2. Brief overview of Java-ABC project

The Java-ABC project is concerned with the
object oriented design and implementation of a
framework architecture for decision support
systems that rely on artificial neural networks
technology [3, 4].

One of the aims of Java-ABC project was to be
able to manage various ANN models at the same
time, trying to solve a specific problem. Besides
keeping the design open for supporting various
neural network models, a smooth integration of
neural network technology into decision support
systems is another design goal. In order to achieve
these aims several neural models are required to
run at the same time in a distributed way. In the
long term, the aims of the project include
constructing an Object Oriented (OO) architecture
that could form the basis of building up hierarchies
of ANNs working together; cooperating and acting
as intelligent agents in a distributed environment
[3].

The project applies object technology to design
and implement a flexible framework for building
different ANN models. The framework offers a
group of classes that represent the core parts of an
ANN model such as neurons and synapses. Using
those basic classes, it is possible to easily
implement various ANN models. Many different
ANN models have been implemented using the
Java-ABC framework ideas such as the
Backpropagation [5] and the ART [6]. The
Kohonen Self-Organizing Feature-Mapping
(SOM) [7], for which implementation is the
subject of this paper, is an important unsupervised
learning algorithm.

The Java-ABC project also has developed an
ANN simulation environment that allows the
simultaneous management of any number of ANN
instances, independent of the ANN type. These
ANN can be trained or tested at the same time in
the simulation environment and should be
distributed over networked computing devices.
Besides implementing the SOM model using the
Java-ABC framework, the experiment presented in
this paper is a first attempt to have, in the Java-
ABC project, the capability of distributing the
ANN objects. Therefore, this work plays an
important role in:

• Measuring the hardware requirements for
running a distributed ANN application.

• Giving hints on the possible difficulties on
having ANN distributed components
controlled by an ANN simulation
environment.

• Evaluating the possibilities of an actual
mobile code environment, namely the
Voyager.

3. Overview of Kohonen Neural
Network

The Self-Organizing Feature-Mapping (SOM)
[7] is concerned with the theory of competition, in
which interactions among competitive processing
elements (neurons) could be used to construct a
network that can classify clusters of input vectors.
The SOM acts as a competitive network for
classification purposes. The algorithm results in a
topology-preserving map of the input data to the
output units. As a simplified definition, in a
topology-preserving map units (neurons) located
physically next to each other will respond to
classes of input vectors that are likewise located
next to each other. The neurons become selectively
tuned to various input vectors during the
competitive learning process. In the SOM, all the
neurons in the neighborhood that receive positive
feedback from the winning neuron participate in
the learning process. The locations of the neurons
tend to become ordered with respect to each other,
building a coordinate system for different input
features over the lattice. A self-organized feature
map is therefore characterized by the formation of
a topographic map of the input vectors, in which
the coordinates of the neurons in the lattice
correspond to features of the input patterns [8].
Figure 1 shows a two-dimensional SOM with a
layer of output neurons.

Bi-dimensional Neural Network

Input neurons

Connections between input and output
neurons

Figure 1: Two-dimensional self-organizing
feature map

The next section shows how the Kononen
Neural Network was designed and implemented
using the object oriented paradigm [9].

4. Design and implementation

The implementation of the Kononen Neural
Network was developed in Java language, under
MS Visual J++ 1.1 and Voyager 2 Beta 2. Visual
J++ is the Microsoft environment for Java
development. Voyager is ObjectSpace's product
family for distributed computing that unifies the
most common industry standards. Full information
about Voyager can be obtained at

http://www.objectspace.com/Products/voyager1.ht
m), the Objectspace home page, including online
documentation. As the main purpose of this paper
is concerned with performance analysis of the
related distributed application, the details of the
implementation of the Java and Voyager object
hierarchies are omitted. Readers who are not
familiar or are more interested in these topics can
consult the respective references provided. Also,
this paper also does not present explanations of
specific Voyager and Java objects such as Frames,
Dialogs, Agents. [10].

