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Abstract

In this paper we present sificant optimizations of
the so-called Combinatoridleural Model CNM). CNM
is a hybrid (neural/symbolic) model that has besed in

reusability [13]. As the basic neural model of this project
is the CNM, many implementation aspects naturally
arose which improve the CNM model. In theurse of

areas such as expert system development and data minitigjs paper, we show the implementation aspects that are

The paperfirst explains theCNM architectureand goes
on to presenCNM optimizations dgether with empiric
results. The most important optimization aims at taming -
combinatorial explosion, which is the main problem
inherent to this model.

1. Introduction

The CombinatorialNeural Model [9, 10] hadeen
explored and developed during the past feyears.
Experiments with this model hawikemonstrated that it is
well suited for classification problems, with impressive
good reslis in terms ofaccuracy [5, 6].Ledo and
Reategui [7]developed arexpert system, called Hycones
that is based on the CNM. Hyconssipports the
application of CNM to different problendomains.
However, Hycones’ basic architecture suffers from some
flexibility limitations that have been solved in the realm
of the JABC project (Java rAficial neural networks
Business Components). Ageneric and flexible
architecture constitutes an important goal right from the
beginning of the development of this project. The details
can be seen in [3, 12[The centraldea of the JABC
project is to incorporate object oriented technology to the
architecture in order to have more flexibility and

proving to extend the CNM performance and usability.

The Combinatorial Neural Model
M)
The CNM integrates in one straight-forward

architecture symboliand non-symbolicknowledge. This
model has characteristics that
classification system:

are desirable in a

Simplicity of neural learning -due to aneural
network’s generalization capacity.

Explanationcapacity — the model canap neural
network's  knowledge into a ymbolic
representation.

High-speed training - onlyone pass over the
training examples is required.

Immunity against some commameural network
pitfalls — i.e. local optima, plateau, etc.

Incremental learning posglity - previously
learned knowledge can be improved with new
cases.

Flexible uncertainty handling — ¢tan acceptuzzy
inputs, probabilistic inputs, etc, as inputs fall
into the interval [0, 1].



The CNM includes mapping of previous knowledge ta3. Optimizations
the neural network, training algthms, and pruning
criteria, in order to extract only significant pieces of The main limitation of CNM is the possibility of
knowledge. The CNM is a 1dden hyer, feed-forward combinatorial explosion, since the intexdiate &yer
network. It has particular characteristics in the way thgrows exponentially. The combinatorial explosion
topology is constructed, in neurons, in the linksveen  problem is criticalbecause ofmemory and pocessing
neurons, and in its training algorithm. restrictions that computers have. It is not possible to
The domainknowledge is mapped to the networkpreviously generate all domain probletnypothesis
through eulences anchypotheses. One @&énce may (represented by CNM combinatorial neurons) and
have many distinct values that must bevaluated subsequently evaluate whiatne must remain or not.
separately by the neural network, called findings. Th8ecause of this restriction, until now the CNkbdel is
input layer represents the defd set of findings (also applied to few areas with maximum combination order of
called literals). An example: if an edence age is 3. Some effort haveendone in trying to avoid these
modeled, it probably has findings that canrbadeled as restrictions as using genetic algorithms to éase the
fuzzy intervals. The problem domain expert definezy maximum combination order [4, 11]. In the next section
sets for differentages (e.g. teenjouth, adult, senior). we present our contribution to this problem.
Each fuzzy sethen corrggonds to a finding and, as
consequence, to a CNM input neuron. In the CN#sich 3.1 Separation of Evidences by Hypothesis
input value is in the [0,1] interval, indicating the
pertinence of the training example to a certain concept, or The CNM model is essentially based on the
the degree of confidence. knowledge graphs defined by Lednd Rocha [6]. During
The intemediate  (combinatorial) layer is the knowledge @phs construction, theomain expert
automatically generated. Aeuron isadded to thisayer defines which evidencesaind findings have to be
for each possible combination of éences, from order 1 considered. He/she can also determine  which
to a maximum order, given by the user. evidences/findings relate to each probldmpothesis.
The output layer corrpsnds to the psible classes This means that for some hypothesis, a smaillenber
(hypothesis) to which an exampleould bebng. of evidences/findings can be considered. As the CNM
Combinatorial neuronsbehave as conjunctions of neural network structure generation isdépendent for
findings that lead to a certain sk For that reason, each defied hypothesis, some of thersan have its
combinatorial neurons @pagate nput valuesaccording combinatorial explosion reduced. This happens in reality,
to a fuzzy AND operator, taking adts output the for example in a credit analysis problem tle&pert
minimum value eceived by theniputs. Outputneurons determined that the evidence sex important for
group the classification hypothesis, implementing &valuatingbad custmers but not for evaluatingood
fuzzy OR operator, propagating the maximum valueones. So, considering a distinct set of relevant findings
received by its inputs. for eachhypothesis may significantlyeduce the search
The connections bseen neurons (synapsebpve Space.
weights and also jra@ of accumulators fopunishment o o
and reward. Before the training quess, in alence of 3:2 Avoiding nonsense combinations
previous knowledge, all weights are set to amne all
accumulators to zero. During the training, aach It does notmake sense t@eneratecombinations of
example is presentehd popagated, all links that led to findings of the same elénce. Forexample the edence
the proper classification have theewardaccumulators called “Blood Type” in a medical diagnosis probleiach
incremented though  Backpropagation.  Similarly, blood type is a different finding. Farach ype one mput
misclassifications increment the punishmentode is defined. In this casensense combinations are
accumulators of the path that led to wrong outputs. Nof@osewhere moreftan one type isconsidered because a
that weights remainunchanged during the training Patient never vil have moretan one bloodype. It is
process, only accumulators are incremented. clear and logical, but the original CNM did not consider
The training process is general@one in one pass this kind of situation. This wasiade pobably with the
over the training examples. At tiemd of this squential hope of simplifying the implementation algorithm but
pass,accumulators are used to compute new weightgesulted in compromising the overall system’s efficiency.
Based on the CNM topology, symbolic knowledge can be L o
easily extractedand thenew weights can be used to -3 Parallelization and distribution

