A COMPONENT FRAMEWORK FOR SATELLITE ON-BOARD SOFTWARE

A. Pasetti, W. Pree,

C. Doppler Lab. for Software Research, Univ. of Constance, Constance, Germany

Abstract

This paper advocates a new approach to
satellite software design based on object-
oriented framework technology and describes
early results from a project for the European
Space Agency (ESA) to design a software
framework for satellite attitude and orbit
control systems' (AOCS).

Frameworks are collections of
components with pre-defined cooperations
among them. They make architecture (as
opposed to mere code) reuse possible. The
framework concept is being tested in a re-
design of the AOCS software. This paper
illustrates it by describing the implementation
of telecommand handling, telemetry handling,
and operational mode management.

The Problem

The experience of one of the authors on several
major European space projects is that the
software for an AOCS system tends to be
developed from scratch for each new mission.
Failure to reuse code, in space as in other
fields, is a well-known problem firmly rooted
in economic facts. Figure 1 summarizes the
results of a study” regarding the reuse costs of
single components in NASA projects. The
graph relates the percentage of necessary
changes to a single component in order to
render it reusable (x-axis) to the costs of these

" The views expressed in this paper are those of its authors
only. They do not in any way commit ESA or reflect official
ESA thinking.

2 Boehm B. (1994), Megaprogramming, Video tape by
University Video Communications (http://www.uvc.com),
Standford, California

changes relative to the development of a
component from scratch (y-axis).

The figure shows that even small
changes (12%) raise the reuse costs to a
significant share (55%) of the rewrite costs.
Moreover, even reusing components without
any changes does not come for free: catalogs of
reusable components have to be maintained and
building components for reuse is more
expensive than building them for a special

purpose.

costs
A
100% + /.
e .
55% x'c:,@é
// QQJ
e Q;+
5% -7 .
12% 100%

required changes

Figure 1: Relative Cost of Software Reuse

A more serious limitation of reuse is
that traditionally its scope has been limited to
code fragments. With the conventional
paradigm - prevalent in space projects - that
separates functions and data, software reuse
means at best the reuse of individual
subroutines or modules. The software
architecture - often the toughest part to design -
cannot be ported at all. Experienced designers
will reuse architectures as a matter of course
but, traditionally, it has not been possible to
capture the architecture of a software project
and to make it available for reuse.

Finally, to be of practical use, reuse has
to be wedded to extensibility. No two projects
1

are ever identical and hence software can never
be completely reused: it must be modified and
extended as well. This is difficult to do if the
unit of reuse is the subroutine (or even an Ada
package) because functionality extension
implies source code changes and this, in a
space application, requires the complete re-
qualification of the routine/module. Moreover
changes with architectural impact (eg. adding a
new telecommand or a new operational mode)
are difficult or even impossible to implement.

Software Frameworks

Software frameworks™*’ are in the view
of the authors the solution to the twin problems
of reuse and extensibility outline above. They
differ from other re-use technologies because
they make architectural (as opposed to code)
re-use possible and because they rely on object
composition (and, to a lesser extent,
inheritance) as functionality extension
mechanisms. They are by now well-established
in the area of system software (graphical user
interfaces, editors, operating systems) and here
it is argued that they can be equally well
applied in the space field.

A framework is a collection of several
single components with predefined cooperation
between them. Frameworks are adapted to a
particular application domain and capture an
architectural design optimized for that domain.
They predefine most of the overall architecture
(ie the composition and interaction of its
components) of a system but at the same time
allow for customization by providing hooks
where some of the default behaviours can be
overridden. It is this possibility of flexibly
reusing architecture — as opposed to simple
source code fragments — while at the same time

? Fayad M, Johnson R, Schmidt D (1999) Building Application
Frameworks: Object-Oriented Foundations of Framework
Design. Wiley & Sons

* Lewis T., Rosenstein L., Pree W., Weinand A., Gamma E.,
Calder P., Andert G., Vlissides J., Schmucker K. (1996)
Object-Oriented Application Frameworks. Manning
Publications/Prentice Hall

5 Pree W (1996), Framework Patterns. New York City: SIGS
Books

allowing behaviour tuning that makes
frameworks so successful as reuse vehicles.

