
Proceedings of the IASTED International Conference
Software Engineering and Applications
October 6-8, 1999 – Scottsdale, Arizona – USA

299-004 - 1 -

AN ARCHITECTURE FOR A STRICT MODEL-VIEW
SEPARATION IN JAVA

EGBERT ALTHAMMER AND WOLFGANG PREE
C. Doppler Lab for Software Research

University of Constance
Campus P.O. Box D188

D-78457 Constance, Germany
E-mail: althammer@acm.org, pree@acm.org

Abstract. Though the separation of a model from its
visual representation (view) implies well-known benefits,
available Java libraries as Swing so far do not sufficiently
support this concept. The paper presents a straight-
forward way of how to smoothly enhance Java libraries in
this direction, independent of the particular graphic user
interface (GUI) library: The lean framework JGadgets,
which was inspired by the Oberon Gadgets system [1],
allows developers to focus on model programming only.
This significantly reduces the development costs, in
particular in the realm of quite simple, form-based GUIs
which are common-place in commercial client-/server-
systems.

We first present a small case study implemented on
top of JGadgets which demonstrates the benefits of a strict
model/view separation. The paper goes on to sketch the
reflection-based design of JGadgets itself.

Keywords: software components, reuse, model/view
architecture, reflection, automated configuration, Java

1 MOTIVATION OF JGADGETS

Many commercial applications have a client/server
architecture which follows roughly the schematic
representation in Figure 1: A client accesses and
manipulates data in a data repository called server. The
client might be conceptually split into model and view
component, where the model corresponds to the particular
business logic and the view to the visual representation of
the model. The model-view concept and the associated
benefits are well-known already from Smalltalk (see [2,
3]). As the structure of the server is not relevant in the
context of the paper, we won't discuss this aspect.

Model View

represents
business logic

dialogs
buttons
...

data
flow

Server Client

data base

event flow

data flow

FIGURE 1 SIMPLIFIED ARCHITECTURE OF A CLIENT/SERVER
ARCHITECTURE.

Real-world commercial client/server systems usually
consist of several dozens if not hundreds of dialogs that
form the overall application. The development and
enhancement of such applications involves, besides
careful data modeling, the tedious task of implementing
the dialogs so that end users can enter and edit data. Since
Graphical User Interfaces (GUIs) have become popular,
numerous tools support the 'drawing' of these dialogs and
automate in various ways the development of the client
part.

We found that state-of-the-art Java development
environments for Java 2 (formerly called JDK 1.2) only
partially automate the development of the client part of
commercial applications. Though these tools let a
developer draw the GUI and generate some event
handling code, a clear separation of a model and its view
are not pursued. This is partly due to the design of the
Java 2 libraries, in particular the Swing GUI library [4].
Swing provides a model-view separation only for its more
complex components such as lists and tables, but not for
the more simple components.

Typical client/server applications rely on a quite small
and well-known set of GUI components: edit fields,
labels, action buttons, radio buttons, check boxes,
lists/grid controls, and tab controls to name the most
common ones. Thus we found that existing Java GUI
libraries should be slightly enhanced to support a clear
separation of model and views for all components. This
should automate the development of the client side.
Developers should just focus on working with the models.
The view should be generated out of the model
descriptions. Overall the model-view separation should
yield the following benefits:

� A simplified development. Developers should be able
to almost ignore the GUI representation. Event
handling should also be simplified compared to bare-
bone Swing programming.

� The possibility to switch between different GUI
libraries. The switching, for example between Swing
and the Windows Foundation Classes, should not
affect the already developed dialogs.

- 2 -

The enhancement of existing GUI libraries should be done
in a way that it supports a developer as sketched above. At
the same time it should impose as little overhead as
possible. The enhancements following these
considerations were implemented as a small framework
called JGadgets. Analogous to the Oberon Gadgets
system, the Java-based model-view framework JGadgets
should basically take care that value changes either in the
model or in the view should automatically be updated in
the other part without any effort by the developer.

JGadgets was developed in a cooperation between the
RACON Software GmbH, a software company of the
Austrian Raiffeisen banking group and the Software &
Web Engineering Group at the University of Constance.
RACON applies Java technology together with JGadgets
for implementing the client part of various systems, in
particular, banking applications.

The next section presents the features and usage of
JGadgets from a developer's perspective. A discussion of
the core design aspects of the framework rounds out the
paper. We assume that the reader is familiar with concepts
of object-oriented frameworks as described in [5, 6, 7].

