Object-Oriented Architectures for
Electronic Commerce
Concepts and Development Heuristics

Wolfgang Pree

C. Doppler Laboratory for Software Engineering
Johannes Kepler University Linz, A-4040 Linz, Austria
Voice: +43 70-2468-9432; Fax: +43 70-2468-9430
E-mail: pree@swe.uni-linz.ac.at

http://www.swe.uni-linz.ac.at/wolf

Abstract. The Web is exciting because of its potential to be ubiquitous soon. So
electronic commerce will be tightly coupled to this medium and people will buy goods
over the Internet instead of going to stores. The precondition for electronic commerce is
that existing information systems are enhanced to support the Web. Another exciting
opportunity will be the distribution of software components over the Internet. Though
software components comprise just one specific product, this will have a profound
impact on how software systems wil be built in the future. The paper sketches the key
role of semifinished object-oriented architectures (= frameworks) for both, the
enhancement of existing information systems and plug-and-play componentware. It
includes a discussion of the concepts underlying framework technology and of some
design heuristics known so far.

Keywords. electronic commerce, Web, frameworks, software architectures, compo-
nent-based software development, design patterns, software reuse, Java, hot spots

1 Electronic commerce over the Web

Steve Jobs summarized the potential of the Web in a recent interview in Wired (Jobs,
1996), asking the interviewer: “Who do you think will be the main beneficiary of the
Web? Who wins the most?” Jobs answers his question and states that those people win
the most “who have something to sell! It is more than publishing. It is commerce.” He
continues to sketch the advantage of the Web for businesses. It acts as a democratizer
where even very small companies cannot be discerned from big ones. If the Web
becomes ubiquitous, and this is what he believes it is going to be, it neutralizes the
advantage of big companies which have invested lots of money in creating distribution
channels.

Jobs forecasts the impact of electronic commerce over the Web, estimating that
significantly more than 10 percent of the goods and services in the U.S. will be sold at
this marketplace. His conclusion is that “eventually, it will become a huge part of the
economy.”

The next sections present the concepts of frameworks and outline how framework
technology can help to Web-enable existing information systems. The role of frameworks
is put into the context of future development stages of the Web.



Object-Oriented Architectures for Electronic Commerce 2

2 Framework concepts

Object-oriented programming languages are used in many software projects in a manner
similar to module-oriented languages with classes as a means for implementing abstract
data types. Inheritance helps to adapt and thus reuse building blocks that do not exactly
match the requirements. So adaptations are possible without having to change the source
code.

In order to develop the full potential of object-oriented software construction in the realm
of constructing reusable architecturesappropriate combinatiof the basic object-
oriented concepts (i.e., object/class definition, inheritance in connection with
polymorphism and dynamic binding) is necessary.

The key idea behind this approach is to find good abstractions of concrete classes.
Abstract classeas discussed below represent such abstractions. They form the basis of
frameworks, which are reusable application skeletons. Frameworks represent the highest
level of reusability known today, made possible by object-oriented concepts: Not only
source code but architecture desigh—which we consider as the most important
characteristic of frameworks—is reused in applications built on top of a framework.
Overall, frameworks enable a degree of software reusability that can significantly
improve software quality.

Abstract classesThe general idea behind abstract classes is clear and straightforward:

» Properties (that is, instance variables and methods) of similar classes are defined in a
common superclass.

» Classes that define common behavior usually do not represent instantiable classes but
abstractions of them. This is why they are cadlbsitract classes

» Some methods of the resulting abstract class can be implemented, while only dummy
or preliminary implementations can be provided for others. Though some methods
cannot be implemented, their names and parameters are specified since descendants
cannot change the method interface. So an abstract class cretaesiard class
interfacefor all descendants. Instances of all descendants of an abstract class will
understand at least all messages that are defined in the abstract class.

Sometimes the terroontractis used for this standardization property: instances of
descendants of a classupport the same contract as supported by instanges of

* It does not make sense to generate instances of abstract classes since some methods
have empty/dummy implementations.

The implication of abstract classes is that other software components based on them can

be implemented. These components rely on the contract supported by the abstract classes.
In the implementation of these components, reference variables that have the static type of

the abstract classes they rely on are used. Nevertheless, such components work with

instances of descendants of the abstract classes by means of polymorphism. Due to

dynamic binding, such instances can bring in their own specific behavior.

The key problem is to find useful abstractions so that software components can be
implemented without knowing the specific details of concrete objects.