Figure 2 illustrates the framework
concept. The unshaded area represents the
architectural backbone of the application. This
remains fixed in one application domain and is
provided by the framework. The shaded blocks
A and B are application-specific. They override
or otherwise cooperate with framework objects
to customize its behaviour. Thick lines
represent method calls. Note the difference
with applications built on module/subroutine
libraries: in the latter case, the mission specific
code typically calls the reused code, in a
framework the mission specific code is called
by the reused code.

A

I

il

- S5

Figure 2: Framework Concept

The framework approach is well suited
to situations where several functionally similar
applications are developed. This is the case of
the AOCS software whose overall structure
changes little across projects: all AOCS
implement control laws, handle telecommands,
perform unit reconfiguration, etc.

OO And Real Time Systems

Frameworks are usually based on OO
technology (although this need not be so:
OBOSS® is a non-O0 framework for satellite

8 fitp:/ftp.estec.esa.nl/pub/ws/wsd/oboss/www/oboss.html
2

software) and OO technology is often regarded
as unsuitable for hard real-time applications
like the AOCS. The greater memory footprints
and the run-time overheads of OO applications
are common reasons cited to support this
contention. These, however, are not insuperable
hurdles’. Traditional AOCS systems were
based on 1753 mil-std processor with a 64K
address space. Future systems will probably be
based on the ERC32 - a SPARC processor
recently space qualified by ESA®. Its use
dramatically increases available memory and
CPU resources thus allowing to accommodate
more resource-intensive technologies.

A more serious criticism of OO
technology is that it is incompatible with static
schedulability analysis. This type of analysis
involves estimating the execution time of
segments of code™'’. This may appear to
present problems in an object-oriented system
because of run-time binding of methods.
Consider the following statements:

object = concreteObject;

object.method (arguments) ;

The estimate of the execution time of the
method call depends on the (dynamic)
assignment to object which is statically
unpredictable.

Thus, static analysis is complicated by
the difficulty of determining statically which
concrete method is called. However, an
embedded system is a closed system and the
number of methods that might be called is finite
(and, in the case of an AOCS system, likely to
be quite small). It is therefore always possible
to determine which is the worst-case execution
time and use this estimate in the schedulability
analysis. This is obviously a pessimistic

" D. Herity (1998), C++ in Embedded Systems: Myth and
Reality, “Embedded Systems Programming”, Feb 98

® hitp://www.estec.esa.nl/wsmwww/erc32/erc32.html

? L. Ko et al (1999), Timing Constraint Specification and
Analysis, “Software - Practice and Experience”, Jan. 99

19T, Vardanega, J. Katwijk (1999), 4 Software Process for the
Construction of Predictable On-Board Embedded Real-Time
Systems, “Software — Practice and Experience”, Mar. 99

estimate but pessimism is a feature of al//
methods for static schedulability.

Note moreover that run-time binding in
good OO designs is often used in lieu of
conditional branches and therefore the use of
the worst case method will lead to the same
result as would be obtained with a conventional
implementation''.

There are, however, some typical OO
constructs'>"” - commonly used in framework
design - that rely on delegation of tasks along
linked lists of objects with arbitrary length and
these clearly defy static analysis. The difficulty
they introduce is conceptually similar to that of
a for loop with an upper bound for the loop
counter that cannot be established at compile
time. Such constructs can be minimized in an
embedded context (the AOCS framework
described below foresees their use in only two
cases) and, where they are inevitable, the
“closed” nature of the AOCS software always
makes it possible to provide meta information
to put an upper bound on the recursion level
thus permitting static schedulability analysis.

Finally, it should be mentioned that the
experience of the authors is that static
schedulability analysis is seldom if ever used
on satellite projects. Compliance with timing
requirements is in practice ensured by testing
and this can be done with an OO approach as
well as with a conventional design.

A Software Framework for the AOCS

The concepts presented above are being
tested with the development of a software
framework for the AOCS. The target processor
is the ERC32 processor and C++ is baselined as
language. Wherever possible, use of “design

" The operational mode manager described at the end of this
paper is an example of the use of run-time binding as a way of
implementing a case switch.

12 Examples are the “decorator” and “chain of responsibility”
patterns of Gamma et a/ (see footnote 14 for full reference).
BW. Pree (1996), Framework Patterns. New York City: SIGS
Books (German translation, 1997: Komponentenbasierte
Softwareentwicklung mit Frameworks. Heidelberg: dpunkt)

3

patterns”'* - regarded as a model of reusable
design solution - is made.

