
Object-Oriented Development of a Data Flow
Visual Language System

Alex Fukunaga1), Takayuki D. Kimura 2), Wolfgang Pree2,3)

1)Harvard University
Cambridge, Massachusetts 02138

2)Department of Computer Science
Washington University

St. Louis, Missouri 63130
3)C. Doppler Laboratory for Software Engineering

University of Linz, Austria

Abstract . This paper describes how object-oriented software
construction principles allow to develop extensible and reusable
building blocks for the development of data flow based visual
languages.

First we’ll present the data flow visual language ProtoHyperflow
whose object-oriented realization is discussed in the second part of the
paper.

Keywords:
data flow visual languages, object-oriented software development,
application frameworks, class libraries, reusability, extensibility, C++,
ET++

Introduction and Motivation

Object-oriented software development techniques
make it possible to develop generic applications
for specific domains. Such so-called application
frameworks consist of a number of classes
forming a frame that has to be customized for a
specific application. User interface application
frameworks like ET++ [Wein89], MacApp
[Wil90], InterViews [Lint89] or AppKit
[NeXT90], for example, provide a reusable, blank
application that implements much of a given user
interface look-and-feel standard. The programmer
can concentrate on implementing the application-
specific parts. Application frameworks are not
limited to the construction of interactive, graphic-
oriented user interfaces, but can be applied to any
area of software systems.

Recently there has been a trend to use data flow as
the underlying computaional model for visual
language implementations. As a result, many
recent languages share common features. In fact,
visual programming languages seem to be
reaching the point where they build upon

previously existing languages. For example,
several languages build on the concepts
introduced by Show and Tell [Kimu86],
including Data-Vis [Hils92], Extended Show and
Tell (ESTL) [Najo91], and Hyperflow [Kimu92].

This situation served as an incentive for us to
apply the application framework idea to this
domain. With visual language design becoming
an evolutionary process, the availability of an
appropriate object-oriented application framework
can tremendously reduce the implementation
effort of such languages.

The Language ProtoHyperflow
(PHF)

ProtoHyperflow (PHF) is a data flow visual
programming language which is a derivative
subset of Hyperflow. While Hyperflow is
designed as a visual language for a pen-based
multimedia system, PHF is implemented on a
traditional mouse-/CRT-based system using C++

Object-Oriented Development of a Data Flow Visual Language System 2

and the user interface application framework
ET++ [Wein88, Gamm89, Wein89, Egge92].

PHF is a general purpose visual language system
consisting of an integrated editor and a data driven
interpreter system. The following is an informal
description of the PHF language. Most of the
language constructs available in PHF appear in
other data flow visual languages, too, thus
forming the basis for factoring out commonalities
into an application framework.

PHF Syntax

The syntax of PHF consists—like that of many
other data flow visual languages—of boxes and
arrows, a box representing a process and an arrow
representing a data flow between processes. Boxes
are called vips (visually interactive processes) in
PHF, and arrows are called connectors.

Computation in PHF is carried out by a
homogenous community of vips communicating
with each other. Vips can be recursively nested.

The vip is the only unit of system decomposition
in PHF, paralleling the design of LISP, in which
lists are the only structure. This allows PHF's
ability to treat programs as data objects, as
described in Section “Extensibility of PHF’s Core
Framework: Adding Higher Order Functions”. A
vip consists of a mai lbox, a body, and an
optional name. A mailbox holds a discrete data
object, such as an integer or string. The body is
the semantic content (the implementation of the
semantics) of a vip. The body of a vip can be a
system defined PHF primitive (e.g., a ‘+’
returning the sum of a vip’s inputs), a reference
to another vip, a nested ensemble of vips, or it
may be empty. A vip may also have a name,
which appears on the top left corner of the vip.
Names are necessary when defining functions (see
Section “PHF Program Constructs”). A connector
establishes dataflow between the two vips that it
connects. A connector may also have a label. A
PHF program is a directed acyclic graph, where
the nodes are vips and the edges are connectors.