compute the confidence of each piece of knowledge. . . .
The object-oriented architecture and the



implementation in Java turns out to facilitate the use dhe secondypothesis. Iraddition more than one thread
threads in a very inttive way [3]. Since the can be defied foreachhypothesis (Figure 1(b)). The set
combinatorial structure of the whole network isof generatedombinations is dided in asmany theads
independent of eadhypothesis, one thad is created to as the user defines. This solution optimizes the use of
manage the learning process of eaghothesis. In figure threads according to the size of the combinatayer and
1(a), T1 represents one dhd that controls the the machine capabilities.

combinations of the first hypothesis. T2 is analogous for

Figure 1: Using threads on CNM
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The CNM learning and testing can also li&ridbuted. so that only the onesugported by the examples used in
The first tests of this implementationpast currently training are  combined generating -it@msets
being investigated. The basic idea is to make the learniigombinations of 2 findings). From the 2-itemset
of parts of the neural network iniffdrent machines in combinations, only the ones which awpported by the
order to use the several machines available in the laxamples are expanded generating  3-itemset
computer network. The basic technology that hasn combinationsand so on. Withksuch an inspiration, the
used is object migration developed with the Voyage€NM algorithm for the topologygeneration hadeen
library*. The citeria in the diision of parts of the optimized, resulting in a major searchase reduction,
network to be trained in differemhachines is based on especially for complex applications with a very large
the same riteria of defining the threads for the networknumber of findings anavhere high order knowledge has
machines processing and memory capacity aspects. to be discoveredThe impoved algoithm is shown in

Algorithm 1.

3.4 Optimization on the combination order , )
definition and generation Algorithm 1: New algorithm for CNM

learning

We have taken a property on which many association Let Hc< be a set of dommin problem hypot hesis;
rule discovery algathms [1] are based in order to  Let N be an empty CNM network;
minimize the threat of the combinatorial explosion: et Fk be the set of findings that occur within the
Taking a set of selection criteria, the numbeexémples

set of exanples of Hk;
For each order Od from 2 up to N do

which pass suchriteria cannotexceed thenumber of Begin

examples selected by any subset of this selection criteria.  Let Nkt be an empty tenporary ONM network;

For example, if patients were selected from ealubete For each hypothesis Hk do

with the criteria: AGE > 30 AND SEX="FEMALE”", the Add combinatorial neurons to Nkt by combining