4.1 The Neural Network’s class definition
The Kohonen Neural Network model was

implemented as a lattice structure with a two-
dimensional array of neurons. The basic elements
of any artificial neural network model are Neurons
and Synapses. Neurons are linked between each
other by Synapses connections. Neurons and
Synapses have different behaviors. In order to
manage the interaction and a particular behavior of
Neurons and Synapses, additional elements must
be considered, such as the Net Manager object. In
this case the basic elements of this implementation
are the KohonenNeuron, KohonenSynapse, and
KohonenManager objects. The KohonenNeuron
object is an abstract class, which defines the
common behavior of neuron elements: input
neurons and output neurons. The input neurons are
defined by the InNeuron object and output neurons
by the OutNeuron object. This results in the
KohonenNeuron object hierarchy (see Figure 2).

The InNeuron object defines the specific
behavior of the input units of the Kohonen model.
It calculates the input activation values for each
input neuron. The OutNeuron object defines the
specific behavior of the output neurons. It
calculates the output neurons activate value and the
synapses connection values. Figure 3 shows part of
the OutNeuron object implementation. The figure
highlights the class definition, the constructor
method and the neuron activate value method.

The KohonenSynapse object implements the
synaptic behavior, it generates the synapses based
on the input neurons and calculates their
connection values.

KohonenNeuron

InNeuron OutNeuron

Figure 2: KonenNeuron object hierarchy

The major functionality of the Kohonen Neural
Network model is provided by the
KohonenManager object. KohonenManager object

handles the generation, training and calculations
required by the model

public class OutNeuron extends KohoneNeuron {
Vector synapsesVect;
int outIndex;
double outActivation;

public OutNeuron () {
synapsesVect = new Vector();
outIndex = 0;
outActivation = 0;

}
public void calcActivation(){// calculates

the output neuron activate value
KohonenSynapse synapse;
double diffSum=0;
Enumeration e=

synapsesVect.elements();
while (e.hasMoreElements()) {

synapse =
(KohonenSynapse)(e.nextElement());

diffSum =
diffSum+synapse.calcDiff();

}
outActivation = Math.sqrt(diffSum);

}

Figure 3: OutNeuron object implementation

KohonenManager object sets the network
parameters; generates the initial network structure;
calculates the winner output neuron in each
training interaction; computes the activation values
for each output neurons; performs the neural
network training; visualization and controls the
threads execution. Figure 4 illustrates the object
diagram for the KohonenManager object.

generate

KohonenManager

setKohonenMap()
generateNet()
getWinner()
computeFlow()
trainingKohonen()execut
eKohonen()

KohonenApp

InNeuron

OutNeuron

KohonenSynapse

has

generate

KohonenVisual

generate

generate

Figure 4: KohonenManager object diagram

The KohonenApp is the object that starts the
application. It is the initial frame of this application
from where all dialogs are initialized. The
implementation was developed in a way to provide
enough flexibility concerning the network settings,
such as the number of input and output neurons,
number of lines and columns of the output map

and learning parameters, i.e. the number of
interactions training, delta and epsilon factors [2].

4.2 The distributed implementation
In this experiment the distribution is achieved

by the execution of several KohonenApp objects in
different machines at the same time. To implement
the distribution two additional objects were
defined: AgKohonen and Launcher objects.

The AgKohonen object could be considered the
mobile code of this application. It is a derived
object from the Agent object class defined in
Voyager object hierarchy. AgKohonen object
receives the computer address to where it should
move. A computer address normally is set by an IP
number, stored in an Address object defined in the
Voyager object hierarchy. The AgKohonen moves
to the specific computer and once arrived there,
creates an instance of KohonenApp object, which
starts its execution. Figure 5 shows part the
AgKohonen object implementation, specifically the
atProgram() method, which creates an instance of
KohonenApp object.