In general, technological advances can
be used either to expand the functionality of a
piece of software or to improve its quality.
Historically, the emphasis has been on the
former task. This is why successive revolutions
in software engineering — the transition to
compiled languages, then to procedural
languages, and still later to modular and OO
languages — have not had a major impact on
software quality (programs are as error-prone
and as poorly readable/reusable today as they
were in the sixties"!). This project
concentrates on improving reuse. Hence, the
AOCS framework covers only the present
functionalities of AOCS systems. By
constraining functionality to its present level,
technological advances is leveraged to improve
quality and reduce development costs.

Frameworks often suffer from being too
large and monolithic. The authors advocate the
framelet approach’®. As the name implies, a
framelet is a “small framework” (or a “large
design pattern”). It formalizes a design solution
to a single, domain-specific design problem.
Framelets can be used in isolation or can be
combined to form a framework. Because of
space limitations, the remainder of this paper
describes only three framelets, to handle
telecommands'’, telemetry'® and operational
mode changes'”.

" E. Gamma, et al (1995) Design Patterns—Elements of
Reusable Object-Oriented Software Reading, Massachusetts:
Addison-Wesley

15 F. Brooks (1995), The Mythical Man-month - Essays in
Software Engineering, Addison Wesley Publishing Company
1®W. Pree, K. Koskimies (1999), Framelets — Small and
Loosely Coupled Frameworks, ACM Computing Survey
Symposium on Application Frameworks, M. Fayad Publishing
Company, Dec. 99

"'W. Pree, A. Pasetti (1999) An Active Telecommand Framelet
for the AOCS Software, Internal SWE Document Ref.
SWE/99A0CS/002

'8 W. Pree, A. Pasetti (1999) 4 Telemetry Framelet for the
AOCS Software, Internal SWE Document Ref.
SWE/99/A0CS/003

1% A. Pasetti, W. Pree (1999) General Architectural Issues for
an AOCS Framework, Internal SWE Document ref.
SWE/99/AO0CS/004

The Telecommand Framelet

Telecommands encode actions to be
performed on the AOCS software. A
telecommand is a string of data bytes with the
structure shown in figure 3: a header word
identifies the telecommand type; the identifier
is followed by one or more data words and a
checksum terminates the telecommand.

Telecommands are executed on-board
by a telecommands handler which essentially
consists of a case statement that processes
each telecommand according to its type as
defined by the telecommand identifier.

This architecture has the advantages of
simplicity and small telecommand size but
suffers from 3 drawbacks: 1) weak
expressiveness; 2) tight coupling between
telecommand structure and telecommand
handling software; and 3) no re-usability of
software across missions.

TC TC TC
|dentifier | Data Word 1 Checksum

Figure 3: Current telecommand structure

The concept adopted for the AOCS
framework applies the object-oriented
paradigm in a manner analogous to graphical
applications where graphic objects carry within
themselves the code for their own
representation as well as their data. A
telecommand then becomes a component that
exposes a method called execute which
performs the actions associated with the
telecommand itself. Using a Java-like pseudo-
code notation, a telecommand is an object that
implements the following interface:

interface Telecommand {
void execute () ;
AocsTime getTimeTag () ;
int getCheckSum() ;

}

The execute method is called by the
telecommand handler which in this way

remains completely insulated from any
knowledge of what the telecommand does and
how it does it. This concept presupposes an
AOCS software that is built as a collection of
objects that expose certain interfaces. The
telecommands use these exposed interfaces to
perform their assigned tasks. Methods
getTimeTag and getCheckSum implement
other operations common to all telecommands.

As an example, consider a telecommand
that must switch on a sensor. The sensor is
assumed to be implemented as a component
that, among others, exposes a switchOn
method. The telecommand’s execute method
then simply calls switchOn on the desired
sensor component.

The chief drawback of this concept is
the greater size of telecommands due to their
carrying code as well as data. Greater size is
offset by greater re-usability of both the
individual telecommands and the telecommand
handling software. Individual telecommands
can be re-used because they consist of calls to
public methods — whose syntax need not
change from mission to mission. The
telecommand handler can be re-used because it
is completely de-coupled from telecommand
content. In the traditional concept the handler
interprets telecommands. In the new concept,
telecommands execute themselves and the
handler must simply trigger their execution.
Telecommands and the logic required to
execute them have been separated and
consequently the telecommand handler has
become mission-independent.