It is necessary to introduce some shorthand
terminology here, in order to facilitate a more
detailed discussion of the constructs used in PHF.
We shall define 'vip X' to mean 'the vip with the
name X, and 'connector X' to mean 'the connector
with the label X'. Also, an empty vip shall be
called a variable vip.

Data Objects in PHF

Data objects are another core property of data flow
visual languages. The following data objects are
currently implemented in PHF: integers, strings,
signals, and vips. Strings in PHF are prefixed
with a quote (') in order to prevent them from
being evaluated as references to other vips.
Signals are an enumerated data type which is
either valid or invalid, and are used to denote the
result of a predicate (such as = ,<>). The use of
vips as data objects is sketched in Section
“Extensibility of PHF’s Core Framework: Adding
Higher Order Functions”. All data objects can be
transmitted via mail (see below), and can be
displayed in a variable (empty) vip.

Communication Between Vips

There are two modes of communication in PHF:
mailing, and broadcasting.

Mailing is communication of discrete data objects
by dataflow across connectors. In mailing, the
contents of the mailbox of the source vip is
copied to the mailbox of the destination vip. This
is the standard mode of communication between
vips.

Broadcasting is a special mode of communication
which involves no connectors. A broadcasting
vip, which is denoted as a vip with a dotted border
(see Figure 5) transmits the contents of its
mailbox to all of the children of its parent (its
sibling vips).

PHF Execution Protocol

A PHF program is executed from its outermost
vip. The execution mode implemented by PHF
is, as with most current data flow visual
languages, data driven. This means that a vip will
execute as long as it has input.

A vip is executable exactly once, and will execute
when it has the minimum number of valid inputs
(input connectors on which the source’s mailbox
is ready to be transferred). The number of
minimum inputs is a semantic property of a vip.
For example, a variable vip (an empty vip) will
execute as soon as it has one valid input (all other
inputs will be ignored), while a + primitive
(summation) will not execute until all of its
inputs are valid. Thus, if a variable vip X has two
input connectors with sources at vip Y and Z,
then this results in a nondeterministic behavior,

Object-Oriented Development of a Data Flow Visual Language System 3

+

4 3

Figure 1: PHF sample program for addition

/
#1 #2

10 2

Figure 2: PHF sample program for division

where the value transfered to X is the value of the
source which is ready first (If Y is ready to
transmit first, then X receives the value of Y, but
if Z is ready to transmit first, then X receives the
value of Z).

PHF Programming Constructs

The following sections describe key programming
constructs in PHF.

Primitive and User Defined Functions,
Binding Rules

A vip may invoke a system defined primitive, or
a user defined function.

Figure 1 shows a PHF program which calculates
the sum of 4 and 3. The + vip is a system defined
primitive which returns the sum of all of its
inputs.

Another type of function is one which involves
parameter binding. For example, for a binary
division operation (a division with two inputs), it
is necessary to distinguish which of the operands

is divided by the other. Thus, binding rules are
necessary.

The binding rules in PHF are name based. � In
the case of system defined primitives, the
parameters which need to be bound to input
values are defined by the system as #1, #2, ... #n,
where #1 is the first argument, #2 is the second
argument, and so on. Input values are bound to
these parameters by labeling the connectors which
connect the input values and the primitive. Thus,
in a binary division, the dividend must be bound
with system parameter #1, and the divisor must
be bound with system paramter #2, and the '/'
primitive will return the value of #1/#2. Figure 2
shows a PHF program which calculates 10/2.

User defined functions are implemented by
naming a vip, and then referencing that vip from
another vip. Figure 3 shows the definition of
Increment, a vip which takes one input parameter
in vip X, and returns X+1. The @ vip is a
system defined primitive which transfers the

+

X

Increment

1

@

Figure 3: Increment function definition

CalcInc

X
Increment

5

Figure 4: CalcInc function definition

Object-Oriented Development of a Data Flow Visual Language System 4

contents of its mailbox to its parent. Figure 4
shows CalcInc, a PHF program which calls the
Increment function with input value 5. When
CalcInc is executed, the 5 is mailed to the vip
which calls Increment . Then a copy of the
function Increment is created, with 5 bound to
the vip X. The copy of the function vip is then
executed. The result of the addition, 6, is sent out
of the Increment function to its parent, which is
the vip which calls Increment in CalcInc, and the
result then flows to the variable vip at the bottom
of the CalcInc vip.

