OO Design & Implementation of a
Flexible Software Architecture for
Decision Support Systems

Wolfgang Pree, Fabio Beckenkamp, Sergio Viademonte
Applied Computer Science
University of Constance
Universit%otsstr. 10
D-78434 Constance, Germany
Ph.: +49.7531.88.44.33, Fax: +49.7531.88.35.77
{Wolfgang.Pree, Fabio.Beckenkamp, Sergio.Viademonte}@uni-konstanz.de

Abstract. Many implementations of decision support systems suffer from a lack of flexibility,
that is, they are built for a specific application domain. For different application domains, large
portions of the particular decision support system have to be reimplemented from scratch. As
object-orientation allows the construction of flexible software architectures, this paradigm was
applied in the realm of building decision support systems. The paper represents an experience
report, which first outlines the conventional implementation of a decision support system and
the problems that were encountered when the system was adapted to different application
domains. The paper goes on to discuss the concepts of object-oriented components and
frameworks and how these concepts were applied in particular in the construction of an object-
oriented decision support system that deserves the atigeuesic

Keywords: decision support systems, hybrid intelligent systems, neural networks, software
architecture, design patterns, frameworks, componentware, Java.

1

2.1

Introduction

One characteristic of computer-based decision support systems [Bonczek, 1981]
is that they deal with complex, unstructured real-world tasks. The construction of
computer-based decision support systems is regarded as typical domain of
knowledge engineering and artificial intelligence. An adequate decision support
system should

* have sufficient knowledge about the problem domain

* be able to learn

* have logical, deductive and inductive reasoning capability
* be able to apply known solutions to analogous new ones
* be able to draw conclusions

Expert systems represent a well-known example of this kind of system. In order
to overcome several problems of expert systems, such as difficulties in building
up a huge consistent knowledge base, so-called hybrid systems were built. They
try to integrate various single Al technologies, in particular, expert systems,
artificial neural networks, fuzzy logic, genetic algorithms and case-based
reasoning.

Artificial neural networks support knowledge acquisition and representation.
Fuzzy logic [Kosko, 1992] is useful to model imprecise linguistic variables, such
as predicates and quantifiers (expressions like high, short, etc). Genetic
algorithms [Lawrence, 1991] excel in the ability to do deductive learning. Case-
based reasoning remembers previous problems and applies this knowledge to
solve or evaluate new problems.

One difficulty in implementing hybrid systems is how to smoothely integrate
the various single Al technologies. Besides this, a hybrid system should be
flexible enough to solve problems in several application domains. The former
aspect is discussed, for example, in [Medsker and Bailey, 1992]. This paper
focuses on the latter aspect.

Hycones—an example of a hybrid system

Hycones (short for: Hybrid Connectionist Expert System) is a sample hybrid
system that is especially designed for classification decision problems [Machado
and Denis, 1991; Re-tegui, 1993]. The core technology is artificial neural
networks (ANNs). Hycones generates ANNs based on various parameters that
have to be specified. The generation of ANNs can be improved by adding
appropriate expert rules. This section starts with a description of the principal
features of Hycones. Based on this overview the problems regarding its flexibility
are outlined. These problems were encountered when Hycones was applied to
different domains [Rosa, 1994; Re-tegui, 1993].

Hycones as generator of decision support systems

Hycones was, among other domains, applied in the realm of a mail order reseller:
Customers order goods, typically by sending in an order form. Based on the
information on an order form (eg, value of ordered goods, home address, age)

the reseller has to decide whether the customer receives the ordered articles or not,
as the customer might not be able to pay.

In order to implement a decision support system, the mail order reseller
provided numerous customer data from recent years that had the information
whether the customer turned out to be liquid or not associated with each customer
record.

The first step in using Hycones is to specify the input nodes and output
nodes of the ANNSs that are generated. In case of the customer checking system
the input nodes correspond to the information on the order form. Hycones offers
different data types (eg, boolean values, fuzzy value ranges) to specify the input
nodes.

The output nodes (called hypotheses) corresponds to the desired decision
support. In case of the customer checking system the information whether to send
the goods to the customer or not would become the output node.

Additional expert knowledge can be modeled in expert rules [Le,0 and
Rocha, 1990]. For example, rules describing typical attributes of untrustworthy
customers could be specified for the mail order decision support system.

Based on the information sketched above, Hycones generates numerous
ANN topologies depending on some additional parameters (various thresholds,
etc.). Figure 1 schematically illustrates this feature of Hycones.

O O Output Nodes

2

O O O O O O Input Nodes
lHycones System

Q

Figure 1 Hycones as ANN generator.

