
Object-Oriented Versus Conventional
Software Development: A Comparative

Case Study
W. Pree, G. Pomberger

Institut für Wirtschaftsinformatik, University of Linz,
A-4040 LINZ, Austria, Europe

E-mail: {pomberger,pree}@swe.uni-linz.ac.at

Abs t rac t
Although object-oriented programming techniques
have evolved into an accepted technology with
recognized benefits for software development,
profound qualitative and quantitative comparisons
of conventional (module-oriented) and object-
oriented systems are missing. We derive
statements about qualitative and quantitative
differences between conventional module-oriented
and object-oriented software systems from the
construction of a prototyping tool which was
implemented in Modula-2 as well as in C++
(based on an object-oriented application frame-
work). We also discuss the most striking
reusability problems of object-oriented software
building blocks.

Keywords:
object-oriented programming, module-oriented
programming, reusability, extensibility, type
extension, class libraries, application frameworks,
C++, Modula-2, Ada, Oberon

In t roduct ion
Unfortunately, most comparisons of conventional
and object-oriented programming techniques are
based on small projects since the software indus-
try can hardly afford to implement large-scale
software systems twice.

This situation served as an incentive for us to
compare representative software systems. The
conventionally implemented User Interface
Construction Tool (UICT1 [4, 7], implemented
in Modula-2) and the object-oriented Dynamic
Interface Construction Environment (DICE1 [8,
9], implemented in C++ with the application
framework ET++ [3, 12, 13]) form the basis of
such a large-scale case study that helps to evaluate
the promises of object-oriented programming as
well as its pros and cons compared to module-
oriented software system development. Both
UICT and DICE serve for the prototyping-
oriented development of graphic user interfaces
under UNIX and either SunWindows, NeWS, or
the X11 window system.

In the following comparison of UICT’s and
DICE’s components, we take the reader’s
knowledge about module-oriented concepts such
as encapsulation and data abstraction for granted.
We also presuppose that the reader is familiar
with the object-oriented concepts inheritance,
polymorphism and dynamic binding, as well as
with principles of graphic user interface appli-

1 This project was supported by Siemens AG Munich

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 2

cation frameworks (like MacApp [10,
14], AppKit [6] or ET++ [13]).

Comparison of Tools
Implemented with Module-
Oriented and Object-
Oriented Methods
The comparison of UICT’s and DICE’s
development is based on concepts which the tools
have in common. Table 1 shows these concepts
and their realization in UICT and DICE.

Prototype Specification
Both UICT and DICE were designed with the goal
to raise the abstraction level in order to support
the specification of user interface prototypes.
UICT employs a special description language
(User Interface Specification Language, UISL);
DICE provides a graphic-oriented specification
formalism. Since the characteristics of these
prototype specification formalisms are completely
different, we cannot compare these components
directly. Thus we discuss the reasons that led to
these different approaches and their consequences.

UICT is based on a module-oriented toolbox
comparable to the Macintosh Toolbox [2] that
provides basic functionality for implementing
graphic user interfaces. Because of their low
abstraction level such module-oriented toolboxes
are not suited for the specification of user inter-
face prototypes. Thus a prototype specification by
means of a formal language (with an abstraction
level which is much higher than that of a
toolbox) was chosen for the module-oriented
implementation of the user interface prototyping
tool. In case of UICT the module-oriented
toolbox is only used for prototype simulation and
code generation.

Object-oriented (user interface) application frame-
works make the implementation of graphic user
interfaces much easier. Furthermore, the abstrac-
tion level of prototype specification is consider-

ably raised by means of graphic editors. These
were the main reasons why a graphic-oriented
specification formalism was chosen for the
object-oriented implementation of the user
interface prototyping tool.

On the one hand, a module-oriented toolbox
influences the specification concept only to a
minimal extent. Obviously, user interface
elements supported by a toolbox are mirrored in
the specification formalism. Nevertheless, the
structure of the software component that
implements the specification formalism is
completely independent of the module structure of
the toolbox. Instead, other design decisions (i.e.,
the decision to use a formal language for
prototype specification) influence the architecture
and design of the corresponding implementation.