The binding of input values to unbound variable
vip in the function is established by associating
the labels of the connectors entering the function
call vip with the names of the parameter vips of
the function. Thus, in the example above, the
empty variable vip X in Figure 3 is associated
with the connector labeled X in Figure 4.

PHF functions have only one return value, which
is mailed out via the @ vip. Note that it is not
possible to have side effects in PHF, because of
its data flow based nature.

Conditionals

Conditionals are implemented in PHF using the
broadcasting mechanism (see above in Section

“Communication between Vips”) and the signal
data type (see above in Section “Data Objects in
PHF”). If a vip receives an invalid signal, it is
inactivated so that it does not execute. A
broadcasting vip can prevent all of its sibling
vips from executing by broadcasting an invalid
signal. Thus, conditionals can be implemented by
having multiple vips, among which only one is
selected by invalidating all of the others.

The recursive implementation of the factorial
function (!) demonstrates the usage of
conditionals. As shown in Figure 5 this function
takes one integer input, X and processes it as
follows: if X=0 then return 1 else return X * (X
-1)!. (X is assumed to be a positive integer).

The = and <> are PHF primitives which return
valid or invalid depending on whether the ‘equal’
and ‘not equal’ predicate holds true for their
inputs. If X=0, then the = predicate returns a valid
signal, while the <> predicate returns an invalid
signal. Thus, the integer 1 flows to the vip
labeled @. However, if X <> 0, then X * (X -1)!
is returned.

Note that PHF uses an asynchronous, parallel
execution model, so a vip executes as soon as its
inputs are ready. Thus, when making conditional

X

@

1

0 =

@

- 1

!*

0

@

<>

#1 #2

X

!

Figure 5: Factorial Function

Object-Oriented Development of a Data Flow Visual Language System 5

statements, the conditionals must be mutually
exclusive, or the results will be unpredictable (as
mentioned above the program will still be
syntactically correct, but it will be
nondeterministic).

PHF’s Object-Oriented
Implementation

The principal software components of the PHF
system are a direct-manipulation GUI (graphic
user interface) editor with an integrated data driven
interpreter system.

The graphical components of the PHF system
have been developed in C++ by means of the
application framework ET++ [Wein88, Gamm89,
Wein89]. ET++ has been used for implementing
various applications with a graphic user interface.
Examples are the user interface prototyping tool
DICE [Pree90], the C++ development environ-
ment Sniff+ [take93] and a swap valuation
system developed at the Union Bank of
Switzerland [Egge92].

Some details concerning the implementation
effort of the PHF system are presented in the
Section “Some Statistics”. Since there are
numerous publications on how to implement
GUIs based on appropriate object-oriented
application frameworks we do not describe that
PHF system component.

In a similar way as ET++ provides software
concepts for implementing GUIs we developed
classes that form a basic application framework
for a data driven interpreter system for data flow
visual languages.

We will first describe the principles of an
application framework (short: framework) and
then sketch the interpreter framework which
resulted from the object-oriented PHF
development. We take the reader’s knowledge
about the object-oriented concepts inheritance,
polymorphism and dynamic binding for granted.

Basic Concepts of Application
Frameworks

We first discuss some aspects of class libraries
before defining the term application framework.
Compared to conventional routine libraries, class
libraries are hierarchical with the most general
class at the top of the hierarchy tree (if single
inheritance is used). This hierarchical organization
helps to reduce the complexity of a library. An

important principle behind the design of a class
hierarchy is that the common behavior of classes
is factored out into their superclasses.