Learning

We discern inductive and deductive learning mechanisms. Inductive learning is
performed through the training of the generated ANNs using a punishment and
reward algorithm and an incremental learning algorithm [Machado and Rocha,
1989]. Inductive learning allows automatic knowledge acquisition and
incremental learning.

Deductive learning can be implemented through genetic algorithms. This
might imply further modifications in the topology of the ANNSs, creating or
restoring connections between neurons. The deductive learning is not
implemented in the current version of Hycones.

2.2

Inference

Once the generated ANNSs are trained, Hycones pursues the following strategy to
come up with a decision for a specific case (eg, a customer): All ANNs evaluate

the case. Each ANN calculates a confidence value for its hypotheses. The
inference mechanism finds the winner-ANN and returns the corresponding result.

Adaptation problems

Despite the intention of Hycones to be a reusable generator of decision support
systems, the Hycones implementation had to be changed fundamentally for each
application domain over the recent years. In other words, the Hycones system
had to be implemented almost from scratch for each new application domain.

What are the reasons for this unsatisfying situation?

Limits of hardware & software resources

The first Hycones version was implemented in CLOS. CLOS simplified the
implementation of core parts of Hycones, but the execution time turned out to be
insufficient for the domain problems at hand.

In subsequent versions of Hycones, parts of the system were even
implemented on different platforms to overcome performance problems and
memory limits. For example, the ANN training algorithm was implemented in C
on an Unix workstation as target platform. C was chosen to gain execution speed.
Unix workstations can more easily be extended than desktop PCs regarding main
memory. (The discussed versions of Hycones do not allow straight-forward
parallelization of training and testing so that a network of computers could be
used. So the training and testing has to be done on one computer.)

Other parts of Hycones were implemented on PCs and use Borland Delphi
for building the GUI and the Borland Database Engine as database. (The specified
input and output nodes as well as the generated ANN topologies were stored in
database tables.) Some other parts were also implemented separately such as an
interactive tool for modeling the domain.

The fact that Hycones became a hybrid system also regarding its
implementation, implied tedious data shifting between different computing
platforms. The parameters comprising the specification for the ANN generation
were entered on PCs, but the ANN training and testing was done on Unix
workstations. Finally, if the customer prefered to work with the decision support
system on PCs the generated and trained ANNs had to be transfered back from
the Unix platform to the PC environment.

Conversion of data
Companies which want to apply Hycones have to provide data for ANN training
and testing. Of course, various different ways of dealing with these data have to
be considered. For example, some companies prefer the ASCII-format, others
relational database tables. Though this seems to be only a minor issue and a small
part of the overall Hycones system, experience has proven that lots of work had
to be done for converting training and test data.

For example, the mail order reseller changed the format of the ASCII-data
files in different data sets. Thus the conversion routine that was implemented in C

—4 —

3.1

had to be adapted frequently.

Complex conceptual modeling

This issue is also related to performance problems: Hycones mananges the
numerous different ANN topologies by storing the information of all the
differences of the ANNSs, in particular, the connections and their corresponding
weights, in a database. Roughly speaking, one record represents the connections
and weights of one ANN. Overall this forms a pretty complex conceptual model.

It turned out that the way the information about all generated ANNSs is stored in
database tables had to be changed several times to optimize for the database
system in use. These changes were not only tedious but also error-prone.

OO Redesign and Java-Implementation

In order to overcome the problems sketched above, Hycones was redesigned
based on the object-oriented paradigm and implemented in Java (Sun, 1997). As
object-oriented framework concepts were applied in particular, this section
presents a general overview of frameworks. The application of framework
concepts in the redesign of Hycones demonstrates how problems of the
conventional Hycones implementation could be solved.

Software components

First of all let us clarify the terrtsoftware) componenfThough some authors,

for example, Nierstrasz and Dami (1995), view almost all programming language
constructs (ranging from macros to classes and modules) as candidates for
building components we use a more rigid definition: A component is simply a
data capsule. Thus information hiding becomes the core construction principle
underlying components. Parnas (1972, p.1056) defines information hiding as
follows: “A module is characterized by its knowledge of a design decision which

it hides from all others. Its interface was chosen to reveal as little as possible
about its inner working.” Several ways of bringing information hiding down to
earth have been proposed: In module-oriented languages such as Modula-2 and
Ada components are called modules. In object-oriented languages such as
Smalltalk, C++ and Java, components are instances of classes. A class represents
an abstract data type (ADT). Analogous to modules, a class offers an interface
and hides its realization. In contrast to a module, a class serves as a component
factory by allowing the instantiation of any number of objects.