Frameworks. Abstract classes form the basis of a framework. If abstract classes factor
out enough common behavior, other components, that is, concrete classes or other
abstract classes, can be implemented based on the contracts offered by the abstract
classes. A set of such abstract and concrete classes is dediec@ork

The termapplication frameworks used if this set of abstract and concrete classes
comprises a generic software system for an application domain. Applications based on
such an application framework are built by customizing its abstract and concrete classes.



Object-Oriented Architectures for Electronic Commerce 3

In general, a given framework anticipates much of a software system’s design. This
design is reused by all software systems built with the framework.

Figure 1 Framework with flexible hot spots.

In other words, a framework defineshegh-level languagevith which applications
within a domain are created througipecialization(= adaptation). Specialization takes
place at points of predefined refinement that we loatllspots Figure 1 illustrates this
property of frameworks with the flexible hot spots in gray color. The overall framework
comprises the standardized, i.e., frozen, domain aspects intertwined with the hot spots.

3 Frameworks as enabling technology for electronic
commerce

Let us first gaze into the future in our crystal ball and take into consideration future
development stages of the Web that will have an impact on electronic commerce.
Steinberg (1996) envisions three further major stages of the Web beyond the current
situation where almost all documents are simply downloaded from servers to clients and
displayed on the client side:

(1) First, clients and servers will become smarter. So end users will easily be able to
access information systems. This marks the beginning of electronic commerce. The
fun-to-use package tracking system of FedEXx gives a taste of what will happen at
this stage. The internal FedEx information system is connected to the Web as
follows: Customers who send packages via FedEXx receive a package code. This
code number can be entered into a Web page offered by FedEx. The Web page
represents the front end to the internal information system. So the customer can
easily keep track of where the package is currently in the world and if it is delivered
on time.

(2) Second, not just data but programs will be exchanged between servers and clients.
Steinberg (1996) sketches an example: “A stockbroker’'s Web site might send out an
applet [little application] that acts as front end for displaying a ticker tape at the top
of your screen.”

(3) In the third stage, applets will turn into intelligent agents that are sent out like
servants and gather information.

In all these stages framework technology will play a key role. In order to make clients
and servers smarter, a huge amount of software has to be written. Only appropriate
frameworks that significantly reduce the amount of code that has to be written will allow
software developers to cope with these demands. The first frameworks for this purpose
are NeXT's WebObjects for the server side and Apple’s Cyberdog for the client side.
These frameworks are described below.



Object-Oriented Architectures for Electronic Commerce 4

Applets are examples of software components that configure themselves automatically on
the end user’s client. Again, frameworks will be the core technology underlying such
applets. As Sun’s Java language, Microsoft’'s Internet Studio (originally code-named
Blackbird) and General Magic’s Telescript are specifically designed for building applets,
various frameworks will be based on them in the future.

Intelligent agents are quite similar to applets, but more active. Today most of the agents
are built from scratch in research labs. Thus when agents become the vogue on the Web,
we can expect appropriate agent frameworks.

Frameworks for the first stage.We pick out NeXT’'s WebObjects as representative
framework for making information systems accessible over the Web. This framework
preimplements a generic software system that allows a Web server to access information
in internal databases. WebObijects transforms this information into HTML documents.
For example, a bookstore could have its books in a large Informix database. A
WebObiject allows to submit a search request from the Web server to this database. The
matching records are returned and repackaged in an HTML document which is then
displayed on the Web.

The framework significantly speeds up the development process of such more complex
Web sites. For example, it took FedEx four month (Jobs, 1996) without an appropriate
framework to connect its information system to the Web, which is a long time for a
simple feature.

Even more challenging is real electronic commerce. If customers should not only be able

to browse through the goods offered by a company, the internal order-management

system and collection system have also to be connecetd to the Web. Again appropriate
frameworks that help to tie up the Web with database systems greatly reduce development
efforts.

Apple’s Cyberdog focuses on the client side. Currently one has to use special purpose
Web browsing tools such as Netscape’s Navigator. Apple’s Cyberdog comprises a
framework that Web-enables every application. The end user can define active, embedded
Web-links into any type of document. Apple exemplifies the power of this concept: A
report on earthquakes might have an embedded Web-link that displays up-to-date
seismographic data.