Classes which factor out common behavior of
other classes typically contain some methods that
cannot be implemented. Any class that contains
one or more “empty” methods (i.e., methods with
some kind of dummy implementation) is termed
abstract class. It doesn’t make sense to generate
instances of them. Nevertheless, abstract classes
may also contain methods that can already be
implemented in advance for all subclasses.

The most important aspect of abstract classes is
that they form the basis of extensible and reusable
software systems: it is possible to realize whole
software systems using only abstract classes, i.e.,
the protocol supported by them (we define the
term “protocol of a class” as all the methods and
instance variables provided by a class). If
subclasses of abstract classes are added to the class
library, these software systems need not be
changed. They also work with the objects of new
subclasses of these abstract classes (on which
other software systems are based), since these
objects support at least the protocol (though
implemented in a specific manner) defined in their
(abstract) superclasses. The methods of abstract
classes are dynamically bound, so that the
corresponding methods of the objects which are
instances of the new classes are called at run time.

For instance, a visual language interpreter
component which can be implemented based on
the protocol provided by the abstract classes
VIPShape and DataObj will work with any
objects generated out of subclasses of these
abstract classes.

New subclasses of abstract classes can reuse all
the code that was already implemented in their
superclasses. Class libraries are called application
frameworks if they apply the ideas presented
above in order to provide a software system which
is a generic application for a specific domain.
Classes comprising the interpreter together with
all the abstract classes these components rely on,
form a visual language interpreter application
framework. Applications based on such an
application framework are built by customizing
its abstract and concrete classes. Thus a given
framework already anticipates much of an
application’s design which is reused in all
applications based on the classes of that
application framework. This implies not only a

Object-Oriented Development of a Data Flow Visual Language System 6

code reduction but also a standardization of that
domain.

As we have observed above, the domain of
dataflow visual languages have become somewhat
standardized, so we believe that the development
of a framework for this domain is timely.

PHF’s Class Library

A PHF program can be modeled abstractly as a
community of vips interacting with each other by
sending messages via the mailing and
broadcasting mechanisms. This classifies objects
in PHF into two categories: 1) the visually
interacting processes, and 2) the data objects
which are being passed from vip to vip. Another
way to classify objects in PHF is to differentiate
between visual objects and internal objects. The
visual objects are the visual component of the
vips themselves (the boxes) and the connectors.
The internal objects are the implementations of
the semantic content of the vips and data objects.

 Thus, we designed the abstract classes
VIPShape, VIPContent, and DataObj, which
represent the visual content, the semantic content,
and the data objects. Each of these abstract
classes and the interpreter system based on them
shall be described in detail.

VIPShape is the abstract class for the visual
objects in PHF (see Figure 6). Its concrete
subclasses are the boxes (instances of the classes
VIPRectShape and BroadCastVIPRectShape)
and the connectors (instances of the class
VIPConnector).

The abstract class VIPShape itself is a subclass
of ET++’s abstract class VObject (visual object),
which describes properties common to objects
which have a visual representation (e.g.,
rendering, event handling, resizing, moving).
VObject together with other abstract and concrete
classes of the GUI application framework ET++
saved a significant amount of work in
implementing PHF’s visual components, i.e., the
language editor and the visual aspects of the
interpreter.

The VIPRectShape subclass represents a vip's
visual component. Its members include its name,
lists of input and output connectors, the mailbox
which contains a data object, and a semantic
content (a subclass of VIPContent). In addition,
each vip has a parent vip and a list of contained
vips as instance variables, reflecting the

recursively nested nature of the vips. Methods
defined for VIPRectShape include methods to
manipulate the members listed above, as well as
methods which handle the visual aspects of the
vip.

VIPConnector represents connectors between
vips. The connector has as its members the start
and end vips of the connector, and its name.