On the other hand, the architecture of an
application-framework-based user interface
prototyping tool is strongly influenced by the
structure of the application framework that is
employed. Design and implementation of the
prototype specification concept are above all
determined by the predefined architecture of the
particular application framework.

Prototype Representation—
Employed Data Structures

The qualitative and quantitative comparison of
UICT’s and DICE’s internal prototype represen-
tation considers the following aspects:

• We compare employed data structures as well
as their management and investigate the
influence of different ways of thinking (due to
the module-oriented and object-oriented
paradigm) on the internal prototype
representation.

• The internal prototype representation plays an
important role in each user interface
prototyping tool. Effects of extensions/modifi-
cations of the internal representation are con-
trasted.

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 3

Concepts Realization in UICT Realization in DICE

Prototype Specification User Interface Description
Language (Text-Oriented)

Graphic-Oriented Specification
Formalism

Prototype Representation
(Data Structures)

Intermediate Language Based
on Arrays

(Sub)classes of an Application
Framework

Prototype Simulation Interpreter Simulation Framework

Code Generation Conventional Generator Code Generation Framework

Table 1: Common UICT and DICE concepts together with their realization

• The particular software components that
implement the internal prototype represen-
tation are compared (using lines of code as a
metric for a quantitative comparison). This
comparison particularly considers the degree of
software reuse.

Data Structures and Their
Management

UICT and DICE have to store a prototype
specification in an appropriate format. This is the
precondition of a later simulation and code
generation. We induce the following general
statements from the comparison of employed data
structures:

Data structures employed in the module-oriented
implementation are not active. This means that
modules dedicated to internal prototype
representation store only descriptions of user
interface objects, but not objects in an object-
oriented sense. This causes other modules to
implement routines that are based on these
descriptions—descriptions (= data) and operations
(= routines that manipulate and interpret these
descriptions) are separated. This decreases the
extensibility of the data structures.

A typical object-oriented implementation unifies
data and operations and makes data structures
active. This means that the description of an
object’s behavior forms a unit (the attributes of
an object that constitute its state and all methods
that determine its functionality). Furthermore,
common behavior is factored out into an abstract
class so that other components can be based on
that class. Therefore modifications of common
behavior are easier to accomplish.

Implication: The employed data structures and
module/class architecture primarily result from
different ways of thinking in the design of
module-oriented and object-oriented software
systems.

These general statements are drawn from UICT’s
and DICE’s internal prototype representation:

Data Structures and Their Management in UICT:
We first try to explain the main reason for
UICT’s overall module structure in order to
outline the influence of such a modularization on
the internal prototype representation: If a system
is modularized, only the system’s functionality is
taken into account in most cases. UICT is a
typical example. It consists of modules that parse
a prototype specification, modules that handle
tables (=the internal prototype representation),
modules that simulate a prototype, and modules
that generate code. Modules that handle an
intermediate language stored in arrays (called UI
Tables) realize UICT’s internal prototype
representation. All other modules are built around
the table handler modules. (E.g., prototype
specifications in UISL are parsed by Translator
modules and then transformed and stored in UI
Tables.)

A UI Table logically consists of two parts: an
object list and a symbol list. The object list is a
set of descriptions of user interface building
blocks that are specified for a particular prototype.
Thus an object list contains descriptions of user
interface elements supported by UICT (e.g.,
menus, buttons, windows). The symbol list
stores all names used in the prototype
specification and for each name a reference to its
description in the object list. Two modules, called
Table Handler and Symbol Table Handler, manage
UICT’s prototype representation. This fine-
grained modularization is based on the two logical
parts of a UI Table.