2 REDUCED DEVELOPMENT EFFORT
THROUGH MODEL-VIEW
SEPARATION—A CASE STUDY

The sample dialog (see Figure 2), which shows the
authentic German labeling, allows end users to retrieve
information about a bank customer. The tab control
supports the selection of various search criteria such as
name, personal identification number, account number,
and telephone number. In case of a name-based search, the
end user enters the last name (text field labeled
Name/Bezeichnung), and/or first name (text field labeled
Vorname) and/or the date of birth or date when the
company started its operation (text field labeled
Geb./Grün. Dat.). After pressing the Search (Suchen)
button, the list in the lower half of the dialog displays the
search results, in this search example, customers with the
last name Schwarzenegger.

FIGURE 2 SEARCHING FOR CUSTOMERS WITH THE LAST
NAME SCHWARZENEGGER.

In order to display or modify the detailed information
associated with the customer selected in the list, the end

user presses the Modify (Ändern) button. This opens
another dialog where the corresponding data can be
edited.

MODEL PROGRAMMING IN JGADGETS

A developer who defines a model basically defines what
we call attributes and services. Attributes store data of a
specific type. These types correspond in general to basic
Java types, such as integer, float, double and String, but
can also be more complex structures such as a lists or edit
fields with special formatting such as date or currency
fields. Services correspond to GUI elements which trigger
action events, such as buttons and menu items. Services
and attributes become instance variables of the class that
represents the model.

An attribute in the model represents a data container
for data (taken from the data base, for instance). It usually
has a visual representation in the view. One goal of a
model/view separation is that model and view should only
be semantically linked. JGadgets requires the developer to
adhere to a simple naming convention: An element of the
model and an element of the view are associated with each
other if they have the same name. The programmer has
only to ensure that the names of the instance variables are
the same and JGadgets takes care of the linking (see
Figure 3).

CustomerSearchModel CustomerSearchView

lastName (Text Field)

searchCriteria (Tab Control)

lastName_2 (Text Field)

searchCustomer searchCustomer (Button)

lastName (String)

searchCriteria (Integer)
attributes

services

FIGURE 3 NAMING CONVENTION FOR LINKING MODEL AND
VIEW.

For example, the attribute with the name lastName (of
type String) corresponds to the GUI field (text field) with
the name lastName. If there is more than one visual
representation for a model item, a _2 (_3) is attached to
the name of the view elements (lastName_2, …) to
distinguish them. This mechanism permits an
unambiguous connection of model and view elements.

JGadgets provides the class JGAttribute (note that
classes that belong to JGadgets all start with JG…) as the
general abstraction for attributes. JGadgets automatically
ensures that a change of an attribute's state is reflected in
its corresponding view and vice versa.

Besides of the functionality of a data container, an
attribute further contains a fixed set of GUI status
information. This status information somehow introduces
a view flavor into the model. For example, lastName
contains the data (String) and general information about
the text field, whether it is visible, enabled and whether
the focus has been set. Thus, the fact that model elements
contain view information seems to undermine the strict

- 3 -

model/view separation. We argue that this information
belongs to the model, but affects, of course, the user
interface. If a service is disabled, neither model nor view
(button cannot be clicked) are able to change it directly.

To handle the business logic associated with each
attribute, a method can be defined which is invoked when
the data of the attribute has been changed. The name of
the method is composed by the name of the attribute and
the String Changed as, for instance, lastNameChanged().
The association is based again on a naming convention.

A service (class JGService) represents a GUI element
that does not contain data but just triggers events. Buttons
and menu items would be typical examples. To each
service there is a corresponding method implemented in
the model, which is invoked every time the GUI element
is activated. It has the name exec concatenated with the
name of that service, for instance, execSearchCustomer().

The event handling in most of the dialogs should be
accomplished by these simplified mechanisms. For more
sophisticated situations the Java/Swing event handling can
be used if necessary.

There are some GUI groups that occur very often,
such as list boxes with associated buttons for adding,
modifying and deleting list items [8]. They can be
described in separate models which can be integrated into
other models as submodels. This leads to a treelike model
hierarchy.

Models and views can be changed dynamically, i.e.,
attributes and services can be added and removed at
runtime. In this case, a dynamic list administrates the
attributes and services. This issue is beyond the scope of
this paper and is not described here.