Frameworks for the second stagelet us pick out Microsoft’s Internet Studio and
Sun’s Java to illustrate how framework technology supports this level of Web animation.
Internet Studio allows small programs to be sent from the server to the client where they
are executed. For example, a program to display video data could be sent along with the
data from the server to the client. The program immediately starts running on the client
and shows the movie while the data are downloaded. The advantage is that the Web-
browser is always up-to-date. Internet Studio is based on Microsoft's proprietary
standard OLE to integrate different types of objects, such as spreadsheets, text
documents, and drawings. The small programs (=applets) are socalled OLE controls.
(Remark: Apple’s Cyberdog is based on OpenDaoc.)

The problem is that Internet Studio does not include security features. So a virus can also
be downloaded as applet. Sun’s Java language and environment offer a better solution for
several reasons: Java does not allow the programmer to manipulate arbitrary memory
locations. It is platform-independent (OLE is currently restricted to Windows) and Java
applets cannot only be sent from the server to the client but also vice versa. So Java’s
class library (in particular, the user interface part AWT and classes for programming in a
networked environment) together with the run-time environment comprise a framework
for writing applets.



Object-Oriented Architectures for Electronic Commerce 5

Applets can be useful for electronic commerce in various situations. For example, a bank
could offer calculator applets to allow its customers compare the different banking
products.

Frameworks for the third stage. Applets that travel the Internet and filter
information are often referd to as agents. With regard to electronic commerce, agents
could help customers compare numerous offers and find the best ones. The idea of
having personalized news papers could also become reality through agents.

General Magic has designed Telescript as language and environment to support agent
programming. The main difference between Telescript and Java is that Telescript applets

can store data in items on a computer even when they leave it. This is not possible in

Java. On the other hand, Telescript is not (yet) an open standard.

Componentware. So far framework technology was discussed as means to easily
connect information systems to the Web and to animate Web pages. This helps to sell any
product electronically. The Internet could also imply a breakthrough for selling one
specific product, namely software. Instead of selling current monolithic applications, a
component market could arise. Frameworks are also the long-term player in this area: As
discussed in Section 2, well-designed frameworks predefine most of the overall
architecture, that is, the composition and interaction of its components. (Well-designed
means that a framework offers the domain-specific hot spots for adaptations.) So
applications built on top of a framework reuse not only source code but also architecture
design—which we consider as one of the most important characteristics of frameworks.

Many existing frameworks give an impressive example of the degree of reusability that
can be achieved if these systems are well-designed. For example, GUI frameworks with
excellent design (see, for example, Lewis et al. 1996) deliver a reduction in source code
size (that is, the source code that has to be written by the programmer who adapts the
framework) of80% percent or mor@/VNeinand et al., 1989) compared to software written
with the support of a conventional graphic toolbox.

The more advanced framework designs available today already point out possible
directions in which future frameworks will go. These pioneering frameworks rely mainly

on object compositionin such frameworks most of the adaptations are done by just
plugging together objects instead of modifying behavior by means of inheritance. To
those who have already experienced the ease and power of such adaptations, it is obvious
that future frameworks will rely mainly on composition. The underlying concepts are
described, for example, in Gamratal. (1995) and Pree (1996). We cannot deny the
inevitability of this transition. Several implications result from this trend:

» Componentware will indeed mean distributing software components that can be
plugged into software systems. The underlying technology will be frameworks whose
behavior is modified and/or extended by composition.

Of course, the world-wide network infrastructure will strongly boost such a
component market.

Note that in the long term this trend remains quite independent of the answer to the
qguestion of which of the current or future defacto standards (OLE/COM,
Corba/OpenDaoc) for integrating (distributed) components will dominate.

» Tools will become available that allow end users to configure software systems by
handling such framework components.

» Currently software components are quite monolithic. In many cases components
represent full-fledged applications. Expect a much finer level of granularity of software
components.

The subsequent section discusses some heuristics how to design frameworks
independent of a particular domain.



Object-Oriented Architectures for Electronic Commerce 6

4 Hot-spot-driven framework design

A framework-centered software development process comprises the creation and reuse of
frameworks. What we callot-spot-driven approacfuides developers in the process of
systematically incorporating experience captured and expressed in design patterns
(Gammaeet al. 1995, Pree 1995, 1996).

Successful framework development requires the explicit identification of domain-specific
hot spots. The various aspects of a framework that cannot be anticipated for all
adaptations have to be implemented in a generic way. As a consequence, domain experts
have to be asked:

* Where is flexibility required? Which aspects differ from application to application
in this domain? A list of hot spots should result from this analysis.

» What is the desired degree of flexibility of these hot spots, i.e., must the flexible
behavior be changeable at run time?

identify objects/classes
(for example, Abbott + CRC cards)
domain expert, software engineer

identify the hot spots
domain expert, software engineer

\

design patterns for framework (re)design
framework development software engineer

/

framework adaptation

software engineer, domain expert
hot spots
satisfying?