Data Structures and Their Management in DICE:
One design goal of DICE’s internal prototype
representation was that classes representing user
interface elements should not only consist of their
attributes described in instance variables but also

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 4

of methods that determine their functionality, so
that data and operations are really unified.

Another important design goal of DICE’s internal
prototype representation was to define an abstract
class that factors out common behavior of user
interface elements. Thus classes implementing
graphic editor components as well as classes
which initiate attribute definition (see below) of a
user interface element, simulation of the
particular prototype, and code generation can be
based on such an abstract class. This is a
precondition of a satisfying extensibility of the
overall system.

We designed an abstract class called DICEItem for
the reasons stated above. Subclasses of this
abstract class represent specific user interface
elements. Data management (i.e., management of
several DICEItem instances) is accomplished by
means of already existing ET++ classes for
managing object collections.

Extensions of the Prototype
Representat ion

By “extensions of the prototype representation”
we mean adding new interface elements that are to
be represented (this is the most important
extension in connection with user interface proto-
typing tools). In this section we discuss the
impact of such extensions on other components
of the particular user interface prototyping tool.

In UICT’s implementation object descriptions can
be accessed from any other module in the system
that imports the proper routines and data types
from the modules that handle these descriptions.
Changes (i.e., new kinds of object descriptions)
to modules that handle these descriptions affect
the whole software system. (Only changes to data
structures that are internally employed by the
table handler modules in order to store object
descriptions do not affect the overall system.)

In DICE’s implementation abstract classes define
the common behavior of objects realizing the

prototype representation. Other components of a
system can be based on these abstract classes.
Subclasses of the abstract classes describe specific
object behavior. The software system is so
flexible because new kinds of user interface
elements can be added as subclasses to abstract
classes without affecting the other components of
the system.

Implications: The concepts inheritance, polymor-
phism and dynamic binding as offered by object-
oriented programming languages are the
preconditions for building extensible and reusable
software systems: Inheritance opens the
possibility of incrementally extending and
adapting object descriptions of abstract classes
that factor out common behavior. This is done in
subclasses without changing the code of the
abstract class. Polymorphism and dynamic
binding allow the implementation of software
components that are based on abstract classes.
Thus these components are independent of
specific object types.

Extensibility Aspects of UICT’s Internal
Prototype Representation:

An encapsulation of data structures as done in the
Table Handler and Symbol Table Handler modules
for an object list and a symbol list is a common
used possibility in module-oriented systems to
increase the extensibility of a software system.
As explained below, the extensibility of such a
module suffers from the separation of data and
operations and not from the fact that even type
extensions are not supported in typical module-
oriented programming languages like Modula-2
and Ada [1].

Let us take the Table Handler’s definition module
as an example in order to illustrate this
unsatisfying situation: A type TBHSubwindow
(see Figure 1) is defined to describe different
subwindows available in UICT. (A UICT
prototype window can be divided into several

TYPE
TBHExtension= RECORD

Width: INTEGER; (* in pixels *)
Height: INTEGER (* in pixels *)

END;
TBHSubwType= (Edit, ListMenu, MaskButton);
TBHLongName= ARRAY [0..200] OF CHAR;
TBHEditMenu= ...
...
TBHSubwindow = RECORD

(* attributes common to all subwindows *)
Ext: TBHExtension;

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 5

...
CASE Type: TBHSubwType OF

Edit:
EditMenu: TBHEditMenu;
FileName: TBHLongName;

| ListMenu: ...
| MaskButton: ...
END (* CASE *)

END; (* TBHSubwindow *)

Figure 1: Definition of type TBHSubwindow in UICT’s Table Handler Definition Module

subwindows. UICT supports several types of
subwindows, for instance, an Edit Subwindow
with the functionality of a text editor, a ListMenu
Subwindow that contains a list of selectable
textitems, and a Mask Button Subwindow that
contains dialog elements like buttons).

