
The Component Software Challenge for Real-Time Systems

Alessandro Pasetti and Wolfgang Pree
Doppler Lab. for Software Research, University of Constance, D-78457, Constance, Germany

E-mail: pasetti@fmi.uni-konstanz.de, pree@acm.org

Abstract

In some fields – such as desktop applications – software
component technology has become established that allows
software systems to be built as hardware systems are: as
assemblies of pre-defined, off-the-shelf items. The
component approach has led to important gains in
productivity with consequent reductions in cost and
development times.

Component technology has never been applied to real-
time systems. Adapting it to satellite real-time on-board
software is the “ Grand Challenge” discussed in this
paper. The discussion is made in the framework of an on-
going project with the European Space Agency to redesign
the software for satellite Attitude and Orbit Control
Subsystems as a component-based system1.

This paper first describes the benefits of component
software and then addresses the technological challenges
that must be met to adapt it to the real-time constraints of
satellite systems. The final section discusses the relevance
of these challenges to real-time systems in general.

1 The Problem

Satellites are mission-critical systems controlled by
real-time, embedded software. As in other mission-critical
systems, software accounts for a significant – and growing
– share of total development costs. This is largely due to
the one-off nature of the software that is developed as a
completely new application for each mission.

Indeed, the experience of one of the authors on several
major European space projects is that reuse of satellite
software across projects, when it occurs at all, concerns at
most code fragments – and only if the same software team
is responsible for more than one project.

1 The views expressed in this paper are those of its authors only. They do
not in any way commit the European Space Agency or reflect official
European Space Agency thinking.

The software development process typically begins
with the definition of user requirements. Requirements are
normally formulated under the tacit assumption that all the
software will be developed anew. Consequently, they are
narrowly targeted at a specific mission and result in a
monolithic piece of code that, while highly optimized for
the application at hand, has to be developed entirely from
scratch and cannot be reused in other missions.

This approach is in sharp contrast to that adopted on the
hardware side. Here, designers begin by surveying the
market for available components and then specify their
system in terms of these components. Widely accepted
standards (on bus interfaces, on electrical interfaces, on
mechanical interfaces, etc.) allow components from
different suppliers to be plugged together. The resulting
system is perhaps not optimal in terms of mass or power
consumption (the characteristics of standard components
seldom match perfectly the requirements of a specific
project) but it is certainly cheaper and faster to assemble
than if it were developed from scratch.

This difference between software and hardware
development processes is not an ineluctable consequence
of a “special” nature of software systems. In fact, outside
the real-time field, it is disappearing thanks to the
introduction of software component standards [1].

The best known examples of such standards are
Microsoft’s (D)COM, OMG’s CORBA, Sun’s JavaBeans.
Their function is analogous to that of hardware standards:
they define interfaces and communication protocols that
allow pieces of code developed as self-contained units, and
potentially supplied by different vendors, to cooperate.

It is important to emphasize that software components
go far beyond traditional subroutine libraries. The latter do
not qualify as components because their interfaces are
idiosyncratic and because calling and called code must
normally be written in the same language and compiled
with the same compiler. Component standards by contrast
specify industry-wide interfaces that allow independent
units of code to interoperate across language, compiler and
even platform barriers.

This is a crucial difference as it is leading to the
emergence of a market for third-party software

components not dissimilar to the markets for hardware
items. As a consequence, complex software systems are
now coming to be developed very much as hardware
systems are developed: as collections of cooperating pre-
defined components. It is this new component-based
approach that is largely responsible for the recent gains in
software productivity in desk-top applications.

The research group at the University of Constance to
which the authors belong, has traditionally been concerned
with software architectures for complex systems in the
business field where it has advocated and successfully
applied the component approach. Recently, it started a
project with the European Space Agency (ESA) to re-
design the real-time software for the Attitude and Orbit
Control Subsystem (AOCS) of satellites2. The AOCS is
one of the most critical subsystems on a satellite. The
question that naturally arose was: can component
technology offer the same benefits to satellite real-time
applications as it does to desk-top and other applications?

2 The Grand Challenge

Demonstrating that this last question has an affirmative
answer is the “Grand Challenge” this paper wishes to
discuss.

The expected benefits from a transition to component
technology are lower costs and reduced development times
stemming from the availability of reusable components
that can be bought as off-the-shelf items.

Components are not an entirely new concept in the real-
time field. Real-Time Operating Systems (RTOS) are
examples of components with non-standardized interfaces.
After their introduction, engineers no longer had to
develop operating systems for their applications. Instead,
they could choose a commercial product, configure it for
their purposes, and integrate it with their own code.

The challenge is to extend this approach to other parts
of real-time applications – sensor and actuator
management, control law implementation, failure
detection, etc – ultimately arriving at applications that
consist mainly of assemblies of separately procured
components.

