
Optimizations of the Combinatorial Neural Model

Fábio Ghignatti Beckenkamp
beckenkamp@acm.org

Software Engineering Group, University of Constance
Universitaetsstr. 10

D-78457 Constance, Germany

Miguel Artur Feldens
feldens@inf.ufrgs.br

Computer Science Institute, Federal University of Rio Grande do Sul
Av. Bento Gonçalves, 9500

Porto Alegre, Brazil

Wolfgang Pree
pree@acm.org

Software Engineering Group, University of Constance
Universitaetsstr. 10

D-78457 Constance, Germany

Abstract

In this paper we present significant optimizations of
the so-called Combinatorial Neural Model (CNM). CNM
is a hybrid (neural/symbolic) model that has been used in
areas such as expert system development and data mining.
The paper first explains the CNM architecture and goes
on to present CNM optimizations together with empiric
results. The most important optimization aims at taming
combinatorial explosion, which is the main problem
inherent to this model.

1. Introduction

The Combinatorial Neural Model [9, 10] has been
explored and developed during the past few years.
Experiments with this model have demonstrated that it is
well suited for classification problems, with impressive
good results in terms of accuracy [5, 6]. Leão and
Reátegui [7] developed an expert system, called Hycones
that is based on the CNM. Hycones supports the
application of CNM to different problem domains.
However, Hycones’ basic architecture suffers from some
flexibility limitations that have been solved in the realm
of the JABC project (Java Artificial neural networks
Business Components). A generic and flexible
architecture constitutes an important goal right from the
beginning of the development of this project. The details
can be seen in [3, 12]. The central idea of the JABC
project is to incorporate object oriented technology to the
architecture in order to have more flexibility and

reusability [13]. As the basic neural model of this project
is the CNM, many implementation aspects naturally
arose which improve the CNM model. In the course of
this paper, we show the implementation aspects that are
proving to extend the CNM performance and usability.

2. The Combinatorial Neural Model
(CNM)

The CNM integrates in one straight-forward
architecture symbolic and non-symbolic knowledge. This
model has characteristics that are desirable in a
classification system:

• Simplicity of neural learning - due to a neural
network’s generalization capacity.

• Explanation capacity – the model can map neural
network’s knowledge into a symbolic
representation.

• High-speed training - only one pass over the
training examples is required.

• Immunity against some common neural network
pitfalls – i.e. local optima, plateau, etc.

• Incremental learning possibility - previously
learned knowledge can be improved with new
cases.

• Flexible uncertainty handling – it can accept fuzzy
inputs, probabilistic inputs, etc, as inputs fall
into the interval [0, 1].

The CNM includes mapping of previous knowledge to
the neural network, training algorithms, and pruning
criteria, in order to extract only significant pieces of
knowledge. The CNM is a 1-hidden layer, feed-forward
network. It has particular characteristics in the way the
topology is constructed, in neurons, in the links between
neurons, and in its training algorithm.

The domain knowledge is mapped to the network
through evidences and hypotheses. One evidence may
have many distinct values that must be evaluated
separately by the neural network, called findings. The
input layer represents the defined set of findings (also
called literals). An example: if an evidence age is
modeled, it probably has findings that can be modeled as
fuzzy intervals. The problem domain expert defines fuzzy
sets for different ages (e.g. teen, youth, adult, senior).
Each fuzzy set then corresponds to a finding and, as
consequence, to a CNM input neuron. In the CNM, each
input value is in the [0,1] interval, indicating the
pertinence of the training example to a certain concept, or
the degree of confidence.

The intermediate (combinatorial) layer is
automatically generated. A neuron is added to this layer
for each possible combination of evidences, from order 1
to a maximum order, given by the user.

The output layer corresponds to the possible classes
(hypothesis) to which an example could belong.
Combinatorial neurons behave as conjunctions of
findings that lead to a certain class. For that reason,
combinatorial neurons propagate input values according
to a fuzzy AND operator, taking as its output the
minimum value received by the inputs. Output neurons
group the classification hypothesis, implementing a
fuzzy OR operator, propagating the maximum value
received by its inputs.