import java.util.Vector;
import com.objectspace.voyager.*;
import com.objectspace.voyager.agent.*;

public class AgKohonen extends Agent implements IAgKohonen {

Vector itinerary = new Vector(); // vector of address to visit
int index; // index of current application

public void addToItinerary(Address address) {
 itinerary.addElement(address);
}

 public void atProgram() {
 KohonenApp khFrame = new KohonenApp();
 khFrame.inAnApplet = false;
 khFrame.setTitle (" Kohonen Neural Network Application");

 khFrame.init();
 khFrame.pack();

 khFrame.execute();
 khFrame.show();

 next();
 }

 public void dismiss() throws VoyagerException {
 System.out.println ("dismiss");
 dieNow(); // kill myself and all my forwarders
 }

}

Figure 5: AgKohonen object implementation

The Launcher object handles the AgKohonen
object. The Launcher object receives a machine
address, creates an instance of the AgKohonen
object at the local machine and launches the
created AgKohonen object to a different machine.
It is created by the LaunchKohonen object, which
is the initial frame from the whole application.

KohonenApp

AgKohonen

addToItinerary(
)
next()
atProgram()

itinenary
index

Agent

creates

Launcher

getAddr
agKohonen

creates
send

Object

LaunchKohonen

createDialog()
createLauncher()
execLauncher()

creates

Frame

Figure 6: Distribution objects diagram

Figure 6 depicts the relation between Launcher,
AgKohonen and KohonenApp objects.

5. The performance measurements

To measure the performance of the distributed
Kohonen application the values of used CPU,
memory and time consumed by each application,
were captured. The CPU was taken as the
percentage used, the memory was measured in
Kbytes and time in milliseconds. These
measurements were taken during the network
training and visualization tasks, because these are
the most time and CPU consuming tasks of the
application. They also involve some threads of
control. Regarding the memory allocation, the
measures considered in this research refer to the
approximate size of memory used by each
Kohonen application.

5.1 The experimental framework and
settings

The Kohonen Neural Network application was
executed with the following configuration:
• Two input neurons in the input layer;
• One hundred output neurons in the output

layer;
• The map visualization has 10 lines and 10

columns;
• The learning/training parameters were:

� Maximum time of interaction: 5000;
� Delta factor: 2;
� Epsilon factor: 0.2.

Three hardware environments were used in the
performance measurements; two PCs under
Windows NT Version 4.0, one with 260 MB and
the other with 560 MB of RAM memory and a
SUN Ultra under SunOS 5.6 with 64 MB of real

memory. The local PC had 129.856 KB of memory
used before the execution and the remote PC had
43.336 KB of memory used before the execution.
The SUN workstation had 64 MB of real memory,
with 12 MB of free memory before the application
execution. This configuration was chosen as it was
the available setup in our department, and because
it looks representative for a real distributed
application: Sun Workstation and PC’s with
Windows NT operational systems. Other
configurations were not tested.

The measurements were taken considering the
execution of the Kohonen Agent implementation
in the local PC (local mode), in the remote PC
(remote mode) and in the SUN workstation
(remote mode). The measurements were also taken
considering the Kohonen application running
without Voyager, it means an implementation in a
standalone Java environment under MS VJ++ 1.1,
in the local PC.

The amount of CPU and memory used in the
PCs were taken by means of the Task Manager
utility. In the SUN, the TOP utility in a XTERM
window was used. To verify the amount of time
consumed by the application, the “STOPWATCH”
class was used in the code. The “STOPWATCH”
class is defined in the Voyager2,
“com.objectspace.timer” package. For detailed
references to Voyager2 see the documentation API
DOC, available in the Objectspace home page.

The machines were connected to a Local Area
Network at the Computer Science Department, at
the University of Konstanz, Germany, where the
practical part of this experiment was conducted.

5.2 Achieved results and discussion
Figure 7 shows the results for the distributed

application:

CONFIGURATION CPU(%) MEMORY
(Kbytes)

TIME
(milliseconds)

PCs

1 Local Agent 100 11808 55.640
2 Local Agents 100 19644 Agent1=91.51

Agent2=110.52
1 Remote Agent 100 7260 54.41
1 Local and 1
Remote Agent

100
100

Local=
17252
Remote
=7444

Local=54.16
Remote=55.2
7

2 Remote Agents 100 14772 Agent1=110.74
Agent=69.67

SUN

1 Remote Agent 92.24 9784 59.569
2 Remote Agents Agent1=48.57

Agent2=48.26
9680
9672

Agent1=118.28
Agent2=118.43

1 Local PC Agent
and 1 Remote
SUN Agent

PC = 100
SUN= 90.26

PC =
20856
SUN=
9736

PC = 54.92
SUN= 61.28

Figure 7: Measures of performance for the
distributed application

Figure 8 shows the results for the non-
distributed (stand-alone) Java application:

Non
Distributed
Implementation

CPU (%) Memory(KBytes) Time
(milllisec)

1 100 4716 14.41
2 100 4660 13.95
3 100 4636 13.87
4 100 4880 14.09
5 100 4792 14.06

Simple Average 100 4737 14.08

Figure 8: Measures of performance for non-
distributed application

Concerning the CPU allocation, as expected, all
the tests used nearly 100% of CPU, either in PCs
and SUN. This fact does not have a direct relation
to distributed aspects, but is more related to the
neural network algorithm. It is well known that the
training phase of a neural network model is a very
CPU and time consuming task [2, 11]. It is clear in
the two remote agents tested on SUN, where is
possible to take the individual measurements of
each agent running, so that each agent used nearly
50% of CPU. This analysis relates to the
visualization task, from where the measurements
were taken. The visualization task is strongly CPU
consuming due to the use of graphical Java
drawing objects.

With memory allocation, there are no
statistically significant differences on SUN and in
the remote PC, with a uniform distribution around
the average (see Figure 9 for details). In the local
PC there is a significant difference in the memory
allocation measurements when there are agents
running just in the local PC and when there are
additional agents simultaneously running in remote
machines. In this last case there is an increase of
memory allocation of around 8000 Kbytes.
However, there is no significant difference in
memory allocation in the remote machines.

The difference in memory allocation on a local
PC could be justified by the Voyager forward
mechanism. Specifically, with the way Voyager
deals with distributed objects in order to trace the
movements of the agents and forward messages
invocation to remote agents. Briefly described,
when a remote object is constructed using
Voyager, a proxy object whose class implements
the same interfaces as the remote object is returned
to the server machine (from where the remote
object was created). Voyager dynamically
generates the proxy class at a run time. The proxy
can receive messages, forward them to the object,
receive and return value, and pass the return value
on to the original sender. The Local PC in this case
is used as a server computer to send the agents. In
this way, the machine where the remote objects are
created keeps the proxy of the remote objects (see
Voyager documentation for more details).

CONFIGU
RATION

Allocated Memory
(Kbytes)

NUMBER OF
AGENTS

Allocated
memory
arithmetic
average
(Kbytes)

9784 1 remote
9680
9672

2 remotes,
agent 1 and
agent 2

SUN

9736 1 remote

9718

7260 1 remote
7444 1 remote

REMOTE
PC

14772 / 2=7386 2 remotes

7369

11808 1 local
19644 / 2 = 9822 2 locals
17252 1 local + 1

remote PC

LOCAL PC

20856 1 local + 1
remote SUN

17390

Figure 9: Detailed measurements of memory
allocation

Another point to note concerning memory
allocation is that the local PC uses more memory
than the remote machines. This is because the full
Java application remains in the local PC, while the
remote machines only have the Voyager server, the
Java Virtual Machine and the sent agent; in this
case, the Kohonen application. Particularly in this
work, the local PC also had the MS VJ++ running,
which was not running in the remote machines
during the application execution.

Figure 10 shows that the overall average of
memory allocation by each running agent
application was around 11 Mbytes.

Allocated Memory
Simple Average (Kbytes)
SUN Remote PC Local PC

Total
Allocated
Memory
Arithmetic
Average
(KBytes)

9718 7369 17390 11492

Figure 10: Arithmetic average of total memory
allocation

Figure 11 illustrates the arithmetic average of
each configuration, concerning the time.