Figure 2 Hot-spot-driven approach.

Figure 2 schematically depicts the hot-spot-driven approach. State-of-the-art OOAD
methodologies, such as those proposed by Booch (1994), Coad and Yourdon (1990),
Jacobson (1993), and Wirfs-Broek al. (1990), support the initial identification of
objects/classes and thus a modularization of the overall software system. This initial step
primarily requires domain specific knowledge. Software engineers assist in this activity.
Of course, this first step is already an iterative one where object models have to be refined
until they meet the domain-specific requirements.

Hot spot identification. Current OOAD methodologies neglect the importance of
identifying hot spots as a basis for framework development. The schematically depicted
framework development process in Figure 2 starts with the identification of hot spots.
Again, the knowledge of domain experts is considered to be the most valuable source in
order to successfully complete this step. Software engineers might guide domain experts



Object-Oriented Architectures for Electronic Commerce 7

so that they describe hot spots in an adequate manner. As stated above, typical questions
domain experts should be asked are: Which aspects differ from application to application?
What is the desired degree of flexibility? Must the flexible behavior exist at run time? The
software engineer can generate from the perspective of his current design more specific
guestions using the following rules:

» Having identified a class, find out from the domain expert how and whether objects
would differ from application to application (whether there are subclasses).

» For a collection of type T ask whether it would be possible to have elements of various
kinds in it. These may be subtypes of T.

» For a method defined for type T, find out for each subtype the dependencies of the
method.

Domain experts might either identifiynctions or datas hot spots.

For example, if a framework for rental software systems should be developed, that can
easily be customized for hotels, car rental companies, etc., a domain expert would
identify the rate calculation aspect as a typical function hot spot in this domain. Rate
calculation in the realm of a hotel has to encounter the room rate, telephone calls, and
other extra services. In a car rental system different aspects will be relevant for rate
calculation. Overall, the idea is to produce a reservation system that can be adapted to
specific needs by plugging in specific rate calculation components.

The domain expert also has to assess the required flexibility of an identified hot spot, i.e.,
whether the hot spot behavior has to be adaptable at run time. For example, if a rental
system framework should be targeted at rental companies with a world-wide operation,
run-time adaptability of the rate calculation is important. Every stand-still of the system
costs lots of money.

Framework (re)design. After domain experts have initially identified and documented
the hot spots, software engineers have to modify the object model in order to gain the
desired hot spot flexibility. In this step design patterns for framework-centered software
development as discussed in Gamehal. (1995), and Pree (1995, 1996), assist the
software engineer (see Figure 2). Pree (1996) describes how frameworks can be
constructed in a systematic manner once the hot spots have been identified. For example,
run-time flexibility of a system function implies that this functionality goes into an
abstract class. In general, more flexibility makes the class/object model more complex.
So flexibility has to be injected in the right doses. Design patterns just describe how to
make object-oriented architectures more flexible. This might be dangerous as it leads to
unnecessary complex solutions. Thus we consider hot spot identification as a
precondition in order to exploit the potential of design pattern approaches. We conclude
with a summary of heuristics how to identify hot spots.

Hints for detecting hot spots.In practice, most domain experts are absolutely not
used to answering questions regarding a generic solution. The current project culture
forces them to do requirements analysis and system specifications that match exactly one
system. Vague or generic statements are not welcome. Below we outline ways to over-
come this obstacle.

» Take a look at maintainancklost of the software systems do not break new ground.
Many software producers even develop software exclusively in a particular domain.
The cause for major development efforts that start from scratch comes from the current
system which has become hopelessly outdated. In most cases the current system is a
legacy system, or, as Adele Goldberg (1995) expressesillstone you want to put
it away, but you cannot as you cannot live without.

As a consequence, companies try the development of a new system in parallel to
coping with the legacy system. This offers the chance to learn from the maintainance



Object-Oriented Architectures for Electronic Commerce 8

problems of the legacy system. If you ask domain experts and/or the software
engineering crew where most of the effort was put into maintaining the old system,
you'll get a lot of useful flexibility requirements. These aspects should become hot
spots in the system under development.

Often, a brief look at software projects where costs became outrageuos in the past, is a
good starting point for such a hot spot detection activity.

* Investigate scenarios/use casésse cases (Jacobson, 1993, 1995), also called
scenarios, turned out to be an excellent communication vehicle between domain experts
and software engineers in the realm of object-oriented software development.