In order to overcome the reuse problems of module-oriented languages,
object-oriented languages introduce language constructs to adblevehanges
(programming by difference) without having to touch the source code of original
modules/classes. Inheritance is central to this solution: A subclass defines the
delta by which a class differs from its superclass. In other words, inheritance
allows ADT adaptations without having to edit source code or give up
compatibility. To sum up, object-oriented languages improve the module concept.
They allow a straightforward definition of ADTs and provide language constructs
for their extension and modification.

As a consequence, many adopters of object technology expect that the usage

-5 _

3.2

of an object-oriented language alone yields significant improvements in software
flexibility and thus reusability. This leads to a quite naive application of object
technology: Reuse is then usually viewed as process of picking single
components out of a huge set of components and putting them together. Thus,
single component reuse means that programmers build the overall software
system architecture on their own. They have to locate the appropriate components
and define their interaction. Studies such as the one conducted by Barry Boehm at
NASA (Boehm, 1994) have corroborated programmer’s gut feeling that single-
component reuse is almost as expensive as development from scratch. An
alternative is framework reuse as discussed below. Though a framework might be
viewed as coarse-grained component, it differs from a large single component
regarding its flexibility.

In general, more flexibility implies more programming effort by the
programmers who reuse the software components. The ordering of white-box
and black-box frameworks below reflects decreasing levels of flexibility and thus
increasing ease of reuse. But in contrast to monolithic coarse-grained single
components there is still more flexibility left. Black-box frameworks represent the
most rigid albeit the easiest way of reusing components, thus forming the
backbone of pure plug-and-play componentware.

Framework concepts

Instead of reusing single components, most successful object-oriented projects do
framework development and reuse. A framework is simply a collection of several
single components with predefined cooperations between them. A framework
accomplishes a certain task. Some of these single components are designed to be
replaceable, typically corresponding to abstract classes in the framework’s class
hierarchy. We call the points of predefined refinement hot spots (Pree, 1995,
1996). Figure 2 shows these framework characteristics with the hot spots in gray
color.

Figure 2 Framework with hot spots.

A framework deserves the attribute well-designed if it offers the domain-specific
hot spots to achieve the desired flexibility via adaptation of these hot spots. Well-
designed frameworks also predefine most of the overall architecture, i.e., the
composition and interaction of its components. The lines connecting method
interfaces in Figure 2 express this glue between the components. Applications
built on top of a framework reuse not only source code but architecture design,
which we consider as the most important characteristic of frameworks.

Note that the framework concept is quite independent of the way how
components are implemented. Frameworks just require that components can be
replaced by more specific ones that are compatible to the original placeholders. Of
course, object-oriented languages support specialization in a straightforward
manner through inheritance. The discussion of white-box and black-box
frameworks below assumes that an object-oriented language is used for
framework development.

Framework

Classes

Figure 3 Sample framework class hierarchy.

White-box frameworks

White-box frameworks consist of several incomplete (abstract) classes, i.e.,
classes that contain methods without meaningful default implementations. Class A
in the sample framework class hierarchy depicted in Figure 3 illustrates this

characteristic of a white-box framework. The abstract method of class A that has
to be overridden in a subclass is drawn in gray.

In order to modify the behavior of white-box frameworks, programmers
apply inheritance to override methods in subclasses of framework classes. Such
method (re)definitions are analogous to providing specific functions in
procedure/function libraries with a callback style of programming: the application
architecture resides in the framework. Programmers adapt the framework by
overriding the hook methods called out from other methods in the framework.
The necessity to override methods implies that programmers have to understand
the framework’s design and implementation, at least to a certain degree.

Black-box frameworks

Black-box frameworks offer ready-made components for adaptations.
Modifications are accomplished lmpmposition not by programming. In the
framework class hierarchy in Figure 3, class B already has two subclasses Bl
and B2 that provide default implementations of B’s abstract method. Supposed
that the framework components interact as depicted in Figure 4(a), a programmer
adapts this framework, for example, by instantiating classes Al and B2 and
plugging in the corresponding objects (see Figure 4(b)). In the case of class B,
the framework provides ready-to-use subclasses; in the case of class A the
programmer has to subclass A first.

Figure 4 Framework (a) before and (b) after specialization by composition.

Available frameworks are neither pure white-box nor pure black-box

frameworks. If the framework is heavily reused, numerous specializations will
suggest which black-box defaults could be offered instead of providing a white-
box interface. So frameworks will evolve more and more into black-box

frameworks when they mature.