Configuration Number of Agents Time (milliseconds)
Arithmetic Average

Local PC 1
2

54929
101016

Remote PC 1
2

54837
90204

SUN 1
2

60425
118362

Figure 11: Detailed measurements of used
time

There is no significant statistical difference in
the PCs’ configurations either when 1 agent or 2
agents are considered separately. A difference of
19%, approximately 22752 milliseconds, was
observed between SUN and PCs with 2 agents
running. Also, a difference of 9%, approximately
5542 milliseconds, was observed between SUN

and PCs with one agent running. Accordingly, to
the following calculations take place:

SUN (t2) – Local PC (t2) = 118362 – 101016 =
17346 milliseconds

SUN (t2) – Remote PC (t2) = 118362 – 90204 =
28158 milliseconds

_ (t2) = (17346 + 28158)/2 = 22752 milliseconds
� 19%

SUN (t1) – Local PC (t1) = 60425 – 54929 = 5496
milliseconds

SUN (t1) – Remote PC (t1) = 60425 – 54837 =
5588 milliseconds

_ (t1) = (5496 + 5588)/2 = 5542 milliseconds �
9%
where:

SUN (t2) = average time of 2 agents running
simultaneously on SUN in milliseconds

Local PC (t2) = average time of 2 agents running
simultaneously on local PC in milliseconds

Remote PC (t2) = average time of 2 agents
running simultaneously on remote PC in
milliseconds

_ (t2) = average of the difference of the execution
time between SUN and PC in milliseconds with
2 agents running simultaneously.

SUN (t1) = average time of 1 agent running at
SUN in milliseconds

Local PC (t1) = average time of 1 agent running at
local PC in milliseconds

Remote PC (t1) = average time of 1 agent running
at remote PC in milliseconds

_ (t1) = average of the difference of the execution
time between SUN and PC in milliseconds with
1 agent running.

One must note that these time measurements
were taken over the training and visualization task
of the Kohonen application, using nearly 100% of
CPU.

Figure 12 shows the arithmetic average of used
time considering the number of running agents.

NUMBER
OF
AGENTS

AVERAGE TIME
(milliseconds)

USED
TIME-
arithmetic
average
(millisec)

Local
PC

Remote
PC

SUN

One 54929 54837 60425 56730

Two 101016 90204 118362 103194

Figure 12: Arithmetic averages of used time
with 1 and 2 agents

Figure 11 and 12 show that for a specific
number of agents, there is no significant statistical
difference in PC configuration, but there is a
difference between SUN and PC. It means, that for
one agent the used time is almost the same in the

PCs, and approximately 9% more in the SUN. The
same could be observed when running two agents
simultaneously, with a difference of 19% between
PC and SUN.

As it was expected, when increasing the
number of agents running simultaneously at the
same machine the time spent by each agent has
also increased, considering computers with one
processor.

Tests with more than two agents running
simultaneously at the same machine were not
performed. This is because the most important fact
in the scope of this work was to investigate the
performance of the distributed application among
several computers. The performance of the
computers when running several applications
simultaneously is considered as a side effect of the
study. For the purpose of this work, it is more
important to have one application running at the
same time in different computers than two or three
applications running at the same time in the same
computer.

6. Analysis

In this section we discuss the results of the
measurements presented in the previous section:
amount of CPU, memory allocation and time used.

Regarding the amount of CPU required, all the
environments used almost 100% of CPU
available. However, it is not true to state that this
CPU measurement is related to, or at least only to,
the distribution aspects. Neural network models are
well known as high CPU consuming applications,
mainly for the purposes of the training algorithms
[2, 7, 8]. We did not consider any other
applications in the test, just the Kohonen neural
network model because the experiments presented
were performed within a context of distribution in
the Java-ABC project, which relies on neural
network models as its core technology. For a more
general conclusion regarding CPU allocation when
running a Voyager agent, some other agents
applications should be also considered in the tests.