VIPShape

VIPRectShape
BroadcastVIPRectShape

VIPConnector

Figure 6: VIPShape class hierarchy

Data Objects

The abstract class DataObj (see Figure 7)
represents a data object in PHF. These data
objects are the message packets which are sent
from vip to vip via mail/broadcast. DataObj’s
protocol provides the following two methods:
GetValue allows the actual data (data of type int,
string, enumerated type Signal, or a pointer to a
VIPRectShape) to be extracted from the packet,
and HFDataObjToStr returns a standard represen-
tation of the data (a string) which can be displayed
in the visual environment.

The concrete subclasses D a t a O b j _ I n t ,
DataObj_Signal, and DataObj_String contain
instances of the actual data objects and override
the GetValue and HFDataObjToStr methods.

New data types can be easily added by defining a
new concrete subclass of DataObj and overriding
the GetValue and HFDataObjToStr methods (see
Section “Extensibility of PHF’s Core
Framework: Adding Higher Order Functions”).

DataObj

DataObj_Int
DataObj_Signal

DataObj_String

Figure 7: DataObj class hierarchy

Semantic Components

The abstract class VIPContent represents the
semantic content of a vip. It has a member
pointer to the VIPRectShape it belongs to, and
defines the dynamically bound method Execute,

Object-Oriented Development of a Data Flow Visual Language System 7

which every subclass of VIPContent must
override.

The subclasses of VIPConten t mirror the
language definition for the semantic content of a
vip. The subclasses are: VarVIP (variable vip),
EnsembleVIP (nested ensemble of vips), FuncVIP
(a reference to another vip - a function call), and
PrimOpVIP (PHF primitive).

PrimOpVIP is an abstract class encompassing all
system defined primitives. It defines generalized
methods for obtaining message packets from
input connectors (CheckInputs, GetMsg) and
updating the value in the vip's mailbox
(SetResult). Subclasses of PrimOpVIP must
override the ProcessInput method, which
processes the inputs and returns as a result a
DataObj instance. For example, the ProcessInput
method for the ‘-’ primitive matches the two
operands with the input for the connector labeled
with #1 and #2, and returns a DataObj_Int whose
value is #1 - #2.

Extensions to the language semantics are easily
accomplished by adding concrete subclasses of
VIPContent for major language constructs (e.g..
iteration) and of Pr imOpVIP for primitive
operations (e.g., square root) .

VIPContent

VarVIP
EnsembleVIP

FuncVIP
PrimOpVIP

PlusOpVIP
EqualOpVIP
. . .

Figure 8: VIPContent class hierarchy

Interpreter Component

A PHF program is executed by making 1) a copy
of the outermost vip of the program by using the
DeepClone method of ET++’s root class Object
(makes an identical copy of an object, including
all objects referenced as instance variables), 2)
opening a new window for the copy (the
Execution Window) and 3) invoking the Execute
method of the copy.

The execution mode implemented by PHF is, as
with most current data flow visual languages, data
driven. This mode of execution, in which a vip
will execute as long as it has input, is inefficent
compared to the demand driven mode, in which
only the vips which provide data necessary for the
final computation are executed. However, demand
driven execution is much more difficult to
implement (to our knowledge, only VPL [Lau91]
has implemented demand driven execution), and
speed was not a primary concern when
implementing PHF.

An ensemble of vips is executed in the following
way: A vip is executable exactly once, and will
execute when it has the minimum number of
valid inputs (input connectors on which the
source’s mailbox is ready to be transferred). The
number of minimum inputs is a semantic
property of a vip. For example, a variable vip
will execute as soon as it has one valid input (all
other inputs will be ignored), while a + primitive
(summation) will not execute until all of its
inputs are valid.

This is implemented as follows: A queue of all
vips whose valid flags are set is constructed (the
valid flag may be unset if the vip has received an
invalid message). Empty VarVIPs (for which user
input is required) are moved to the front of the
queue, followed by vips with broadcast borders. If
a vip can not execute because the minimum
number of its valid inputs are not ready, then it is
reinserted at the end of the queue.