Pros and cons of frameworks

Besides the fact that reuse of architecture design amounts to a standardization of
the application structure, frameworks offer further advantages. Adapting a
framework to produce a specific application implies a significant reduction in the
size of the source code that has to be written by the programmer who adapts a
framework. Mature frameworks allow a reduction of up to 90% (Weinand et al.,
1989) compared to software written with the support of a conventional function
library.

More good news is that framework-centered software development is not
restricted to specific domains, such as graphic user interfaces. Actually,
frameworks are well-suited for almost any commercial and technical domain
where the real world is simulated in a broad sense. To name just a few, decision
support systems, process control systems, reservation systems, and banking
software belong to this category.

The bad news is that framework development requires an enormous
development effort. Many problems result from complicated interaction scenarios
between stateful, partially defined components. The costs for developing a
framework are significantly higher compared to the development costs of a
specific application. So frameworks represent a long-term investment that pays
off only if similar applications are developed again and again in a domain.

Furthermore, tools and methods assisting in framework development are
almost non-existent or in their infancy. Framework technology itself is not yet
mature. For example, it remains unclear how frameworks designed by different
teams with separate control flows can interoperate. The fragile base-class problem
(Lewis et al., 1995) might overthrow fundamental framework design decisions:
Changes in base classes of a framework can fracture numerous classes inheriting
from them.

Finally, framwork development and reuse is at odds with the current project
culture that tries to optimize the development of specific software solutions
instead of generic ones. As this paper focuses on technical aspects, we refer to the
excellent discussion of organizational issues by Goldberg and Rubin (1995).

Despite the mentioned problems with the state-of-the-art in framework

3.3

technology, (black-box) frameworks form the enabling technology of plug-and-
play software, where most adaptations can be achieved by exchanging
components.

Design of OO-Hycones

The conventional design of Hycones has undergone a major object-oriented
redesign based on the concepts presented above. Parts of the resulting OO-
Hycones system became even pure black-box frameworks. In the following we
outline the relevant aspects of the redesign and show how the problems discussed
in Section 2.2 were solved.

OO modeling of the ANN representation

The core entity of an ANN, a neuron, is modeled as class. This forms a straight-
forward design, as neurons in ANNs are self-contained: A neuron knows its
connections to other nodes and can (re-)calculate the weight of the connections
based on various algorithms (eg, backpropagation). Thus an ANN is not
represented by entries in relational database tables, but as collection of instances
of class Neuron.

The Strategy design pattern [Gamma et al., 1995] was applied to keep the
training strategy flexible (see Figure 5): the class TrainingStrategy is abstractly
coupled with class Neuron. This framework construction is related to black-box
frameworks and allows a flexible change of the training strategy by plugging in a
specific strategy component (eg, an instance of class Backpropagation) into the
neuron objects of an ANN.

Neuron ¥ | Training Strategy

/

Backpropagation CNM Kohonen SOFM

Figure 5 A black-box mini-framework for keeping the training strategy flexible.

Besides the advantage of having a natural model of ANNs, the object-oriented
design of this aspect of Hycones leads to another significant improvement: OO-
Hycones generates physically separated ANNs that have the training and testing
capability contained in their neurons. Thus the parallelization of ANN training and
testing becomes feasible. Though this feature is not implemented yet, the object-
oriented design forms the precondition for this enhancement. Thus hardware and
software limitations can easily be surpassed through parallel training and testing
on networked computers.

Converter framework
In order to cope with different data formats, a black-box framework for format
conversions was designed according to the Chain-of-Responsibility design

-9 -

3.4

pattern [Gamma et al., 1995]. Class Converter applies this design: The class
contains a reference to itself which is used to build a chain of converters (see
Figure 6). Each converter in the chain tries to do the conversion. The conversion
request is forwarded in the chain until a converter is found that actually converts
the data.

Thus even data coming from different sources (e.g, data bases, ASCII-files)
can be processed intertwined. The Hycones part that requires the data just asks
the converter component to provide the data. The converter component consists of
a chain of converters. The one that can convert the data converts them and passes
the result on to the test and training subsystems. Note that converters can be
rearranged or added on demand.

ASCII - Converter

DB - Converter

|

Figure 6 Hycones conversion framework.

Another important design aspect is that the class Converter defines an abstract
interface, no matter how the data are actually converted. Thus the Hycones
system itself has not to be changed to cope with unforseen data formats.