With memory allocation, the overall average
amount of memory allocation was 11Mbytes per
each running application (see Figure 10). The
average on SUN was 9718 Kbytes, on the Remote
PC it was 7369 and on the Local PC it was 17390
Kbytes. The difference found on the Local PC has
already been discussed, and should be advocated to
the Voyager forward mechanism and the fact that
the Local PC is the server of this application.
When there is no remote agent running, the
memory allocation on the Local PC is
approximately 11Mbytes. It is also important to
note the results from Figure 8 related to the non-
distributed Kohonen application. In the non-
distributed Kohonen application the average
amount of allocated memory is 4737 Kbytes

significantly smaller than the average allocated
memory in the distributed application. It implies
that the use of Voyager2 Beta2 significantly
increases the amount of memory used by the
Kohonen application. In this research an average
increase of 6755 Kbytes could be observed, it
means that the distributed application allocated
58.78 % of additional memory when compared
with a non-distributed application, considering the
overall memory allocation arithmetic average.

Concerning the amount of time used by each
application, no statistically significant
differences were observed between the PC’s
configurations. A difference of approximately 9%
was found between PC’s and SUN when running
one agent in each machine, and 19% when running
two agents simultaneously in each machine. In the
evaluation of the time spent it must be noted that
the PC’s used were Pentium desktop computers. In
fact, it could be observed that the SUN
performance was significantly slower during the
drawing of the Kohonen output map.

The number of agents running simultaneously
at the same machine with one processor the
following observations are worth noting.
According to Figure 11, it seems that the time
spent by each agent increases in the same
proportion as the number of agents running
simultaneously. The results in Figure 11 point to a
linear relationship between the execution time and
a number of agents running simultaneously.

7. Conclusions and comments

The major objective of this research is to verify
the suitability and evaluate the performance of a
distributed application. In more specific terms, this
research is oriented to provide guidelines when
using distributed features in decision support
systems. In the specific case of the experiment
presented in this paper, the motivation comes from
the Java-ABC project [3], which is concerned with
the construction of a decision support system
which relies on artificial neural network
technology. ANNs have several interesting
capabilities, which make them a powerful
technology, especially because of their strong
adaptive mechanism. They offer efficient solutions
for inductive and deductive machine learning
implementations, as well as to the implementation
of automatic knowledge acquisition through
training procedures. Both features have been used
in the decision support field [12, 13, 14, 15].
However artificial neural networks implementation
requires large amounts of computational resources,
which are not always easy to provide. The
distribution of their implementation across several
computers running in parallel at same time could
bring advantage when using them.

In addition, different concepts have emerged in
the decision support arena, as the Intelligent
Decision Support (IDS) paradigm. The IDS
concept extends the functionality of traditional
decision support systems in order to perform
knowledge processing in an organization [16], and
usually requires the application of some advanced
technologies. It is considered that the main role of
an IDS is to prepare recommendations for
decision-makers based on all the information
provided from various sources. Within such
paradigm, mobile object technology and in
perspective intelligent agents are likely to have an
important role. Their inherent capability of
mobility within the information space seems to be
closely related with the concepts of
communication and knowledge processing and
sharing. This view is an open way to be explored
in future researches.

In the experiments done in this research it was
verified that the Kohonen NN application runs in
an acceptable time and velocity when one
application is running in each machine, except
during the training and visualization task.
Although the results achieved in this research can
not be generalized for every distributed application
using Java language and Voyager environment,
they can be useful as guidelines regarding the
distributed implementations of neural network
models under Voyager. Additional tests should be
conducted to verify the behavior of distributed
applications when using some other technology.
An evaluation of the achieved results in this
experiment also depends on the application in
question, which could be considered appropriate
for one application but unreliable for another
application. Furthermore this experiment is
concerned about providing an idea about the time,
memory and computer resources someone could
expected to use when building a system in similar
environment and platform, and not to make a
judgement about the appropriateness of time,
memory or processing capacity. Such a judgement
is beyond the scope of this experiment and we
believe it is relative to each particular application.

Another point to discuss is the number of
agents running simultaneously at the same
machine, this has been mentioned in a previous
section (see section 5.2). Tests with more than two
agents running simultaneously at the same
machine were not performed because the scope of
this work was to investigate the performance of the
distributed application among several computers,
and not to investigate the performance of the
computers when running several applications
simultaneously.