This implies that each routine in the
implementation module that has a parameter of
type TBHSubwindow must be modified if a new
subwindow type is added in this type definition.
(An implementation detail illustrates the typical
functionality of routines that handle subwindows:
The Table Handler Module manages separate data
structures for each subwindow type in its
implementation. The procedure TBHAddSubw(
Subw: TBHSubwindow), for instance, has to
determine the subwindow type in a C A S E
statement in order to get the information in which
data structure the subwindow has to be placed. A
new subwindow type implies the modification of
all CASE statements in routines that handle
subwindows and the implementation of an
additional data structures that manages
subwindows of the new type.)

One could argue that the replacement of the
general type TBHSubwindow with simple types
(e.g., TBHEditSubw, TBHListMenuSubw) would
solve this problem. Unfortunately, this solution
has similar drawbacks: First, attributes common
to all subwindows (like Ext) recur in these simple
types. Changes in the common attributes mean
that all “simple” types and all routines that handle
them must be changed accordingly. Furthermore,
the use of the module becomes pretty
complicated: routines to insert, remove, etc.
subwindows must be implemented for each
subwindow type (for example, T B H A d d -
EditSubw(...), TBHAddListMenuSubw(...), etc.).

Though the concept of type extension (as
supported by Oberon [16]) ameliorates this
problem to some extent, it offers no satisfying
solution to the extensibility problem: Let us

again take the situation outlined above as an
example. If we had type extension at hand, we
could define a general type TBHSubwindow that
contains only attributes that are common to all
subwindows. Specific subwindow types (e.g.,
TBHEditSubw, TBHListMenuSubw, TBHMask-
ButtonSubw, TBHEmptySubw) are extensions of
this general type TBHSubwindow. Thus, for
example, one routine that adds a subwindow to a
table is sufficient: the subwindow to be added is
passed as a parameter of type TBHSubwindow.
New subwindow types that extend this general
type can be handled by such a routine without
modifications of that routine. Nevertheless, new
user interface elements cause changes in other
modules of UICT (in the simulation, and code
generation components), regardless of whether
type extension is used in the modules that handle
UI Tables or not. For example, routines that
implement the simulation of a subwindow have
to know the particular subwindow type, of
course, and thus are affected by such extensions.

The crucial point is that the data stored in Table
Handler and Symbol Table Handler Modules are
not active: These modules store only descriptions
of objects. (They hide the internal representation
of their object list and symbol list, and export
only certain data structures and routines to access
these lists.) Thus descriptions can be accessed
from any module in the system that imports the
proper routines and data types from the Table
Handler and Symbol Table Handler Modules.
Changes to Table Handler and Symbol Table
Handler Modules (i.e., new kinds of object
descriptions) affect the whole software system.

Extensibility Aspects of DICE’s Internal
Prototype Representation:

We illustrate the extensibility of DICE’s
components that are based on DICE’s internal
prototype representation (class DICEItem). We
choose the attribute definition of user interface

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 6

elements, which is part of DICE’s specification
component, as our example.

Attributes that describe a user interface element’s
behavior are defined in appropriate dialog boxes.
Let us sketch the attribute definition of user
interface elements from the user’s point of view
as a precondition of understanding its object-
oriented implementation described below: In order
to set attributes of user interface elements, one
selects the particular user interface element and
chooses the menu item “Item Attributes...” from
a DICE-specific menu. A dialog box is opened
where element-specific attributes are manipulated.

The implementation of attribute definition is
based on the abstract class DICEItem: The crucial
point is that classes comprising DICE’s
specification component should only implement a
framework for attribute definition, i.e., handle
mouse events, menu selections and the
opening/closing of a dialog box in which at-
tributes are manipulated. Only the window con-
tents (i.e., the specific attributes) of the dialog
box must be provided by the particular user
interface element. The update of specific attributes
which may be changed in the dialog box has to be
accomplished by the particular user interface
element, too, since attributes are instance
variables of each user interface element. So the
abstract class DICEItem defines two (abstract)
methods for attribute definition called
GetAttributesDialog and UpdateAttributes.