3 The Lesser Challenges

This section identifies six milestones on the way to a
component-based AOCS software. The technical issues
that have to be addressed to pass them represent “Lesser
Challenges” (“ lesser” only with respect to the “Grand
Challenge” of the previous section). As discussed below,
some of them have already been met, others are being

2 Estec contract No. 13776/99/NL/MV. ESA technical officers are:
J.L.Terraillon and T.v.Overbeek of ESA-Estec.

addressed in on-going projects and still others remain
open.

3.1 Hardware Support for Components

The mechanisms through which software components
interact with each other typically introduce several layers
of indirection. A simple subroutine call in a traditional
architecture may get translated to a chain of calls in a
component-based system. Component technology, in other
words, entails considerable overheads in both memory and
CPU usage which is one reason why it has not spread to
real-time systems.

Processors currently in use in most space applications
are based on the (16-bits, CISC) mil-std 1750 architecture.
In the case of the AOCS software, its capacity is already
exploited to the limit with memory and CPU margins
being close to zero at the time of launch. Hence, the first
step towards the adoption of software components in space
is the development of a space-qualified processor with
memory and speed performance perhaps 2 to 5 times
greater than that of 1750 processors.

This step has already been taken with the space-
qualification by ESA of the ERC32 processor [2]. This is a
32-bits processor with floating point unit based on the
SPARC V7 architecture. Its memory and CPU power are
in the same range as those available on ordinary desk-top
computers making it adequate to support component
technology.

3.2 Software Support for Components

Satellite software is traditionally written in Ada83 with
sprinklings of assembler. This choice is justified by the
safety features offered by the Ada language but is
inadequate to support component technology which relies
heavily on object orientation.

A first challenge is therefore to identify an object-
oriented language suitable for critical applications. The
obvious options are Ada95 and C++. ERC32 development
environments exist for both. In the AOCS project, the
choice will probably be C++ because of its support for
multiple interface inheritance which Ada95 lacks and
which is important for constructing a component-based
architecture.

C++ is not as “safe” a language as Ada but when
making the transition to a component approach, language
issues become less important. Language choice affects
mainly the “ inside” of a component (which is just an
ordinary application). However, when a system is built by
assembling pre-defined components, one assumes that the
components are error-free as they should have been tested
by their suppliers (RTOS buyers are seldom concerned
with the language in which the RTOS was originally
written!). Attention therefore shifts to the component

configuration and assembly process itself that takes place
at a level higher than that of an ordinary programming
language.

Here, work remains to be done as methodologies for
component-based software assembly do not yet exist. This
has not prevented the adoption of components in desk-top
applications but it is a definite obstacle in the space sector
where safety concerns demand adherence to tested and
proven formal procedures (eg. ESA’s HOOD [3] or HRT-
HOOD [4]).

A second challenge therefore lies in the definition of
methodologies for the development of component-based
applications. This is a challenge that, to the authors’
knowledge, is still open.

3.3 Component Architecture

Satellite software is currently developed as a monolithic
mission-specific application. A component approach is
only useful if an application can be broken up into smaller,
loosely coupled, units.

In the AOCS project, a preliminary architecture has
been proposed for the AOCS software that
reconceptualizes it as a set of independent components
encapsulating functionalities that are potentially re-usable
across missions [5, 6]. Reusability was achieved by
splitting the management of a functionality (which is
mission-independent) from its implementation (which
remains mission-specific). The approach is the same as
taken by RTOS developers who separate the scheduling of
tasks from their implementation and encapsulate the
former function in re-usable components.

Thus, the new AOCS architecture provides re-usable
components to handle telecommands and telemetry, to
manage units, to perform failure detection tests, to manage
failure recovery strategies, etc. Each such functionality is
packaged as a component exposing operations that allow it
to be configured to suit the needs of a specific AOCS. The
reconfiguration is done at run-time and the component
itself can be re-used as a binary entity (much as an RTOS
is reused).

The proposed architecture will be tested next year on an
ERC32 breadboard and this challenge is regarded as on the
way to being met.

3.4 Real-Time Component Standard

A component standard specifies the kind and format of
information that components exchange. At the most basic
level, it specifies the way in which code in component A
can call code in component B, covering issues like call
syntax, parameter passing conventions, bit ordering, etc.

Existing standards (CORBA, (D)COM, JavaBeans) are
unsuitable for real-time applications because they do not
address issues of timeliness and predictability of service.

There is no way for component A to specify that its call to
component B should be serviced within a certain time and
there is not even a way to put an upper bound on the time
component B will take to service the request.

Access control is another component interface aspect
not covered by conventional interface specifications but
essential in critical systems (and most real-time systems
are critical). Such systems typically need a way of
restricting access to critical services to a small number of
authorized clients. For instance, in a satellite control
system, the operation to reconfigure a set of redundant
sensors should only be callable from the failure detection
manager or from the ground control centre. Component
interfaces should ideally include information on which
operations can be performed by which clients.