Example 1 sketches the implementation of the
CustomerSearchModel (model) which corresponds to the
model underlying the dialog in Figure 2. A Model has to
implement the empty JGadgets interface JGModel, in
order that the JGadgets framework recognizes it as a
model. The constructor initializes the attributes
searchCriteria and lastName as attributes of type Integer
(the JGadgets type corresponding to type int in Java) and
String, respectively. Note that the type is passed as a
string parameter. The field searchCriteria corresponds to
the tab control of the dialog. Each different selection state
is reflected through a different value of searchCriteria. It
is set to 0 which means that the leftmost panel is selected
(labeled "Name/Bezeichnung" in Figure 2). The field
lastName together with the method lastNameChanged()
correspond to the text field which displays the text
"Schwarzenegger" in Figure 2. The service
searchCustomer and the re lated method
execSearchCustomer() correspond to the button labeled
"Suchen". The field searchResult is of type
ListBoxModel, which represents a list box. It is an

example of a submodel. The implementation of
ListBoxModel is not described here.

import JGadgets.*;
public class CustomerSearchModel extends Object
implements JGModel {

 public JGAttribute searchCriteria;
 // corresponds to tab control,
 public JGAttribute lastName;
 // text field,
 …
 public JGService searchCustomer;
 // button 'Suchen',
 …
 public ListBoxModel searchResult;
 // list box
 …

 public CustomerSearchModel () {
 searchCriteria = new
 JGAttribute("Integer");
 searchCriteria.setValue(0);
 // set selection state of the tab-
 // control to the leftmost value

 lastName = new JGAttribute("String");
 …
 searchCustomer = new JGService();
 // the GUI element which repre-
 // sents the service defined
 // in CustomerSearchView
 …
 searchResult = new ListBoxModel();
 // list box with associated buttons
 // (implemented as submodel)
 …
 }

 public void lastNameChanged() {
 // check entered text
 }
 public void execSearchCustomer() {
 // search data on server using the search
 // criteria and display them in the list box
 }
 …
}

EXAMPLE 1 A SAMPLE MODEL CLASS.

VIEW GENERATION
JGadgets provides a tool that generates the view out of the
model class. The view conceptually contains the GUI
elements but not the container of the view. This is the task
of the controller.
Analogous to a model class, a view class implements the
empty interface JGView. JGadgets introduces GUI
elements, such as JGTextField, JGButton, which
correspond to the GUI elements of Java GUI libraries

- 4 -

such as Swing. A view only contains JG-components. As
JG-components are JavaBeans any Beans editor can be
used for editing the visual representation of the dialogs.
Example 2 shows source code fragments of the generated
class CustomerSearchView. Note that the instance
variables searchCriteria, lastName and searchCustomer
follow the naming convention, i.e., they have the same
names as the corresponding items in the model. Instance
variable names with an underscore refer to items of
submodels. Here searchResult_listBox refers to the list
box which is an attribute (with the name listBox) of the
submodel searchResult. The instance variable
lastNameLabel is an example of an extra item that has no
counterpart in the model. It represents the label of the text
field lastName.

import JGadgets.*;

public class CustomerSearchView extends Object
implements JGView {

 public JGTabControl searchCriteria;
 // same name as attribute in model
 public JGLabel lastNameLabel;
 public JGComboBox lastName;
 // same name as attribute in model
 …
 public JGButton searchCustomer;
 // same name as service in model
 public JGList searchResult_listBox;
 // refers to submodel searchResult
 …

 public CustomerSearchView() {
 searchCriteria = new
 JGTabControl("Name/Bezeichnung$…")
 lastNameLabel= new JGLabel("Vorname:",
 size and position);
 lastName = new JGComboBox(size and
 position);
 …
 searchCustomer = new JGButton("Suchen",
 size and position);
 searchResult_listBox = new JGList(size
 and position);
 …
 }

EXAMPLE 2 A SAMPLE VIEW CLASS.

CONTROLLER

Model and view are both created by a special entity called
controller (class JGController). A controller is the
manager for models and views and defines the container
element wherein the view is displayed. The container can
be any type of window such as a dialog, a frame or even a
simple panel. Example 3 shows the statement that creates
a model and a view and associates it with a controller. A
new instance of JGController is created and model and

view are passed as String parameters (their class name).
The type of container is also passed as a String parameter.

JGController customerSearchCtrl = new
 JGController("CustomerSearchModel",
 "CustomerSearchView", "JGFrame",
 <actualController>);

EXAMPLE 3 CREATION OF MODEL AND VIEW OF EXAMPLE 1
AND 2.