. . . Fk with d d;
number of patients that will betrievedcannot be larger — "% ,
Train network Nkt;

than the number of patients that would be selected by one 5 yne non-rewarded combinations of network Nkt :

of those criteria taken Separately. Add to N network all remaining conbinations from
Based on sch a property, the association rulenkt:

discovery algathm Apriori [2] first analyses indidual

items (which are equivalent to the concept of findings),

For each hypothesis Hk do
Let Fk be the set of findings that appear on
ewar ded conbi nations Nkt;
End;
Prune the N remmining networks by the original CNM

! Objectspace: http://www.objectspace.com



al gorithm readjusting the weights;

In the first iteration of the main “for” loop, the
findings that occur associated to edwipothesis will be
considered to generate order @mbinations. These
combinations are stored in a temporary network, which is
trainedand puned. By pruning, allcombinations that
were not validated by the examples will be deleted from
the network. This pruning is a simplified version so that
only the combinations that werever ewarded during
learning (rewarchccumulator is zero) areysredand the
weights are not changed. After this pruning, the
remaining combinations are transferred to the network.

As some parts of the netwohave been pruned, it is
expected thatasme findings which did nobccur in any
combination that habeen ewarded (which did nobccur
in the set of examples), will not be eeant in the next .
algorithm iteration. Since the complexity of
combinatorial layer generation isxponential, even a
small reduction of the number of findings to ¢mmbined
has a significant (or measurable) impact on the size of the
search space.

After doing the learning loop from the order 2 to the
desired order, a final pruning process is applied over the
remaining network. This last pruning is the original,
CNM pruning algorithm, wherecombinations that
received morepunishments thanewards are pruned and
the weights are modified.

The main advantage of this algorithm is tleduction
of memoryand time resources for the learningqass
without compromisingaccuracy, as no relevant findings
are pruned. Furthermore it is gmible togenerate nets °
with higher orders than with the originalop-optimized)
algorithm. This can be seen in tmext section that
discusses the perfoance of thenon-optimized and °
optimized CNM algorithms.

4. Test Results

The domain for this test is that of credit analy8isal «
customer data, provided fromcampany,have been used
describing information about customeasd what they
bought. The task is to classify the customers as either
“good” or “bad” ones. The company domain expert (credif
analyst) defined the relevant evideneesl findings. A set
of 13 evidences were identified, e.g. age, sex, order value,
type of customer, etc. From these 13dewices, 32
findings were defined based on finding types suchuzsyf
(e.g. age = teen, youth, adult, senior), numeric (e.g. type
of customer = 1,2 or 3) or string (e.g. sex = M or F).

To better evaluate the improvements of the optimized
algorithm, 3 tests were perfoed using 3 CNM
networks with the following characteristics:

1. A CNM network generated using the normal CNM
algorithm [9, 10] that is called here non-optimized

network (Table 1). This network contained all
combinations for the specified 32 findings from order
2 to order 4.

A CNM network generated wibut the non-sense
combinations but still using thenon-optimized
algorithm (Table 2). This test ismportant for
verifying the size of the remaining network without
the non-sense combinations.

A CNM network generated by the optimized
algorithm (Table 3). The findings aremarated by
hypothesis,non-sense combinations are eliminated,
and the learning is done step by step by eliminating
non-relevant findings based on the Algorithm 1.

The tables 1, 2and 3 &ow the results of the 3
proposed tests. The table’s structure is as follows:

The column “Comb. order” shows the
combination order that the CNM network must
generate for learning. In case Hdbles land 2, the
CNM simultaneouslygenerates allcombinations
from order 2 to the order specified in this woh. In
case of Table 3, the CNM generatzsmbinations
step by step for eaatombination order from 2 to 4
based on the Algorithm 1.

The column “Hypothesis” shows the two
hypotheses considered in the testing problem
domain: “good” and “bad”. The dision into good or
bad is important for the evaluation of other columns
that separately show the number of combinations for
each hypothesis.

The column “Number of generated
combinations for order N” shows thenumber
of generated combinations for each order N.

The “Remaining rewarded combinations”
column indicates the combinations that were not
pruned becauseh¢y eceived reward during the
learning process (simplified pruning of Algorithm
1).

The “Final number of combinations” column
shows combinations which remain after performing
the original CNM pruning (the last pruning of the
Algorithm 1).

The “Findings number” is the number of
findings considered for the combination order N. In
these tests the networks staonsidering all the 32
findings for each hypothesis.