The connections between neurons (synapses) have
weights and also pairs of accumulators for punishment
and reward. Before the training process, in absence of
previous knowledge, all weights are set to one and all
accumulators to zero. During the training, as each
example is presented and propagated, all links that led to
the proper classification have their reward accumulators
incremented through Backpropagation. Similarly,
misclassifications increment the punishment
accumulators of the path that led to wrong outputs. Note
that weights remain unchanged during the training
process, only accumulators are incremented.

The training process is generally done in one pass
over the training examples. At the end of this sequential
pass, accumulators are used to compute new weights.
Based on the CNM topology, symbolic knowledge can be
easily extracted, and the new weights can be used to
compute the confidence of each piece of knowledge.

3. Optimizations

The main limitation of CNM is the possibility of
combinatorial explosion, since the intermediate layer
grows exponentially. The combinatorial explosion
problem is critical because of memory and processing
restrictions that computers have. It is not possible to
previously generate all domain problem hypothesis
(represented by CNM combinatorial neurons) and
subsequently evaluate which one must remain or not.
Because of this restriction, until now the CNM model is
applied to few areas with maximum combination order of
3. Some effort has been done in trying to avoid these
restrictions as using genetic algorithms to increase the
maximum combination order [4, 11]. In the next section
we present our contribution to this problem.

3.1 Separation of Evidences by Hypothesis

The CNM model is essentially based on the
knowledge graphs defined by Leão and Rocha [6]. During
the knowledge graphs construction, the domain expert
defines which evidences and findings have to be
considered. He/she can also determine which
evidences/findings relate to each problem hypothesis.
This means that for some hypothesis, a smaller number
of evidences/findings can be considered. As the CNM
neural network structure generation is independent for
each defined hypothesis, some of them can have its
combinatorial explosion reduced. This happens in reality,
for example in a credit analysis problem the expert
determined that the evidence sex is important for
evaluating bad customers but not for evaluating good
ones. So, considering a distinct set of relevant findings
for each hypothesis may significantly reduce the search
space.

3.2 Avoiding nonsense combinations

It does not make sense to generate combinations of
findings of the same evidence. For example the evidence
called “Blood Type” in a medical diagnosis problem. Each
blood type is a different finding. For each type one input
node is defined. In this case nonsense combinations are
those where more than one type is considered because a
patient never will have more than one blood type. It is
clear and logical, but the original CNM did not consider
this kind of situation. This was made probably with the
hope of simplifying the implementation algorithm but
resulted in compromising the overall system’s efficiency.

3.3 Parallelization and distribution

The object-oriented architecture and the

implementation in Java turns out to facilitate the use of
threads in a very intuitive way [3]. Since the
combinatorial structure of the whole network is
independent of each hypothesis, one thread is created to
manage the learning process of each hypothesis. In figure
1(a), T1 represents one thread that controls the
combinations of the first hypothesis. T2 is analogous for

the second hypothesis. In addition more than one thread
can be defined for each hypothesis (Figure 1(b)). The set
of generated combinations is divided in as many threads
as the user defines. This solution optimizes the use of
threads according to the size of the combination layer and
the machine capabilities.

Figure 1: Using threads on CNM

T1 T2 T1 T2 T3 T4

Hypothesis Layer

Combinatorial
Layer

Input Layer

(a) (b)

The CNM learning and testing can also be distributed.
The first tests of this implementation aspect currently
being investigated. The basic idea is to make the learning
of parts of the neural network in different machines in
order to use the several machines available in the lab
computer network. The basic technology that has been
used is object migration developed with the Voyager
library1. The criteria in the division of parts of the
network to be trained in different machines is based on
the same criteria of defining the threads for the network
machines processing and memory capacity aspects.

3.4 Optimization on the combination order
definition and generation

We have taken a property on which many association
rule discovery algorithms [1] are based in order to
minimize the threat of the combinatorial explosion:
Taking a set of selection criteria, the number of examples
which pass such criteria cannot exceed the number of
examples selected by any subset of this selection criteria.
For example, if patients were selected from a database
with the criteria: AGE > 30 AND SEX=”FEMALE”, the
number of patients that will be retrieved cannot be larger
than the number of patients that would be selected by one
of those criteria taken separately.