The last parameter refers to the controller hierarchy.
Figure 4 schematically illustrates this aspect. M, V, C are
the abbreviations of model, view and controller. The class
names next to the circles refer to our case study. The
controller CustomerSearchCtr l creates the model
CustomerSearchModel and the view CustomerSearchView
(Figure 2). When the end user presses the Modify
(Ändern) button in the dialog in Figure 2, a subcontroller
of CustomerSearchCtrl, CustomerEditCtrl, is instantiated
which creates the model/view pair CustomerEditModel
and CustomerEditView, which are not described in the
paper. In this example it can be seen that the controller
hierarchy corresponds to the window hierarchy of the user
interface, which means that the controller is responsible
for window handling.

Another important aspect of the controller is the role
as an information broker between distant model
components. If a model wants to send information
regarding events to another model the events pass through
the controller hierarchy.

C

C

VM

M V

...

M

CustomerSearchCtrl

ListBoxModel

CustomerSearchModel

CustomerEditCtrl

CustomerSearchView

CustomerEditModel CustomerEditView

FIGURE 4 CONTROLLER HIERARCHY.

3 CORE DESIGN ASPECTS OF
JGADGETS

This section first outlines the static structure of JGadgets,
i.e., its classes and interfaces. Based on this description,
the design of the connection mechanism between models
and views as well as the updating and event handling are
discussed.

STRUCTURE OF JGADGETS

The framework JGadgets consists of only a few classes
and interfaces (see Figure 5): The class JGController, the

- 5 -

two empty interfaces JGModel and JGView, the classes
JGAttribute (and subclasses for more complex structures
such as lists or tree structures), JGService and the GUI
classes, such as JGButton, JGTextField or JGList. Note
that the core classes of JGadgets do not extend other Java
classes. They are derived directly from the root class
Object (see Figure 6).

JGModel

MyModel

JGAttribute JGService

JGView

MyView

JGComponent

JGController

N NN

1

connect()
fireEvent()N

1

1 1N

JGButton
JGTextField
JGList
...

FIGURE 5 SIMPLIFIED CLASS DIAGRAM OF JGADGETS.

JGController is the core part of JGadgets. It has basically
two methods: connect(), which does the reflection-based
linking of model and view, and fireEvent() which
manages the event handling. JGController has a reference
to a model and a view (and vice versa) and to (possible)
subcontrollers and a parent controller (controller
hierarchy). Details of the implementations of the classes
of JGadgets are not within the scope of this paper and are
not described here.

MyModel and MyView classes are sample model and
view classes which have to implement the empty
interfaces JGModel and JGView, respectively. This is
expressed by dotted arrows in Figure 5. MyModel
contains instance variables of JGAttribute, JGService,
other models (submodels) and a reference to the parent
model (model hierarchy) and MyView contains instance
variables of the JG-specific GUI classes.

JGComponentJGServiceJGAttributeJGController

Object

FIGURE 6 CORE JGADGETS CLASSES ARE DERIVED FROM
THE JAVA OBJECT CLASS.

JGadgets introduces additional classes for all GUI
elements which are required in the dialogs, for example,
text fields, labels, buttons, grid controls and numeric
spinners. The GUI classes all extend JGComponent and
are independent of a special GUI library (as AWT or
Swing). The JGadgets components are separated from the
Java GUI components through the Adapter pattern [5].
Currently JGadgets supports AWT and Swing GUI
components. The design allows a straightforward
migration of JGadgets to future Java GUI libraries. As
mentioned in the previous section, it is sufficient to adapt

the JGadgets GUI components. Model and view remain
unchanged.

AUTOMATED CONNECTION OF MODEL
AND VIEW

The framework JGadgets defines two abstract components
which we call hot spots [6]. These are the (empty)
interfaces JGModel and JGView which have to be
implemented by the adaptation classes. Since there is no
restriction on the programming level for the model and
view classes (every class can implement an empty
interface), they act together and communicate at a higher,
semantic level. In our case this is achieved by means of
the simple naming convention explained in Section 2.

In order to connect model and view, the method
connect() of class JGController iterates over the attributes
and services of the model (and submodels) and the GUI
elements of the view and puts them into hash tables. Then
model and view elements are checked for name
equivalence and corresponding elements get a mutual
reference. The model is further sought for attribute or
serv ice methods (execServ iceName() o r
attributeNameChanged()).

The method connect() is called when a model/view
pair has just been created and also when an attribute or
service was added or removed from the model in case of
dynamic models. In the latter case only the elements that
have been changed are reconnected, in order to save time.

The connection process is illustrated in Figure 7 and
refers to our case study. The view has to be connected to
the model CustomerSearchModel as well as to the
submodel ListBoxModel.