They can also become a source of hot spots: Take the functions incorporated in use
cases one by one and ask domain experts regarding the flexibility requirements. If you

have numerous use cases, you'll detect probably commonalities. Describe the

differences between these use cases in terms of hot spots.

» Ask the right peopleThis last advice might sound too trivial. Nevertheless, try the
following: Judge people regarding their abstraction capabilities. Many people get lost in
a sea of details. Only a few are gifted to see the big picture and abstract from irrelevant
details. This capability shows off in many real-life situations. Just watch and pick out
these people. Such abstraction-oriented people can help enormously in hot spot
detection and thus in the process of defining generic software architectures.

5 Outlook

Though object/framework technology is touted as yet another one and only path to true
knowledge, it simply is not. Object/framework technology tries to unify the lessons
learned in programming methodology over the past 30 years. Nevertheless, too many
problems are still encountered. For example, if the interface of (abstract) framework
classes is changed applications built on top of the framework are rippled. This is
commonly known afragile base class problem

Furthermore, tools for better understanding frameworks and for testing components
added to a framework would be crucial. Currently such tools are not adequate or even not
existing.

Nevertheless, we think that these obstacles can be removed and that framework
technology will be thenabling technology that underlies future software systéhs is
already true for software that helps to connect information systems to the Web, thus
forming the basis of electronic commerce. In essence, component-based software
development might have the meaning then that companies develop components that
specialize frameworks. As frameworks are well suited for any domain where numerous
similar applications are built from scratch again and again, they will exist for numerous
domains ranging from commercial and technical software systems to advanced
applications such as intelligent agents. In many cases, frameworks will be adapted by just
plugging in various components, distributed over the Web, so that end users are able to
do configuration jobs.

For sure, framework development requires a radical departure from today’s project
culture. Framework development does not result in a short-term profit. On the contrary,
frameworks represent a long-term investment. The proposed hot-spot-driven approach is
aimed at exploiting the potential of design patterns for framework development.
Experience has proven that the explicit identification of hot spots together with a
systematic transformation of the corresponding domain object model contribute to finding
appropriate methods and abstractions faster so that the number of redesign iteration cycles
is reduced.



Object-Oriented Architectures for Electronic Commerce 9

References

Booch G. (1994)0Object-Oriented Analysis and Design with ApplicatioRedwood City, CA:
Benjamin/Cummings

Coad P. and Yourdon E. (199@)bject-Oriented Analysig€nglewood Cliffs, NJ: Yourdon Press

Gamma E., Helm R., Johnson R. and Vlissides J. (199&3ign Patterns—Elements of Reusable
Object-Oriented Softwar&keading, Massachusetts: Addison-Wesley

Goldberg A. (1995)What Should We Learn? What Should We Te&ayhote speech at OOPSLA’95
(Austin, Texas); video tape by University Video Communications (http://www.uvc.com),
Stanford, California

Jacobson 1., Christerson M., Jonsson P. and Overgaard G. (D29&)t-Oriented Software Engineering
Wokingham: Addison-Wesley/ACM Press

Jacobson 1., Ericsson M. and Jacobson A. (1996 Object AdvantageWNokingham: Addison-
Wesley/ACM Press

Jobs S. (1996)he Next Insanely Great ThingWired, 4.02

Lewis T., Rosenstein L., Pree W., Weinand A., Gamma E., Calder P., Andert G., Vlissides J.,
Schmucker K. (1995pbject-Oriented Application Frameworkslanning Publications, Prentice
Hall

Pree W. (1995)Design Patterns for Object-Oriented Software DevelopniReading, MA: Addison-
Wesley/ACM Press

Pree W. (1996)-ramework PatternsNew York City: SIGS Books.

Pree W. and Sikora H. (199@pplication of Design Patterns in Commercial Domainstorial at the
OOPSLA’96, ECOOP’96 and TOOLS USA ‘96 Conferences.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Lorensen W. (I3§#xt-Oriented Modeling and
Design.Englewood Cliffs, NJ: Prentice-Hall

Steinberg S. (1996%et Ready for Web Object#/ired, 4.02

Wirfs-Brock R., Wilkerson B. and Wiener L. (199@esigning Object-Oriente&oftware. Englewood
Cliffs, NJ: Prentice-Hall

Weinand A., Gamma E. and Marty R. (1989). Design and Implementation of ET++, a Seamless Object-
Oriented Application Frameworlstructured Programmind,0(2), Springer Verlag