Extensibility of PHF’s Core
Framework: Adding Higher Order
Functions

The design of the PHF interpreter around the
abstract classes VIPContent, and DataObj made
possible the construction of a core framework
which could be easily extended. New data types
are added by adding subclasses of DataObj, and
semantic extenstions to the language are made by
adding subclasses of VIPContent. Since the core
language operates on the abstract classes
VIPContent and PHFDataObj, it is possible to
make significant language extensions without
modifying the core of the language. The
following example demonstrates this point.

To the basic PHF language as described above,
we added the capability to handle higher order

Object-Oriented Development of a Data Flow Visual Language System 8

foo
#1 #2

a b ReverseOp

foo
#2 #1

a b

X

'a'foo 'b

Y Z

Figure 9: Usage of ReverseOp

functions, and an extensive set of primitives to
manipulate functions as data objects, similar to
the generality with which LISP treats program
and data. A full description of these features is
beyond the scope of this paper (PHF’s higher
order functions are described in [Fuka93]) , but
their implementation demonstrates the power of
object oriented design.

Using these language constructs, for example, we
can define a higher order function ReverseOp
which takes a function F and three vips X, Y, and
Z as input (we do not describe ReverseOp ’s
realization). A use of that function might be to
reverse two arbitrary connections in a self
modifying PHF program (see Figure 9).

In order to implement the manipulation of vips as
data objects, we first have to add a new data type
for quoted vips (vips which are treated as data).
Thus, we create DataObj_VIP, a subclass of the
abstract class DataObj.

DataObj

DataObj_Int
DataObj_Signal

DataObj_String
DataObj_VIP

Figure 10: Extended DataObj class hierarchy

A new construct, Apply, which takes a quoted vip
as input, executes it, and returns the result, is
implemented as a subclass of the abstract class
VIPContent.

VIPContent

VarVIP
EnsembleVIP

FuncVIP
ApplyVIP
PrimOpVIP

PlusOpVIP
EqualOpVIP
InsertVIPOp
ConnectVIPOp
ExtractVIPOp
. . .

Figure 11: Extended VIPContent class hierarchy

The complement of this construct, Quote, which
transforms a vip into a data object, is
implemented by adding a subclass to VIPShape,
i.e., QuotedVIPRectShape, which inherits all of
the properties of VIPRectShape , but has a
thickened border to denote that it contains a
quoted vip.

VIPShape

VIPRectShape
BroadcastVIPRectShape

VIPConnector
QuotedVIPRectShape

Figure 12: Extended VIPShape class hierarchy

Finally, the primitives necessary to fully
manipulate the vip data structure, including
primitives to insert, connect, extract, and
disconnect vips are implemented as subclasses of
the abstract class PrimOpVIP (see Figure 11).

Object-Oriented Development of a Data Flow Visual Language System 9

Although this is certainly a nontrivial extension
to the language, the only modifications necessary
are as described above. No modifications were
necessary to the core application framework.

Some Statistics

The current version of the PHF system supports
all of the language features described above
(including support for higher order functions) in
an integrated editor/interpreter environment. It has
a Motif-GUI interface provided by the ET++
framework and runs under UNIX on several
hardware platforms (e.g., Sun SPARCstation,
IBM RS6000, HP 9000/700, DEC RISC, i486).

The size of the C++ code that had to be written
(i.e., excluding the classes reused from the ET++
application framework) breaks down roughly as
follows:

Lines of Code

PHF-Editor 1900

PHF-Interpreter 2000

Total 3900

It is important to note that constructing the GUI
components, which is usually considered the
primary bottleneck in developing a visual
language, took a relatively short time
(approximately 2 person weeks), since ET++
provides extensive support for developing these

GUI components. The GUI components are
available on all platforms that are supported by
ET++ (see above). This number does not include
the time it took to become familiar with object-
oriented programming and the ET++ class library.

Conclusion

We have described the implementation of the
simple data flow based visual programming
language ProtoHyperflow focusing on the
developed application framework components for
data flow visual languages. We had the experience
that the object-oriented paradigm (encapsulation,
inheritance, polymorphism and dynamic binding)
encourages the developing of extensible systems
and software reuse. A precondition is to find good
abstractions (abstract classes) that form the basis
of building application frameworks for specific
domains.