The experiment explored the technology for
implementing mobile ANNs. The use of proxies is
an important design aspect. This makes it easy to
turn mobile any object in Java based on the

implementation of interfaces. The experiment of
the distributed Kohonen corroborated to the
construction, on the Java-ABC project, of the
interface NetImplementation that holds the ANN
component core functionality and mobility
interfaces. An ANN object that implements this
interface can be managed by the Java-ABC
simulator and can be moved across the network
environment. The NetImplementation interface is
explained on [4].

Additional topics that could be considered in
future work include:
• different ways of implementation of the

distribution in the Kohonen neural network
model – for instance the distribution of the
KohonenManager object, or the distribution of
input and output neurons

• add knowledge representation and
communication features to the object agents
using for example knowledge communication
languages, such as KIF
(http://dutcu15.tudelft.nl/~marcel/mapping/kif
/top.html) and KQML
http://www.cs.umbc.edu/kqml/papers/kqml-
acl-html/root2.html)

• experiment with other distributed development
environments.

References

[1] Hendler, James A. "Intelligent Agents: Where
AI meets Information Technology". IEEE
Expert, Vol. 11, No. 6: December 1996, pp. 20-
23.

[2] Skapura, David M. 1996. Building Neural
Networks. ACM Press, 286p.

[3] Pree W.; Beckenkamp F. and da Rosa S.I.V.,
1 9 9 7. Object-Oriented Design &
Implementation of a Flexible Software
Architecture for Decision Support Systems. 9th
International Conference on Software
Engineering and Knowledge Engineering -
SEKE’97. Madrid, June 1997.

[4] Beckenkamp F. and Pree W., 1999. "Neural
Network Framework Components". Book
chapter in Fayad M., Schmidt D.C. and
Johnson R. (editors), Object-Oriented
Application Framework: Applications and
Experiences, John Wiley.

[5] Rumelhart, D.E., and McClelland, J.L., 1986.
Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1.
Cambridge, Ma: MIT Press.

[6] Carpenter, G. and Grossberg, S., 1992.
Attentive supervised learning and recognition
by an adaptive resonance system. Neural
Networks for Vision and Image Processing.
MIT Press.

[7] Kohonen, T., 1982. Self-organized formation of
topologically correct feature maps. Biological
Cybernetics 43, 59-69.

[8] Haykin, Simon, 1994. Neural Networks A
comprehensive foundation. New Jersey:
Prentice Hall, 696 p.

[9] Pree, W., 1995. Design Patterns for Object-
Oriented Software Development. Reading, MA:
Addison-Wesley/ACM Press

[10] Sun 1997: The Java Language; Java Beans.
White Papers at http://java.sun.com, Sun
Microsystems

[11] Kosko, B. 1992: Neural Networks and Fuzzy
Systems. NJ: Prentice Hall, Englewood Cliffs

[12] Medsker, L. R. & Bailey D. L. Models and
Guidelines for Integrating Expert Systems and
Neural Networks. Em: Kandel A. & Langholz
G. Hybrid Architectures for Intelligent Systems,
CRC Press, 1992.

[15] Leão, B.F. and Reátegui, E. 1993. Hycones: a
hybrid connectionist expert system.
Proceedings of the Seventeenth Annual
Symposium on Computer Applications in
Medical Care - SCAMC, IEEE Computer
Society, Maryland.

[13] Machado R. J., Rocha A. F. & Leão B. F.
Calculat ing the Mean Knowledge
representation from multiple experts. In:
Fedrezzi M. & Kacprzkyk J. (eds). Multiperson
Decision Making Models Using Fuzzy Sets and
Possibility Theory, The Netherlands: Kluwer
Academic Publishers, 1990.

[14] da Rosa, Sérgio I. V., Leao, B.F., and
Hoppen, N. 1995: Hybrid Model for
Classification Expert Systems. Proceedings of
the XXI Latin American Conference on
Computer Science. Canela, Brazil

[16] Burstein, F. 1995: "IDSS: Incorporating
Knowledge into Decision Support Systems".
Burstein, F., O’Donnell, P. A. and Gilbert, A.
(Eds) Proceedings of the Workshop on
Intelligent Decision Support – IDS’95, Monash
University, Melbourne, 93-96.