CustomerSearchModel

CustomerSearchView

service
searchCustomer

submodel
searchResult button

searchCustomer

ListBoxModel

attribute
listBox

service
add

...

button
add

...

...

list box
searchResult_listBox

text field
lastName

attribute
lastName

FIGURE 7 A SAMPLE CONNECTION PROCESS.

- 6 -

AUTOMATED UPDATING OF A
CORRESPONDING MODEL/VIEW
ELEMENT PAIR

If the status of a model or view element has been changed,
the counterpart has to be updated. This is easily achieved
based on the mutual references between model and view
elements, which are created in the realm of the connection
process.

The update mechanism is done by a simple
assignment:

myModelElement.viewElement.set<Property>
 (myModelElement.get<Property>)

The important aspect of the update is that in case that the
view element has been changed by the user, the model has
a veto right if the entered value has not been correct for
whatever reason. The model then restores the previous
state.

A numeric text field (class JGTextField) in the view
with the name myNumericField corresponds to the Integer
attribute myNumericField in the model. If the number is
changed in the model (by invoking the method
myTextField.setValue(12345)), the change is propagated
to the view where the new number is displayed in the
corresponding GUI field. The view informs the model and
the model invokes the method myTextFiebldChanged().
If, on the other hand, a number is entered into the text
field, an attempt is made to update the model element. If
the value entered is a valid number, the associated method
myTextFieldChanged() is invoked, otherwise (if a letter is
typed into the numeric field, for instance) the model
refuses the update and restores the previous state.

AUTOMATED EVENT HANDLING

JGadgets provides an event handling mechanism which
relies on the Java event listener model [9] and which is
managed by the method fireEvent() of JGController.
Whenever a model element is changed, it triggers an
event, which other models can listen to. An event moves
up and down the controller hierarchy so that submodels
and parent models can handle it (see Figure 4). In order to
do this the method fireEvent() is implemented recursively
and is executed for all the parent controller and
subcontrollers to find other models which listen to the
event.

A model which listens to events has to implement the
according interfaces. JGadgets introduces a series of new
events, such as ModelChangedEvent (an attributed has
been added or removed from a model),
AttributeChangedEvent (any attribute has been changed)
and ViewActivatedEvent (the view window has got the
focus).

4 SUMMARY AND RELATED WORK

There are numerous other systems that provide a
model/view separation and that automate the
synchronization of these two components as well as the
event handling in the GUI. For example, the Microsoft
Foundation Classes provide a mechanism for dynamic
data exchange (DDE). [10] describes a system that applies
reflection to some extent in the realm of synchronizing
model and view components. The Oberon Gadgets system
was already mentioned as another example originating
from the academic community.

The goal of JGadgets is to augment Java libraries in a
small and convenient manner. Overall, we feel that the
design and implementation of the framework architecture
at hand is reasonably small: The bytecode size of
JGadgets, including the JG-GUI components is around 40
KB. The linking based on naming conventions ensures
that developers benefit from JGadgets without being
bothered by the framework.

REFERENCES
[1] Gutknecht J (1994) Oberon System 3: Vision of a
Future Software Technology. Software—Concepts &
Tools 15, 1

[2] Goldberg A, Robson D (1985) Smalltalk-80 / The
Language and its Implementation. Addison-Wesley

[3] Krasner G and Pope S (1988). A cookbook for using
the model-view controller user interface paradigm in
Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26-49, August/September 1988

[4] Eckstein R, Loy M, Wood D (1998). Java Swing.
O'Reilly

[5] Gamma E, Helm R, Johnson R and Vlissides J (1995).
Design Patterns—Elements of Reusable Object-Oriented
Software. Reading, Massachusetts: Addison-Wesley

[6] Pree W (1996). Framework Patterns. New York City:
SIGS Books (German t ranslat ion, 1997:
Komponentenbasierte Softwareentwicklung mit
Frameworks. Heidelberg: dpunkt)

[7] Fayad M, Johnson R and Schmidt D (1999) Object-
Oriented Application Frameworks. Wiley.

[8] Pree W, Althammer E and Sikora H (1998) Self-
Configuring Components for Client-/Server Applications.
IEEE Workshop on Large Components, DEXA’98,
Vienna, Austria, August 1998

[9] Campione M, Walrath K (1999) The Java Tutorial
Second Edition. Object-Oriented Programming for the
Internet. Addison Wesley

[10] Hewitt C (1998) Developing Business Object-based
Applications in JBuilder (http://www.oop.com
/white_papers/java/business_objects.htm)