Based on such a property, the association rule
discovery algorithm Apriori [2] first analyses individual
items (which are equivalent to the concept of findings),

1 Objectspace: http://www.objectspace.com

so that only the ones supported by the examples used in
training are combined generating 2-itemsets
(combinations of 2 findings). From the 2-itemset
combinations, only the ones which are supported by the
examples are expanded generating 3-itemset
combinations, and so on. With such an inspiration, the
CNM algorithm for the topology generation has been
optimized, resulting in a major search space reduction,
especially for complex applications with a very large
number of findings and where high order knowledge has
to be discovered. The improved algorithm is shown in
Algorithm 1.

Algorithm 1: New algorithm for CNM
learning

Let Hk be a set of domain problem hypothesis;

Let N be an empty CNM network;

Let Fk be the set of findings that occur within the

set of examples of Hk;

For each order Od from 2 up to N do

Begin

Let Nkt be an empty temporary CNM network;

For each hypothesis Hk do

Add combinatorial neurons to Nkt by combining

Fk with order Od;

Train network Nkt;

Prune non-rewarded combinations of network Nkt;

Add to N network all remaining combinations from

Nkt;

For each hypothesis Hk do

Let Fk be the set of findings that appear on

rewarded combinations Nkt;

End;

Prune the N remaining networks by the original CNM

algorithm readjusting the weights;

In the first iteration of the main “for” loop, the
findings that occur associated to each hypothesis will be
considered to generate order 2 combinations. These
combinations are stored in a temporary network, which is
trained and pruned. By pruning, all combinations that
were not validated by the examples will be deleted from
the network. This pruning is a simplified version so that
only the combinations that were never rewarded during
learning (reward accumulator is zero) are pruned and the
weights are not changed. After this pruning, the
remaining combinations are transferred to the network.

As some parts of the network have been pruned, it is
expected that some findings which did not occur in any
combination that has been rewarded (which did not occur
in the set of examples), will not be relevant in the next
algorithm iteration. Since the complexity of
combinatorial layer generation is exponential, even a
small reduction of the number of findings to be combined
has a significant (or measurable) impact on the size of the
search space.

After doing the learning loop from the order 2 to the
desired order, a final pruning process is applied over the
remaining network. This last pruning is the original
CNM pruning algorithm, where combinations that
received more punishments than rewards are pruned and
the weights are modified.

The main advantage of this algorithm is the reduction
of memory and time resources for the learning process
without compromising accuracy, as no relevant findings
are pruned. Furthermore it is possible to generate nets
with higher orders than with the original (non-optimized)
algorithm. This can be seen in the next section that
discusses the performance of the non-optimized and
optimized CNM algorithms.

4. Test Results

The domain for this test is that of credit analysis. Real
customer data, provided from a company, have been used
describing information about customers and what they
bought. The task is to classify the customers as either
“good” or “bad” ones. The company domain expert (credit
analyst) defined the relevant evidences and findings. A set
of 13 evidences were identified, e.g. age, sex, order value,
type of customer, etc. From these 13 evidences, 32
findings were defined based on finding types such as fuzzy
(e.g. age = teen, youth, adult, senior), numeric (e.g. type
of customer = 1,2 or 3) or string (e.g. sex = M or F).

To better evaluate the improvements of the optimized
algorithm, 3 tests were performed using 3 CNM
networks with the following characteristics:

1. A CNM network generated using the normal CNM
algorithm [9, 10] that is called here non-optimized

network (Table 1). This network contained all
combinations for the specified 32 findings from order
2 to order 4.

2. A CNM network generated without the non-sense
combinations but still using the non-optimized
algorithm (Table 2). This test is important for
verifying the size of the remaining network without
the non-sense combinations.

3. A CNM network generated by the optimized
algorithm (Table 3). The findings are separated by
hypothesis, non-sense combinations are eliminated,
and the learning is done step by step by eliminating
non-relevant findings based on the Algorithm 1.

