
Self-Configuring Components for
Client-/Server-Applications

Wolfgang Pree, Egbert Althammer
Software Engineering Group

University of Constance
D-78457 Constance, Germany
{pree, althammer}@acm.org

Hermann Sikora
GRZ/RACON Software GmbH

Goethestr. 80
A-4020 Linz, Austria

sikora@grz.at

Abstract

A mechanistic view of software component assembly
implies exact matching and fitting of the particular
components. We argue that components for large-scale
software construction should have automatic
configuration capabilities in order to significantly
enhance their reusability and maintainabilty. The paper
sketches a pragmatic approach for implementing self-
configuring components, relying on framework
technology, meta-information and naming conventions.
A case-study drawn from the client-/ server-domain
illustrates the concepts.

1 Beyond Open Implementation

Gregor Kiczales [1] discusses the problems of black-

box abstraction: The implementation details of a

module/component are hidden. In many cases, clients are

affected by the implementation and its specific

restrictions so that programmers have to “code around”

the component implementation. Thus implementations

should be opened up to allow clients more control over

these issues. Figure 1 illustrates the basic concept of an

open component implementation, which provides two

interfaces, a primary interface and a meta-interface. A

client requests the functionality of a component through

the primary interface. The meta-interface allows the

parameterization of the various component

implementation strategies.

primary
interface

meta-
interface

primary
client code

meta-program

Figure 1 A component based on the open implementation
principle (adapted from [1])

Adjustment through computational reflection

represents a visionary aspect of open implementation

interfaces: components should configure themselves by

providing interfaces for examining and adapting

themselves. This focuses on the optimization of single

component implementations.

Though a somehow automated optimization of

component implementations can be helpful, we view the

assembly of components as a step beyond the open

implementation idea. The long-term vision is automated

component assembly in the large scale: Components

advertise their capabilities, and engage in mutual

interactions and negotiations. Components would inspect

the meta-descriptions and recognize that some

functionality would be appropriate for a specific task.

The vision sketched above is very difficult to realize.

Nevertheless, the application of well-known

concepts—framework technology, computational

reflection, and naming conventions—allows the design

and implementation of self-configuring components,

which form a small step towards reaching the much more

ambitious goal. The subsequent section discusses the

role of framelets, a deviate of frameworks, as basis of

self-configuring components. A case-study corroborates

that the reuse of self-configuring components in real-

world applications can lead to significantly leaner

software systems.

2 Framelets as architectural building
blocks

Not only the design of complex frameworks is hard,

but also the reuse of such artifacts (see, for example, [1,

3, 5]). Due to the complexity and size of application

frameworks, and the lack of understanding of the

framework design process, frameworks are usually

designed iteratively, requiring substantial restructuring of

numerous classes and long development cycles.

Furthermore, the internal working of different

frameworks is usually not compatible so that two or

more frameworks can hardly be combined.

We argue that the reason for these problems is the

conventional idea of a framework as a skeleton of a

complex, full-fledged application. Consequently, a

framework becomes a large and tightly coupled collection

of classes that breaks sound modularization principles

and is difficult to combine with other frameworks.

Inheritance interfaces and various hidden logical

dependencies cannot be managed by application

programmers.

As alternative we propose framelets as small

architectural building blocks that can be easily

understood, modified and combined. Note that not the

construction principles of frameworks form a problem,

but the granularity of systems where they are applied.

The starting point to tackle these problems is the

following: If one takes a look at the source code of

various software systems, numerous small aspects are

implemented several times in a similar way. Thus,

framework concepts can be applied to the construction of

such small, flexible reusable assets. We call these

building blocks framelets. In contrast to a conventional

framework, a framelet

• Is small in size (< 10 classes),

• Does not assume main control of an application,

• Has a clearly defined simple interface.

We base our research of self-configuring components

on framelets as small, flexible architectural building

blocks. The vision is to have a family of related,

partially self-configuring framelets for a domain area

representing an alternative to complex frameworks. We

view framelets as a kind of modularization means of

frameworks. In large scale, an application is constructed

using framelets as black-box components, in small scale

each framelet is a tiny white-box framework.

Commonalties between frameworks and
framelets

Frameworks and framelets have in common that they

implement flexible object-oriented software architectures.

(Note that the definition of the term framework does not

imply any size. Introducing the term framelet allows us

to discern between complex frameworks and small ones

which have the characteristics stated above.) For this

purpose frameworks and framelets rely on the constructs

provided by object-oriented programming languages. The

few essential framework construction principles, as

described, for example, by Pree [4], are applicable to

both. A framelet retains the Hollywood principle

characteristic to white-box frameworks: Framelets are

assumed to be extended with application-specific code

called by the framelet.

3 Combination of framelets, meta-
information, and naming
conventions—a case-study

The goal of the case study is to demonstrate how

framelets help to avoid the reimplementation of certain

aspects of a software system again and again from

scratch. We applied the concept to a typical client-/server

setting in a bank, using Java as implementation

language. The architectural design of the client-/server-

system relies on remote procedure calls (RPCs). Around

50 procedures/functions are provided as a C-library for

transferring data between the clients and the other tiers of

the system. The code associated with a particular RPC

implies tedious programming work for handling

parameter value transfers. For example, the return

parameter types are C-style arrays which have to be

properly processed. Investigating the code structure

reveals that the parameter exchange is similar for all

RPCs. Nevertheless the RPCs are too diverse to come

up with a simple procedure/function. The self-

configuring RPC framelet discussed below does the job.