The PHF application framework is considered to
be a starting point for future research in the area
of domain specific application frameworks for
visual langauges. We expect that despite the
known problems of object-oriented software
development (as described, for instance, in
[Taen89] and [Pree92]) qualitative and quantitative
improvements in the development of visual
language systems are possible by applying the
application framework approach.

References

[Egge92] Eggenschwiler T., Gamma E.: ET++
Swaps Manager: Using Object
Technology in the Financial
Engineering Domain; OOPSLA’92,
Special Issue of SIGPLAN Notices,
Vol. 27, No. 10, 1992.

[Fuka93] Fukanaga A., Pree W., Kimura T.:
Functions as Data Objects in a Data
Flow Based Visual Language; ACM
Computer Science Conference,
Indianapolis, February 1993.

[Gamm89] Gamma E., Weinand A., Marty R.:
Integration of a Programming
Environment into ET++: A Case
Study; Proceedings of the 1989
ECOOP, July 1989.

[Hils92] Hils, D.D. A Visual Programming
Language For Visualization of
Scientific Data. Ph.D. Thesis,, Dept.
of Computer Science, University of
Illinois. Urbana, IL 61801.

Object-Oriented Development of a Data Flow Visual Language System 10

[Kimu86] Kimura, T.D., Choi, J.W. and Mack,
J.M. “A Visual Language for
Keyboardless Programming,”
Technical Report WUCS-86-6,
Department of Computer Science,
Washington University, St. Louis,
1986.

[Kimu92] Kimura, T.D. “Hyperflow: A Visual
Programming Language for Pen
Computers,” to appear in IEEE
Workshop on Visual Languages,
Seattle, Washington, 1992.

[Lau91] Lau-Kee, D., Billyard, A., Faichney,
R., Kozato, Y., Otto, P., Smith, M.,
Wilkinson, I. “VPL: An Active,
Declarative Visual Programming
System,” Proceedings of IEEE
Workshop on Visual Languages,
Kobe, Japan, 1991.

[Lint89] Linton M.A., Vlissides J.M., Calder
P.R.: Composing User Interfaces
with InterViews; Computer 22, 2,
February 1989.

[Najo90] Najork, M.A., Golin, E. “Enhancing
Show-and-Tell with a polymorphic
type system and higher order
functions,” Proceedings of IEEE
Workshop on Visual Languages,
Skokie, Illinois, 1990.

[NeXT90] NeXT, Inc.: 1.0 Technical Documen-
tation: Concepts; NeXT, Inc., Red-
wood City, CA, 1990.

[Pree90] Pree W.: DICE—An Object-Oriented
Tool for Rapid Prototyping; in
Proceedings of Tools ‘90, Sydney,
Australia, 1990.

[Pree92] W. Pree, G. Pomberger: Object-
Oriented Versus Conventional
Sof tware Development : A
Comparative Case Study; EuroMicro
‘92 Conference, Paris, France, 1992.

[Taen89] Taenzer D., Ganti M., Podar S.:
Problems in Object-Oriented Software
Reuse, Proceedings of the 1989
ECOOP, July 1989.

[take93] takeFive Software: Sniff+ Reference
Guide, Salzburg, Austria, 1993.

[Wein88] Weinand A., Gamma E., Marty R.:
ET++ - An Object-Oriented
Application Framework in C++;
OOPSLA’88, Special Issue of
SIGPLAN Notices, Vol. 23, No. 11,
1988.

[Wein89] Weinand A., Gamma E., Marty R.:
Design and Implementation of ET++,
a Seamless Object-Oriented Appli-
cation Framework; in Structured Pro-
gramming Vol.10, No.2, Springer
1989.

[Wils90] Wilson D.A., Rosenstein L.S.,
Shafer D.: Programming with
MacApp; Addison-Wesley, 1990.