Independence of telecommand handlers
from telecommand content also means that new
telecommands can be added without any
impact on the telecommand handling software
thus improving ease of extensibility.

Telecommands are now more
expressive because they can call any public
method in the AOCS software whereas with the
conventional concept they are limited to the
commands that are understood by the handler.
Their greater expressiveness can be exploited

to combine into a single telecommand actions
that would otherwise result in several
telecommands. Consider for instance four units
that have to be switched on in sequence. With
the current telecommand concept, this requires
sending four telecommands one after the other.
With the active telecommand concept, the
commands can be naturally combined into a
single telecommand. This results in a reduction
of overhead that somewhat compensates for the
higher overhead intrinsic to the active
telecommand concept.

Telecommand expressiveness finally
allows telecommands to be made responsible
for checking that the AOCS is in the correct
state prior to their execution. A mode transition
telecommand, for instance, checks that the
units required in the new mode are correctly
configured and can refuse to execute itself if
they are not. In the passive telecommand
concept this task is left to the telecommand
handler that thus has to perform a large variety
of telecommand-specific checks.

Finally, this telecommand concept
allows to treat sequences of telecommands as
transactions. The term “transaction” is used in
the same sense in which it is used in database
systems, namely it designates an atomic
operation that can either succeed or fail and
that, in case of failure, restores the initial state
of the system. In current systems, execution
failure for a telecommand is reported in
telemetry and it is then left to the ground to
take whatever corrective action is appropriate.
A telecommand transaction is safer because, in
case of execution failure, the AOCS software is
left in a consistent state.

Telecommands are incorporated in
transaction-like sequences by providing them
with an unExecute operation (similar to the
undo of most desktop application). Consider
for instance an AOCS that is in mode A and
must make a transition to mode B. Suppose
also that mode B requires units U;, U, and Us
to be switched on. The following commands
are required to perform the desired transition:

5

1) switch on unit Uy; 2) switch on unit Uyy; 3)
switch on unit Uj3; 4) switch to operational
mode B. If] say, the second telecommand fails,
two corrective actions must be performed: 1)
abort the telecommand sequence; 2) switch off
unit U;. Simply aborting the telecommand
sequence would leave the AOCS in an
inconsistent state where unit U; (which should
be switched off in mode A) remains powered.
When the four commands are treated as a
transaction, then the failure of command 2
automatically triggers an unExecute for
command 1 thus preserving the consistency of
the AOCS state.

The Telemetry Framelet

Telemetry data are generated cyclically
by the AOCS for transmission to the ground. In
current implementations, the telemetry handler
directly collects the data for telemetry and
stores them in a dedicated buffer from which
the data will be transferred to the central
satellite computer. The telemetry handler must
thus have an intimate knowledge of the type
and format of the telemetry data. It is this
coupling between telemetry handler and
telemetry objects that makes the handler so
mission-specific and hinders its re-use.

In the AOCS framework approach, the
AOCS software is organized as a collection of
objects and each object is potentially capable of
writing itself to telemetry. In practice, this
means that each object is made to implement
the following interface:

interface Telemeterable {
void writeToTelemetry () ;
int getImagelLength();

A call to writeToTelemetry causes
the object to write its internal state to the
telemetry stream. Method getImagelLength
returns the lengths in bytes of the image that is
created by writeToTelemetry. This
information is useful to the telemetry handler to
check whether the object selected for inclusion

in telemetry actually fits into the memory space
available for telemetry.

The task of the telemetry handler
becomes simply to keep track of the objects
that are to be included in telemetry and to call
their write-to-telemetry method. In this way,
the handler does not need to know anything
about the internal structure of objects and can
thus be designed in a mission-independent
manner.

The telemetry handler then is an
instance of the following class:

class TelemetryHandler {
TelemetryList tmList;
void addToTm(Telemetarable t);
void removeFromTm (Telemetarable t);
void makeTmFrame () ;

tmList is a data structure that contains
the sequence of objects to be included in the
next telemetry frame. Methods addToTm and
removeFromTm can be called to add to or
remove objects from tmList. Typically, these
methods would be called by a Telecommand
object representing ground commands to
modify the format of the next telemetry frame.
Method makeTmFrame is called periodically to
assemble a telemetry frame:

void makeTmFrame () {
for (all objects t in TmList) do
t.writeToTelemetry () ;

}

It should be clear that the telemetry
handler is now completely mission-independent
and can be ported from one AOCS to the next
without any change at all.