Arbitrary new interface elements can be added as
subclasses of DICEItem . They just have to
override the element-specific methods for attribute
definition GetAttributesDialog and Update-
Attributes. Furthermore, instance variables
representing their attributes must be added.
Algorithms for attribute definition as
implemented in the specification component still
work since they are based on the abstract class
DICEItem.

Thus typical object-oriented programming
techniques (inheritance, dynamic binding, and
polymorphism) are the precondition for the
implementation of a framework for attribute
definition.

Methods of DICEItem for simulation and code
generation are designed in an analogous way. So
simulation and code generation frameworks can be
implemented based on DICEItem. They need not
be changed if new user interface elements are
added as subclasses of DICEItem.

Software Reuse

The comparison between UICT and DICE
components that realize the particular internal
prototype representation points out significant
differences between module-oriented and object-
oriented systems regarding reuse of already
existing software components.

We use the written lines of code and the average
number of lines of code per routine/method to
directly compare UICT’s and DICE’s components
(see Table 2).

The amount of code that has to be written in
UICT’s Table Handler Module is about seven
times as much as in DICE’s component for
internal prototype representation. The complexity
of routines can be cut back to about one third in
the object-oriented implementation. The main
reason for such code and complexity reductions is
the high reusability of application framework
components.

The module-oriented user interface prototyping
tool does not even reuse existing modules for
managing data structures like lists, etc.
Everything is implemented from scratch. This is
done in such a way that modules implemented for
that purpose in UICT are again very specific.

The object-oriented realization of the internal
prototype representation reuses as much code as
possible from the application framework it is
based on. In case of DICE’s prototype represen-
tation component, we can also calculate the ratio
of reused and newly written code (see Table 3).

This ratio (newly written lines of code : reused
lines of code = 1052 : 1307 = 1 : 1,24) strongly
depends on the application framework that is used
and the originality of the problem at hand.

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 7

UICT’s Prototype
Representation Component

DICE’s Prototype
Representation Component

written lines of code 7600 1052

routines/methods 159 62

lines per routine/method 47,8 17,0

Table 2: Comparison of UICT’s and DICE’s prototype representation components
based on common metrics

DICE’s Prototype
Representation Component

newly written lines of code 1052
reused from ET++ classes 1307

Table 3: Ratio of reused and newly written code

Simulation and Code Generation

Design and implementation of these components
are influenced by the internal prototype represen-
tation which is in turn determined by different
ways of thinking in module-oriented and object-
oriented systems, as discussed above.

Since a detailed description of these components
would yield no further insights we just compare
these components as shown in Tables 4 and 5
using again the overall lines of code and the
average lines of code per routine/method as
metrics:

The direct comparison again confirms that the
amount of code that is to be written in UICT’s
components as well as the code’s complexity is
significantly higher than in the corresponding
components of DICE.

UICT’s components are almost implemented
from scratch and only reuse routines of a module-
oriented toolbox for the implementation of
window system specific tasks. DICE’s compo-
nents again use some ET++ mechanisms/classes
so that the calculated reusability factor is similar
to the internal prototype representation compo-
nent (i.e., the number of newly written lines of
code is less than half compared to the number of
reused lines of code).

As already described in context with the internal
prototype representation the components with a
module-oriented implementation are not open for
extensions (i.e., adding new user interface ele-

ments means that also the simulation and code
generation components have to be changed). On
the other hand, the object-oriented solution is
optimal: due to abstract classes, no modification
of these components is necessary: user interfaces
elements are simply added as subclasses of
DICEItem.

Summarizing Remarks

The comparison between module-oriented and
object-oriented software development impres-
sively demonstrates the benefits of the object-
oriented paradigm. The key point is that the
object-oriented paradigm (encapsulation,
inheritance, polymorphism and dynamic binding)
encourages the building of extensible systems and
software reuse.