This design solves the problem that conversion routines have to be
implemented always from scratch. The number of black-box converter
components will increase over time so that an application of Hycones to another
domain is likely to be able to reuse the already existing converter components.

Implementation issues

The object-oriented implementation of Hycones was done in Java with
Microsoft’s Visual J++ development environment. Using Java (without native
code add-ons) allowed to create a truly portable system, solving the problem of
having parts of Hycones implemented for different platforms. Overall, the run-
time efficiency of the Just-In-Time compiled Java code came very close to the
reference implementation of Hycones in C.

Knowing the troubles one encounters with memory management in C++,
Java’s garbage collection mechanism was really appreciated, in particular, in the
realm of developing frameworks. The authors cannot imagine to go back to a
system without this feature.

At the time the implementation started, Java Beans (Sun, 1997) were not

- 10 -

available. Thus OO-Hycones uses a persistence mechanism which was
implemented by the authors according to the Java Beans specification. Thus,
using the serialization mechanism of Java Beans instead of the preliminary one
turned out to be easy.

4 Summary and outlook

Overall, it was only possible to come up with a well-designed OO-Hycones
system, because the system aspects that lacked flexibility were known from
previous attempts to adapt Hycones to specific situations. Besides the gained
flexibility, portability of OO-Hycones was another major goal of the
reimplementation. This came for free due to the usage of Java as implementation
language.

Currently, add-on tools, in particular interactive editors for domain
modeling, are developed, and the parallelization of network training and testing is
under way. In the process of adapting OO-Hycones to further domains, OO-
Hycones can prove that it indeed deserves the attigleuteric

References

Boehm B. (1994)Megaprogramming Video tape by University Video Communications
(http:/Aww.uvc.com), Stanford, California

Bonczek, R. H. (1981Foundations of Decision Support SysteiMsw York: Academic Press.

Goldberg A., Rubin K. (1995)Suceeding with Objects: Decision Frameworks for Project
ManagementReading, Massachusetts: Addison-Wesley

Kosko, B. (1992)Neural Networks and Fuzzy Systeid3: Prentice Hall, Englewood Cliffs
Lawrence D. (1991)The Handbook of Genetic Algorithniéew York: Van Nostrand Reinhold

Le,0, B. F. & Rocha, A. F. (1990Proposed Methodology for Knowledge Acquisitidn
Study on Congenital Heart Disease Diagnosis. Methods of Information in Medicine, V.
29, n.1, p. 30-40

Lewis T., Rosenstein L., Pree W., Weinand A., Gamma E., Calder P., Andert G., Vlissides J.,
Schmucker K. (1995)Object-Oriented Application Frame-worksManning
Publications/Prentice Hall

Machado, R. J., Rocha, A. F. (1988jandling Knowledge in High Order Neural Networks:
The Combinatorial Neural ModelRio de Janeiro: IBM Rio Scientific Center.
(Technical Report CCR0O76).

Machado, R. J. e Denis, F. A. R. M. (1990: modelo Conexionista EvolutivRio de
Janeiro: IBM Rio Scientific Center. (Technical Report CCR-128).

Medsker L. R. & Bailey D. L. (1992): Models and Guideliness for Integratig Expert Systems
and Neural Networks. In: Kandel A. & Langholz Bybrid Architectures for Intelligent
SystemsCRC Press.

Nierstrasz O., Dami L. (1995Component-Oriented Software Technology Object-Oriented
Software Composition, Nierstrasz O, Tsichtitzis D, Prentice Hall, 3-28

- 11 -

Parnas D.L. (1972)On the Criteria to be Used in Decomposing Systems into Madules
Communications of the ACM5(12), 1053-1058

Pree W. (1995)Design Patterns for Object-Oriented Software Developm&eading,
Massachusetts: Addison-Wesley

Pree W. (1996)Framework PatternsNew York City: SIGS Books

Re-tegui, E. B. (1993Jm modelo para sistemas especialistas conexionistas hibfin
Alegre: Instituto de Inform-tica da UFRGS (Master Thesis, Computer Science).

Rosa, SErgio I. V. (1994AplicaA,0 de Sistemas Especialistas no processo decisUrio: uma
abordagem hibridaPorto Alegre: Programa de PUs-GraduaA,0 em AdministraA, 0 da
UFRGS (Master Thesis, Business).

Sun (1997):The Java Languagdava BeansWhite Papers at http://java.sun.com, Sun
Microsystems

Weinand A., Gamma E. and Marty R. (1989gsign and Implementation of ET++, a Seamless
Object-Oriented Application FramewarlStructured Programming, 10(2), Springer
Verlag

- 12 —