The challenge, then, is to extend the interface between
components to include, at a minimum, access control and
timing data. This challenge remains wide open although
efforts are being made to address the timing part. An ORG
working group has proposed a specification for a real-time
CORBA [7, 8]. Sun is considering a real-time extension of
Java [9], possibly the first step towards turning JavaBeans
into suitable vehicles for real-time components but this
remains a long-term goal.

The TAO project [10] offers an interesting alternative
approach. Its designers, rather than waiting for a new
specification, have provided an implementation of the
current CORBA standard that guarantees that calls across
component boundaries preserve priority levels and that the
overhead in servicing a call request is statically
predictable. This makes the ensuing system amenable to
the same static schedulability analyses as are used in
traditional real-time systems. After the architectural design
phase is completed, a TAO solution will be considered for
the AOCS software.

3.5 System Robustness

Satellites are critical systems with stringent reliability
requirements. When computing overall system reliability,
the software is generally assumed to have a reliability of 1.
This is because software can only fail if its design is
defective and current satellite failure protection strategies
do not cover design errors. Satellites must withstand single
failures but failure is understood as “ failure to meet stated
specifications” . There is no protection against design
failures.

Single failure robustness is usually obtained through
redundancy: if, for instance, a sun sensor fails, the system
switches to a redundant sun sensor. However, prime and
redundant equipment are identical and therefore if the
failure was due to a design flaw, redundancy offers no
protection.

Software failures in space systems are regarded as
catastrophic events catered for only through a “safe mode”

which merely guarantees the physical survival of the
satellite but does not allow it to continue its mission.

This approach works (but only just!) when the
complexity of the on-board software is comparatively low.
When using very complex software, as component
software is bound to be, the notion that “ there are no
design errors” may become untenable and new failure
handling strategies must be introduced to cope with them,
perhaps by introducing intermediate levels between “ fully
operational” and “safe mode” .

Failure handling and failure recovery for complex
systems are grand challenges in themselves and the issues
they raise are far from resolved or even well-understood.

4 Conclusions

The Grand Challenge discussed in this paper is the
transition to a component approach for the AOCS
software. The attendant technical challenges relate to the
adaptation of component technology to the real-time
environment of satellite software.

Hardware and software environments are now available
that meet both the requirements of real-time space systems
and those of component technology, although work
remains to be done to define design methodologies for
component-based applications. The AOCS architecture is
being redesigned as a collection of mission-independent,
reconfigurable components. However, crucially,
component standards have not yet been adapted to cater to
the needs of real-time systems and the implications of
using very complex software on failure handling
philosophy have not yet been explored. Both these
challenges must be addressed if the benefits of
components are to become available to satellite real-time
systems.

This paper has focused on satellite applications but
many of its considerations are applicable to real-time
systems in general. They too, and for the same reasons,
can benefit from the introduction of software components.
The technical challenges are the same: migration to higher
performance hardware platforms, adoption of object-
oriented languages, definition of real-time component
standards.

Real-time software is traditionally treated as “special” .
It differs from “conventional” software in several key
respects summarized in the next table:

Real-Time Conventional
16- / 8-bits processors 32-bits processor
CISC architecture RISC/SPARC architectures
Kilobytes memories Megabytes memories
C/Ada83/Assembler C++/Java
Monolithic application Components

The technical challenges outlined in this paper cover all
the differences listed in the table. Thus, the Grand
Challenge discussed in this paper can be extended to all
real-time systems and can be reformulated as an attempt to
close the gap between real-time and other software and to
apply to the former the same techniques that are bringing
so many benefits to the latter.

5 References

[1] C. Szyperski, Component Software, Addison Wesley
Longman Limited, Harrow (UK), 1998

[2] http://www.estec.esa.nl/wsmwww/erc32/erc32.html

[3] http://www.estec.esa.nl/wmwww/WME/oot/index.html

[4] A. Burns, A. Wellings, Hard Real-Time Hood, Elsevier, 1995

[5] A. Pasetti, W. Pree, A Component Framework for Satellite
On-Board Software, 18-th Digital Avionics Systems Conference,
St. Louis (USA), Oct. 99

[6] A. Pasetti, W. Pree, A Component Framework for Real-Tiem
Systems, Paper submitted to 20-th Real Time Systems
Symposium, (Work-In-Progress Session), Phoenix (USA), Nov.
99

[7] N. Murphy, Introduction to CORBA for Embedded Systems,
Embedded Systems Programming, Miller Freeman, Oct. 98, p.
60-73

[8] http://www.omg.org/homepages/realtime/index.html

[9] http://java.sun.com/aboutJava/communityprocess/jsr/
jsr_001_real_time.html

[10] http://www.cs.wustl.edu/~schmidt/TAO.html