The comparative case study confirms that
concepts introduced by object-oriented
programming languages are quite different from
already existing ones and, furthermore, necessary
in order to improve software quality in general.
Reusability contributes a lot to improve software
quality: Obviously, the quality of reusable
building blocks determines the quality of the
software system which is based on them to a high
degree.

The module-oriented paradigm is not suited to
building software components that are even
remotely as reusable as object-oriented
components. Thus the design and architecure of
existing modules has almost no impact on the
overall quality of new systems.

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 8

UICT’s Prototype Simulation
Component

DICE’s Prototype Simulation
Component

written lines of code 5926 1155

routines/methods 58 81

lines per routine/method 102,2 14,3

Table 4: Comparison of UICT’s and DICE’s prototype simulation components

UICT’s Code Generation
Component

DICE’s Code Generation
Component

written lines of code 7976 1079

routines/methods 96 28

lines per routine/method 83,1 38,5

Table 5: Comparison of UICT’s and DICE’s code generation components

Due to the new dimension of reusability of
object-oriented software, the implementation
effort can be drastically reduced, as the
quantitative comparisons demonstrate.

To sum up, the object-oriented paradigm makes
qualitative and quantitative improvements of
software development possible. Nevertheless,
these improvements do not happen by accident.
As sufficiently known, the object-oriented
programming paradigm requires rethinking of
software development in general. Unfortunately
the programmer is also faced with a lot of
problems during object-oriented system develop-
ment. The following section focuses on
reusability problems that are still inherent in
object-oriented software building blocks.

Reusability Problems of
Object-Oriented Software
Building Blocks
Efficient object-oriented system development
strongly depends on the extensibility and
reusability of available software building blocks.
During the development of DICE we identified
some problems that make the reuse of software
components (though implemented with object-
oriented programming techniques) rather difficult:

Inefficient Reuse

It is often unclear how specific behavior can be
added in an optimal way to predefined software
components:

• by the extension of classes (creating sub-
classes),

• by the implementation of new classes, or

• by using mechanisms (e.g., change propa-
gation as described in [5]) that are supported by
the particular class library/application
framework.

The root of this problem is the high complexity
of class libraries and especially application
frameworks. In order to decide how specific
behavior can best be implemented on the basis of
a class library/application framework, a high
degree of familiarity with the respective class
library/application framework is mandatory. The
user of classes must know exactly which features
the individual classes provide and even sometimes
how the behavior of individual classes is
implemented.

Thus applications based on powerful, complex
class libraries/application frameworks will
sometimes be inefficient: application program-
mers who reuse software components often do not
(and should not) have intimate knowledge about
implementation aspects of particular features
provided by reusable components. Although one
can assume that particular services of software
components rely on efficient implementation
techniques, it is difficult to assess whether certain
combinations are still efficient.

Our experience has shown that application-
specific solutions are often chosen that are too
cumbersome, even after a designer has
accumulated extensive experience with a particular
application framework. For example, in the

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 9

prototype specification component of DICE
ET++’s change propagation mechanism was used
to recompute the layout after making size changes
in user interface elements. After consulting
one of the developers of ET++, it was determined
that recomputation of the layout could be invoked
by directly calling a particular method (at the
right time), which is much more efficient than
using change propagation.

Difficult Maintenance of Reusable
Software Components

If classes are reused in other projects, the need for
more general versions becomes apparent. To
address this issue, Winblad et al. [15] suggest
dividing programmers into two groups: class
programmers and application programmers. Class
programmers are preferably highly qualified
software engineers who develop classes and
enhance them for reusability in future projects.
Application programmers produce applications as
quickly as possible by means of reusable
components and give the class programmers
necessary feedback to make these components
more reusable.

Nevertheless, the evolution of class hierarchies by
the class programmers can also have subtle side
effects. The “advance warning” of application
programmers by class programmers about
changes in reusable software components is
almost impossible since the effects of (even
slight) modifications in class libraries/application
frameworks often cannot be predicted. A report of
all changes is also unpracticable because
application programmers would have to
understand many implementation details in order
to comprehend all changes and their effect on
applications based on these modified classes.