RPC framelet design

One important design goal of a reusable asset is to

bother its reuser as little as possible. This means in case

of the RPC framelet that the programmer who reuses it

has only to specify the RPC name. The parameter list

should be assembled almost automatically. In other

words the RPC framelet component should provide some

self-configuring properties. In our case-study the source

of the parameter values are typically GUI dialog

elements. Thus, the RPC framelet should automatically

manage the transfer of data between the GUI items and

the parameter list of the RPC. How could this be

accomplished?

The basic idea to automate the data transfer is to

establish a simple naming convention: the names of the

GUI elements have to be identical with the parameters of

the RPC.

Generic RPC implementation

The RPC framelet relies on a description of the

parameters of a particular RPC. For each parameter the

framelet has to know its type and whether it is an input

or output parameter. As mentioned above, the remote

procedures are implemented as C functions. A separate

structured description, available as plain text file,

provides the necessary information for each remote

procedure. Based on these descriptions, the RPC framelet

manages the parameter value transfer as discussed below.

Example 1 shows the generic implementation of a

RPC. The first parameter is the name of the remote

procedure; the second parameter is an object whose

instance variables describe the RPC parameters and their

values. This object is automatically constructed out of

the structured parameter description of the corresponding

RPC.

public void invokeRPC(String nameOfRPC,

 Object parametersOfRPC) {

 Field[] fields =

parametersOfRPC.getClass().getDeclaredFields();

 Method RPCmethod = null; // auxiliary var. for invoking RPC

 ListOfRPCs rpcList = new ListOfRPCs(); // contains a list of

 // all RPCs

 Class[] params = new Class[fields.length];

 Object[] args = new Object[fields.length];

 for all params do {

 params[i] = fields[i].getType(); // type of parameter

 try {

 args[i] = fields[i].get(parametersOfRPC); // value of

 // parameter

 } catch (IllegalAccessException iae) {}

 }

 RPCmethod = rpcList.getClass().getMethod(nameOfRPC,

params);

 ... // exception handling

 RPCmethod .invoke(args);

 ... // exception handling

}

Example 1. Generic implementation of a RPC.

Data transfer via naming conventions and
computational reflection

The reuser of the RPC framelet just has to make sure

that the GUI item names are identical with the names of

the RPC parameters in the RPC description. A generic

matcher object, which is part of the RPC framelet,

automatically generates an object which contains the

description and values of the RPC parameters, and

transfers the data from the dialog items to the

corresponding instance variables. The output data of the

RPC are shuffled in an analogous way back to the GUI

items where they should be displayed.

The automation of the data transfer also relies on meta

information: When transferring data from GUI items to a

parameter container object, the matcher iterates over the

instance variables of the corresponding class, gets the

name, type and value of each instance variable and looks

for the corresponding GUI item. The same is true for the

transfer in the other direction, that is, from the RPC

back to the GUI items.

Reuser’s perspective

Note that a reuser of the RPC framelet even does not

call the invokeRPC() method shown in Example 1,

which would require the instantiation and initialization of

a specific parameter description class. Instead, the reuser

invokes the method constructRPC(...) of the RPC

framelet. This method has the following parameters: the

name of a remote procedure and the references to the

dialogs where the data are entered and the results are

displayed. The rest happens automatically via the RPC

framelet’s self-configuring capabilities.

4 Towards automated component
assembly

The set of components in the case study comprise a

very small component, ie, the black-box RPC framelet,

which is designed for an automatic integration with the

bank-specific GUI dialog components. Though this

reduces significantly the source code size compared to the

original conventional implementation, one can argue that

there is no automation involved at all. The case study

just corroborates the following: Framelets can in fact be

practical building blocks for various kinds of

applications. The additional application of computational

reflection together with simple naming conventions

shows the potential of partially self-configuring

components. As clients do not have to figure out how to

exactly glue together these assets, reuse can be

significantly simplified. But the introduction of naming

conventions is far away from components advertising

their capabilities, and engaging in mutual interactions

and negotiations.

Domain-specific automation

The case study indicates that pragmatic steps towards

automated component assembly require restrictions of the

domain area wherein automated component assembly can

take place. We are currently investigating the definition

of a simple negotiation protocol where components of

the bank-specific GUI dialog framelet family and the

RPC framelet can negotiate configurations based on

advertised services. The semantics of the negotiation

language and protocol is necessarily tightly coupled with

the bank-specific client-/server-setting. For example, the

protocol assumes knowledge about specific GUI

elements such as account number entry fields.

Besides negotiation protocols, our future work will

focus on the prototypical development of framelet

families and on an evaluation of the coupling

mechanisms of such components. In the long term, it

might be possible to come up with crisp, but domain-

specific meta-descriptions of large-scale components so

that more advanced computational reflection mechanisms

allow sophisticated automated component configuration.

Besides providing mechanisms for automated

component assembly, various questions have to be

clarified. For example, how can the reliability of

automatically assembled systems be guaranteed? Further,

it is unclear how to structure and document systems that

consist of numerous “intelligent” components.

References

[1] Fayad, M. and Schmidt, D (1997) Object-Oriented
Application Frameworks. CACM, Vol. 40, No. 10,
October 1997.

[2] Kiczales, G. (1996) Beyond the Black Box: Open
Implementation. IEEE Software, Vol. 13, No. 1 ,
January 1996.

[3] Lewis T., Rosenstein L., Pree W., Weinand A., Gamma
E., Calder P., Andert G., Vlissides J., Schmucker K.
(1995): Object-Oriented Application Frameworks.
Manning Publications/Prentice Hall.

[4] Pree W. (1996). Framework Patterns. New York City:
SIGS Books (German translation, 1997:
Komponentenbasierte Softwareentwicklung mit
Frameworks. Heidelberg: dpunkt)

[5] Sparks S., Benner K., Faris C. (1996): Managing
Object-Oriented Framework Reuse. Computer 29,9;
September 96.