The tables 1, 2 and 3 show the results of the 3
proposed tests. The table’s structure is as follows:

• The column “Comb. order” shows the
combination order that the CNM network must
generate for learning. In case of Tables 1 and 2, the
CNM simultaneously generates all combinations
from order 2 to the order specified in this column. In
case of Table 3, the CNM generates combinations
step by step for each combination order from 2 to 4
based on the Algorithm 1.

• The column “Hypothesis” shows the two
hypotheses considered in the testing problem
domain: “good” and “bad”. The division into good or
bad is important for the evaluation of other columns
that separately show the number of combinations for
each hypothesis.

• The column “Number of generated
combinations for order N” shows the number
of generated combinations for each order N.

• The “Remaining rewarded combinations”
column indicates the combinations that were not
pruned because they received reward during the
learning process (simplified pruning of Algorithm
1).

• The “Final number of combinations” column
shows combinations which remain after performing
the original CNM pruning (the last pruning of the
Algorithm 1).

• The “Findings number” is the number of
findings considered for the combination order N. In
these tests the networks start considering all the 32
findings for each hypothesis.

• The column “Time” shows the time taken by the
learning algorithm to generate the network and to
perform the learning and pruning processes. It was
used a set of 44 cases (22 good and 22 bad) for the
learning. The time is given in milliseconds and
minutes.

• The column “Memo” shows the amount of
memory (in Mbytes) used for doing the learning, i.e.
the amount of memory used for allocating the CNM
network.

• The column “Result” shows the number of correct
responses for each hypothesis after testing another
data set with 44 cases (22 good and 22 bad).

The columns “Remaining rewarded
combinations” and “Final number o f
combinations” should have the same values for the
three algorithm versions. The first test (Table 1) has
different values due to remaining combinations among
findings of the same fuzzy evidence. Those combinations
should be eliminated since two different values of one
evidence are forbidden. However, this sometimes occurs
with fuzzy evidences because two different fuzzy values
can be presented to the network at the same time in a
single case (e.g. an age 45 can be considered 0.5 adult and
0.5 senior). Thus there will inevitably be some non-sense
combinations remaining at the end of the learning
process. This difference is not encountered in the test
types two and three because their nonsense combinations
are not generated. It is important to realize that these
remaining nonsense combinations are not strong enough
to be activated, and do not influence the correct
performance of the network.

The analysis of the findings which were eliminated
during the optimized learning is equally important. In the
test type 3 (Table 3), after the learning and pruning of the
order 2, it is verified that some findings are eliminated,
reducing to 28 findings for the “Good” hypothesis and to
26 findings for the “Bad” hypothesis. The next learning
order only generates combinations for those remaining
findings, greatly reducing the overall size of the generated
network. In this problem domain, the number of findings
did not reduce for the orders larger than 2.

The time consumed for the learning process shows a
huge difference between the test type 1 and the test type 3
(non-optimized to the optimized). The optimized network
spent 68.95% less time than the non-optimized network.

The parallelization of the CNM network also aids the
better time performance of the CNM network. Although
the 3 tests reported here were performed with the
parallelized network, this aspect did not influence the
results. The performance of the parallelized network using
Java JIT (Just in Time Compilation) is many times
better than an early non-parallelized C version of the
system; precise tests of this aspect still have to be
completed.

The tests also show the very economic use of memory
through the optimized learning algorithm. The optimized
network (Table 3) used only 43.38% of the memory
compared to the non-optimized (Table 1). Because of such
memory savings during the learning, it is possible to
generate the neural network up to order 5 using the
optimization algorithm. It was not possible to generate
the order 5 for the non-optimized algorithm because there
was not enough memory to support all the combinations

generated at the same time.
It is possible to verify this economy in memory as

well. With the non-optimized algorithm, the
combinations (for all orders) are generated and maintained
in memory simultaneously. For the Tables 1 and 2 it is
necessary to add the orders 2, 3 and 4 of the column
“Number of generated combinations for order”
for both “good” and “bad” hypotheses. For the
optimized algorithm (Table 3), it is only necessary to add
the “Remaining rewarded combinations” of
previous orders, and the column “Number o f
generated combinations for order” for the order in
learning process. Considering learning order 4, for the
non-optimized network (Table1), the total number of
combinations is 82832 while for the optimized network
(Table 3) it is 29111, which means a 64.86% reduction.
It is important to remember that the number of generated
combinations depends on the combination order and on
the domain model. Thus, it may change very much from
one application domain to another but the optimizations,
in terms of the number of generated combinations, will
always be relevant.