Telemetry and Serialization

There is a tantalizing conceptual
similarity between telemetry and serialization
(in the Java sense of the word). Both processes
involve the writing of objects’ states to an
output stream. Serialization uses standard
procedures to do the writing and is thus more
reusable than the concept proposed here where
a dedicated method, writeToTelemetry,
must be implemented for each AOCS class.

6

Serialization is at present not baselined
for the AOCS framework because of the need
for meta-language information® and because of
concerns about memory overheads but, because
of its elegance and generality, its use will be
reassessed during the project.

The Operational Mode Framelet

Current AOCS systems are based on the
concept of operational mode. The operational
mode is an attribute of the AOCS software as a
whole. Its purpose is to adapt the software’s
behaviour to various sets of external conditions.

In moving towards a component-based
approach, the basic design choice was between
keeping a single operational mode for the
whole AOCS software, or making operational
mode a property of individual components.

The first approach requires a “mode
manager” responsible for ensuring that each
object behaves in a manner consistent with the
current mode. This object acts as a centralized
coordinator of object behaviour. As such, it
requires a detailed understanding of the internal
state of each object. This approach weakens
data encapsulation and was rejected.

The selected approach makes
operational mode a component-level property:
components are responsible for changing their
own operational mode in response to changes
in their environment. Components keep track of
environmental changes by monitoring
properties of other objects: they explicitly
register interest in external properties and ask
to be notified when these properties changes in
a certain manner. In fact, the property
monitoring mechanism is the object of another
AOCS framelet” loosely modelled on the
JavaBeans property model™.

2 Meta-language information is provided as part of the
language in Java but not in C++.

2L A, Pasetti, W. Pree (1999), General Architectural Issues for
an AOCS Framework, Internal SWE Document Ref.
SWE/99/A0CS/004.

22 R. Englander (1997), Developing Java Beans, O’Reilly

Note that a monitored property could
also be the operational mode of another
component. Hence, the traditional architecture
with an AOCS-wide operational mode could be
implemented by having components implement
the same set of modes and by having
components change their own mode to follow
changes initiated by a “mode manager” object.

Components implement algorithms. The
algorithm type depends on their operational
mode. The mode management implementation
follows a design pattern (akin to the “strategy
pattern” of Gamma et a/”) that separates the
mode logic from the algorithm implementation.
The design pattern is illustrated with an
example.

Consider a Controller object
responsible for the implementation of the
attitude control law. An outline definition of its
class is as follows:

class Controller {
ControllerImplementer implementer;
ControllerModeManager modeManager;

void computeTorque () {
implementer.computeTorque () ;

}

void run() {
implementer:=
modeManager.getImplementer () ;

computeControlTorque () ;

The Controller is an active object
whose run is called periodically by the
scheduler. In this example, it is assumed that
the Controller consists of one single
method, computeTorque, besides method
run. The work to be done by this method is
entirely delegated to an implementation object,
implementer which contains the mode-
specific implementation of computeTorque.
Object implementer is re-defined at every

2 See footnote n. 14

activation of Controller. Its definition is
done by object modeManager.

The modeManager maintains several
versions of implementer, each one adapted to
a particular operational mode. When its
getImplementer method is called, it checks
what the current operational mode is and
returns a reference to a
ControllerImplementation of the
appropriate kind. All operations of the original
Controller are then delegated to this mode-
specific ControllerImplementer.

This design separates implementation of
the mode algorithms (confined to the various
implementer objects maintained by the mode
manager) from the mode switching logic
(confined to the mode manager). Reusability is
achieved though object composition that allows
the construction of a mission-specific controller
by plugging together appropriate
modeManager and Implementer objects
without any source code changes.

Comparison with Autocode Tools

Autocode generators are an alternative
solution to the software problem. In particular,
in the AOCS field, both Xmath and MatLab
have successfully been applied to develop
software implementing attitude and orbit
control law”*. There are important conceptual
differences between them and the framework
approach advocated here.

Firstly, an autocode tool does not by
itself facilitate the design of the software
architecture. Given the architecture, the tool
makes it easy to generate the software but the
design of the architecture still has to be done
manually by the user on an ad hoc basis. By
contrast, frameworks relieve developers of the
need to define the architecture because the
architecture is built into the framework (indeed,
the architecture is the framework).