The column“Time” shows the time taken by the
learning algorithm to generate the network and to
perform the learning and pruningogesses. It was
used a set of 44 cases (22 geod 22 bad) for the
learning. The time is given in milliseconds and
minutes.



e The column “Memo” shows the amount of ¢« The column“Result” shows the number of correct
memory (in Mbytes) used for doing the learning, i.e.  responses foeachhypothesis after testingnother
the amount of memory used for allocating the CNM  data set with 44 cases (22 good and 22 bad).

network.
The columns  “Remaining rewarded generated at the same time.
combinations” and “Final number of It is possible to wéfy this economy in memory as

combinations” should have the same values for thewell. With the non-optimized algathm, the
three algorithm versions. The first tesfable 1) has combinations (for all orders) agenerated and maintained
different values due toemaining combinations among in memory simultaneously. For the Tablesrid 2 it is
findings of the sameufzy evidenceThose combinations necessary tadd the orders 2, and 4 of the column
should be eliminated since twafferent values of one “Number of generated combinations for order”
evidence are forbidderHowever, this esmetimesoccurs for both “good” and “bad” hypotheses. For the
with fuzzy evidences because two different fuzzy valuesptimized algorithm (Table 3), it is onlyecessary to add
can be presented to the network at thene time in a the “Remaining rewarded combinations” of
single case (e.g. an age 45 can be considered 0.5 adult previous orders, and the o©oin “Number of
0.5 senior). Thus there will inevitably be soman-sense generated combinations for order” for the order in
combinations remaining at thend of the learning learning process. Considering learning order 4, for the
process. This iflerence is not encountered in the testhon-optimized network (Tablel), the total number of
types two and threbecause theinonsense combinations combinations is 82832 while for the optimized network
are not generated. It isnportant to realize that these (Table 3) it is29111, which means a 64.86%duction.
remaining nonsense combinations are not stemmugh It is important to remember that the numbergenerated
to be activated, and do not imfince the correct combinationsdepends on theombination ordeand on
performance of the network. the domain model. Thus, it mapange verymuch from
The analysis of the findings which were eliminatedone application domain to another but the optimazre]
during the optimized learning is equally important. In then terms of the number ajeneratedccombinations, will
test type 3 (Table 3), after the learning and pruning of tha@lways be relevant.
order 2, it is verified thatsne findings are eliminated,
reducing to 28 findings for th&ood” hypothesisand to 5. Conclusions
26 findings for the “Bad’hypothesis. The next learning
order only generatesombinations for those remaining  The optimizations m@sented in this papehave
findings, greatly reducing the overall size of tienerated significantly changed the bounds of the generation of the
network. In this problem domain, the number of findinggombinatorial layer of the CNM model. In ttapproach
did not reduce for the orders larger than 2. presented here, relevant findings apasated in a subset
The timeconsumed for the learning procesoows a for eachhypothesis @ducing thenumber of findings to
huge difference between the test type 1 and the test typéd&considered) angonsense combinations areoided. A
(non-optimized to the optimized). The optimized networkmajor search space reductibas been achieved, as the
spent 68.95% less time than the non-optimized networkgeneration of combinations is controlled in ordeatoid
The parallelization of the CNM network also aids thehe pre-generation of all psible combinations for a
better time performance of the CNM network.dugh  given combination order. A new algorithm with such
the 3 tests aported here were performed with theoptimizations was implementednd tested. Also, the
parallelized network, this aspect did not influence thgarallelization and disbution of the neural network
results. The performance of the parallelized network usinghprove themodel’'s performance. Finally, thadequate
Java JIT (Just in Time dinpilation) is many times software architecture makes it possible cnsider each
better than an earlyon-parallelized C wsion of the detail in the sense of best using the computational
system; precise tests of thispast still have to be resources to make the CNM model applicable.
completed.
The tests also show the very economic use of memoACknowledgements
through the optimized learning algorithm. The optimized
network (Table 3) used only &8% of thememory This work has been partially funded by CNPq/Protem (a
compared to the non-optimized (Table 1). Because of suéhazilian government organization for scientific research),
memory savings during the learning, it is possible téhrough “SIDI Project” (Institutional Process Number
generate the neural network up to order 5 using {HB0059/95.4).
optimization algorithm. It was not possible generate References
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