For example, DICE was always ported to more
recent versions of ET++ as soon as these versions
were available in order to profit from
improvements. The migration to more recent
ET++ versions was usually no problem, although
class interfaces often changed radically. The
benefits (unification of concepts in new classes,
better performance, etc.) outweighed the effort (in
average 2-4 person days). But one example
demonstrates that even almost negligible changes
can have enormous effects on applications that are
based on a class library/application framework:
ET++, for example, implements a hook method

virtual bool IsEqual(Object *op);

in class Objec t , the root of ET++’s class
hierarchy. IsEqual is used in several other
classes—especially in collection classes like
SortedObjList and Set—in order to compare two
objects. The implementation of this method in
class Object can only check pointer identity.
Subclasses (e.g., TextItem) have to override this
method accordingly.

All editing operations of DICE’s prototype
specification component are based on pointer
identity of DICEItem instances. (DICEItem is
derived from the ET++ class VisualObject which
is in turn a sublass of ET++’s root class Object.)
Since the desired behavior of IsEqual is already
implemented in Object, it was not necessary to
override this method in DICEItem. After DICE
was ported to an improved version of ET++,
some of the editing functions did not work
properly (user interface elements that were moved
within a window specification editor were
removed together with others, etc.). Only a
careful examination of the source code of ET++’s
collection classes made it obvious that
comparison of objects by means of IsEqual was
wrong: This method of class Object was not
overridden in VisualObject in earlier versions of
ET++. The new ET++ version implements a
method IsEqual in VisualObject. So DICEItem
inherits a behavior of IsEqual from VisualObject
which is different from pointer identity. The
elimination of such errors is easy (in this
example a proper IsEqual method in DICEItem),
but their detection can sometimes mean hard work
that requires knowledge of implementation details
of reusable classes.

Restricted Extensibility of C++
Classes

C++ requires that the programmer explicitly de-
clare methods to be dynamically bound.
Furthermore, instance variables of a class can be
protected so that subclasses have no access to
them. These characteristics of C++ imply that
C++ classes can often only be reused and extended
without problems if the designer has forseen the
wishes of future users. In many cases reuse is
only possible if the source code of the class to be
modified is available. These facts directly
contradict the promises of object-oriented
programming.

Let us illustrate this statement. Class behavior
can be modified by overriding dynamically linked
methods (called hook methods) in subclasses.

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 10

This procedure is possible only at locations where
the class designer provided hooks. Application
frameworks like ET++ in particular provide a
structure in their “empty” application which is to
be extended accordingly for an application that is
based on it. Certain extensions are necessary for
almost every application. These extensions are
prescribed by the framework (by means of hook
methods) and forseen by the designer of the
framework classes. In this case it is easy to reuse
and extend those building blocks. For extensions
that were not foreseen, the source code of the
respective superclass method(s) must be copied
and complemented by the desired statements. This
procedure is only possible if

• the source code of the class to be modified is
available; and

• the instance variables used in the respective
method(s) can be accessed in their subclasses.

Another design principle of application
frameworks restricts its extensibility independent
of the particular implementation language. State-
of-the-art application frameworks usually adhere
to the idea of a narrow inheritance interface [13]:
Behavior that is spread over several methods in a
class should be based on a minimal set of
methods that have to be overridden in subclasses.
Thus a client deriving subclasses from an existing
class has to override just a few methods in order
to adapt its behavior. Not adhering to this narrow
inheritance principle often means that too many
methods have to be overridden, resulting in ugly
and bulky code.

As a consequence modifications not forseen by a
class designer imply a reimplementation of con-
siderable parts of the respective class.

Source Code Required for Mod-
i f icat ions

Experience has proven that almost no software
component is free of errors. This is also true of
components that are intended to be reused. In
order to correct errors or to eliminate restrictions
in the library classes by creating subclasses, the
source code is often necessary to understand class
behavior and to find the methods that have to be
modified.