* W. Dellinger, M. Salada, H. Shapiro (1999), Application of
Matlab/Simulink to Guidance and Control Flight Code Design,
22™ AAS FNC Conference, Breckenridge, Colorado, Feb. 99

A second difference stems from the
greater generality of the autocode tools that are
targeted at a very wide range of users (eg.
Xmath is targeted at dynamic system
modelling, not just at AOCS modelling). An
AOCS framework is instead specifically
targeted at AOCS applications and is therefore
endowed with abstractions tailored to this
application domain. For instance, a generic
autocode tool will not have an abstraction for
‘reaction wheel’ and this object must therefore
be built from simpler entities for each new
AOCS application. An AOCS framework
would instead be likely to include a ‘reaction
wheel’ abstraction that can be directly
manipulated by users.

Thirdly, the generality of autocode tools
implies that they seldom can generate more
than a fraction of the total code required for the
AOCS. Xmath, for instance, is good at
generating code implementing a spacecraft’s
control laws but poor at generating code to
perform functions like: telecommand handling,
telemetry generation, failure detection,
reconfiguration management, etc. It is these
functions that normally make up the bulk of the
AOCS software”. An AOCS-specific
framework instead in principle covers all the
AOCS code.

Fourthly, autocode tools are usually
built on top of environments that were intended
as simulation and algorithm design
environments, not as design environments for
the architecture of complex systems. The
facilities they provide are correspondingly
optimized for the former tasks making them
awkward as architectural design tools. This
may make model reuse very problematic:
understanding a complex Xmath model can be
as difficult as understanding a complex piece of
code. An AOCS framework, on the other hand,
is specifically designed to be portable across
projects and to have a structure that facilitates
maintainability, re-use and understandability.

3 A distributed architecture (common on European projects) is
assumed with a dedicated processor for the AOCS subsystem.

8

On the other hand, the origin of
autocode environments as simulation tools is
also their greatest strength. An autocode system
provides a seamless integration of validation
and development facilities. Although a
framework that is based on components can
also be oriented towards integrating
development and testing environments, at
present a framework solution is in this respect
definitely inferior to an autocode solution.

The autocode and framework
approaches are perhaps best seen as
complementary. Autocode tools are especially
good at generating code that implements
specific algorithms (ie they are good at
generating individual subroutines, rather than
entire systems) and frameworks typically have
‘holes’ for the subroutines implementing the
application-specific algorithms. An AOCS
framework, for instance, will have handles
where users can hook the subroutines
implementing, say, the controller algorithms
and the state estimators. These algorithms
would typically be developed and tested in an
environment like Xmath. This environment
could be used to generate the code
implementing them and this code could then be
inserted in the appropriate ‘holes’ in the
framework. This solution optimally combine
the framework and autocode approaches
leveraging the specific advantages of each.

Empowering Domain Specialists

The normal procedure on satellite
projects is for AOCS engineers to write user
requirements for their systems but to delegate
software development to a separate team of
software engineers who are usually not AOCS
specialists. This results in a situation where the
heart of the AOCS system — its software — is
designed, developed and tested by persons who
are not domain specialists. This approach is
flawed because the interface between the
software engineers and their AOCS colleagues
lengthens development times and introduces a
potential for errors.

Autocode tools empower AOCS
engineers with the skills to directly generate
their software. Frameworks, too, are often
supplemented with automatic code generators.
Combining them with the autocode generators
of dynamical simulation tools will increase the
share of AOCS software that is generated
without manual intervention and that can be
developed by AOCS engineers without
recourse to software engineers.

Conclusions

This paper has argued that OO
technology can and should be applied to
onboard software development and that
frameworks provide the solution to the reuse
problem by making architecture as well as
code reusable across projects. These
contentions are being tested with the
development of a framework using C++ on an
ERC32 target. In order to fully leverage the
potential of this technology to improve
software quality (as opposed to expanding its
functionalities) the requirements of existing
AOCS are being assumed.

The framework is being developed as a
collection of framelets. This paper described
the framelets for telecommand and telemetry
handling and for operational mode
management. These examples clearly show the
re-use potential of the proposed technology. In
all three cases, an architecture was designed
that is both reusable and extensible to fit the
specific requirements of each mission.

The promise of reusable components
has been made several times in the short history
of software engineering. Too often, it was not
kept. Framework and component technology,
however, have in commercial applications gone
beyond promises making reuse a fact. There is
no reason why their benefits should not be
available to the space community.