5. Conclusions

The optimizations presented in this paper have
significantly changed the bounds of the generation of the
combinatorial layer of the CNM model. In the approach
presented here, relevant findings are separated in a subset
for each hypothesis (reducing the number of findings to
be considered) and nonsense combinations are avoided. A
major search space reduction has been achieved, as the
generation of combinations is controlled in order to avoid
the pre-generation of all possible combinations for a
given combination order. A new algorithm with such
optimizations was implemented and tested. Also, the
parallelization and distribution of the neural network
improve the model’s performance. Finally, the adequate
software architecture makes it possible to consider each
detail in the sense of best using the computational
resources to make the CNM model applicable.

Acknowledgements

This work has been partially funded by CNPq/Protem (a
Brazilian government organization for scientific research),
through “SIDI Project” (Institutional Process Number
680059/95.4).

References
[1] Agrawal, R.; Imielinski, T. & Swami, A. 1993. Mining

association rules between sets of items in large

databases. In: Proceedings of the ACM SIGMOD
Conference on Management of Data, 207-216.
Washington, DC.

[2] Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H. &
Verkamo, A. I. 1996. Fast discovery of association
rules. Advances in knowledge discovery and data
mining. Cambridge: AAAI Press/The MIT Press.

[3] Beckenkamp F.G., Pree W. and da Rosa, S.I.V. 1998.
Neural Network Framework Components. To appear in
Fayad M., Schmidt D.C. and Johnson R. editors, Object-
Oriented Application Framework: Applications and
Experiences, Volume 2, John Wiley.

[4] Denis, F.A.R.M. and Machado, R.J. 1991. O Modelo
Conexionista Evolutivo. Rio de Janeiro: IBM – Rio
Scientific Center (Technical Report CCR - 128).

[5] Feldens, M.A.& Castilho, J. M. V. Data mining with
the combinatorial rule model: an application in a health-
care relational database. In: XXIII C LEI. Valparaíso,
Chile, 1997.

[6] Leão, B. F. and Rocha, A. F. 1990. Proposed
Methodology for Knowledge Acquisition: A Study on
Congenital Heart Disease Diagnosis. Methods of
Information in Medicine. 29(1), p. 30-40.

[7] Leão, B.F. and Reátegui, E. 1993. Hycones: a hybrid
connectionist expert system. Proceedings of the
Seventeenth Annual Symposium on Computer
Applications in Medical Care - SCAMC, IEEE Computer
Society, Maryland.

[8] Leão, B.F. and Reátegui, E. 1993a. A hybrid
connectionist expert system to solve classification
problems. Proceedings of Computers in Cardiology,
IEEE Computer, IEEE Computer Society, London.

[9] Machado, R.J. and Rocha, A.F. 1989. Handling
Knowledge in High Order Neural Networks: The
Combinatorial Neural Model. Rio de Janeiro: IBM Rio
Scientific Center (Technical Report CCR076).

[10] Machado, R.J. and Rocha, A.F. 1991. The
combinatorial neural network: a connectionist model for
knowledge based systems. In B. Bouchon-Meunier, R.
R. Yager, and L.A. Zadeh, editors, Uncertainty in
Knowledge Bases. Springer Verlag.

[11] Machado, R.J. and Rocha, A.F. 1992. Evolutive fuzzy
neural networks. Proceedings of the IEEE International
Conference on Fuzzy Systems.

[12] Pree W., Beckenkamp F. and da Rosa S.I.V. 1997.
Object-Oriented Design & Implementation of a Flexible
Software Architecture for Decision Support Systems.
Proceedings of the 9th International Conference on
Software Engineering and Knowledge Engineering -
SEKE’97. Madrid.

[13] Pree, W. 1996. Framework Patterns. New York City:
SIGS Books)