The comprehension of a class to be modified can
become more difficult due to the fact that objects
often send messages to themselves, which may
cause the execution of methods up and down the
class hierarchy [11].

Conclusion
The comparison of module-oriented and object-
oriented system development demonstrates that
object-oriented programming techniques are
important techniques to produce software compo-
nents that are open for extensions and thus
reusable. Thus software quality can be raised and
the amount of code to be written can be reduced.

However, if one considers application frameworks
as an effort to apply the object-oriented program-
ming paradigm as cleanly as possible, then one
must conclude that this paradigm is not sufficient
for the achievement of systems that are extensi-
ble/reusable without considerable problems. Ex-
tensibility/reusability still has limits that cannot
satisfy a system developer.

References

[1] ANSI and AJPO: Military Standard: Ada
Programming Language; American
National Standards Institute and United
States Government Department of Defense,
Ada Joint Program Office, ANSI/MIL-
STD-1815A-1983, 1983.

[2] Apple Computer: Inside Macintosh, Vol. I-
V; Addison-Wesley, 1985-1988.

[3] Gamma E., Weinand A., Marty R.:
Integration of a Programming Environment
into ET++: A Case Study; Proceedings of
the 1989 ECOOP, July 1989.

[4] Keller R.: Prototyping-Oriented System
Specification—Concepts, Methods, Tools
and Implications (in German); Verlag Dr.
Kovac, 1989.

Object-Oriented Versus Conventional Software Development: A Comparative Case Study 11

[5] Krasner G.E., Pope S.T.: A Cookbook for
Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80; Journal
of Object-Oriented Programming 1, 3
(Aug./Sept. 1988).

[6] NeXT, Inc.: 1.0 Technical Documentation:
Concepts; NeXT, Inc., Redwood City, CA,
1990.

[7] Pomberger G., Bischofberger W.R., Keller
R., Schmidt D.: TOPOS—A Toolset for
Prototyping-oriented Software Develop-
ment; in Actes de la 4ème Conferénce de
Génie Logiciel, AFCET, Paris, Oct. 1988.

[8] Pomberger G., Bischofberger W., Kolb D.,
Pree W., Schlemm H.: Prototyping-
Oriented Software Development, Concepts
and Tools; in Structured Programming
Vol.12, No.1, Springer 1991.

[9] Pree W.: DICE—An Object-Oriented Tool
for Rapid Prototyping; in Proceedings of
Tools Pacific ‘90 (Sydney, Australia,
1990).

[10] Schmucker K.: Object-Oriented Program-
ming for the Macintosh; Hayden,
Hasbrouck Heights, New Jersey, 1986.

[11] Taenzer D., Ganti M., Podar S.: Problems
in Object-Oriented Software Reuse,
Proceedings of the 1989 ECOOP, July
1989.

[12] Weinand A., Gamma E., Marty R.: ET++ -
An Object-Oriented Application Framework
in C++; OOPSLA’88, Special Issue of
SIGPLAN Notices, Vol. 23, No. 11, 1988.

[13] Weinand A., Gamma E., Marty R.: Design
and Implementation of ET++, a Seamless
Object-Oriented Application Framework; in
Structured Programming Vol.10, No.2,
Springer 1989.

[14] Wilson D.A., Rosenstein L.S., Shafer D.:
Programming with MacApp; Addison-
Wesley, 1990.

[15] Winblad A.L., Edwards S.D., King D.R.:
Object-Oriented Software, Addison-Wesley,
1990.

[16] Wirth N.: The Programming Language
Oberon; Software Practice and Experience,
18, 7.

Trademarks:
MacApp is a trademark of Apple Computer
Inc.

App Kit is a trademark of NeXT Inc.

SunWindows and NeWS are trademarks of
Sun Microsystems.

UNIX and C++ are trademarks of AT&T.

