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A b s t r a c t

This paper focuses on object-oriented system
development, presenting insights gained from the object-
oriented design and implementation of a graphic user
interface prototyping tool. The development of this tool
corroborates the cluster model of the software life
cycle—a model that was first described by Meyer
[Meye88, Meye89].

We sketch basic ideas of the cluster model and draw
general statements (e.g., how clusters are formed;
implications on design methods) from the cluster-
oriented design and implementation of a user interface
prototyping tool. Examples substantiate that the
development of object-oriented systems is characterized
best by the cluster model.
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1 In t roduct ion

We presuppose that the reader is familiar with basic
object-oriented concepts (independent of a specific
language): encapsulation, data abstraction, inheritance,
polymorphism and dynamic binding, as well as with
principles of graphic user interface application
frameworks. (Examples of such frameworks are MacApp
[Schm86, Wils90], AppKit [NeXT90] and ET++
[Wein88, Gamm89, Wein89, Gamm90]).

The Dynamic Interface Creation Environment (DICE1 )
[Pree90, Pomb91] supports the graphic specification of
user interface layouts and offers several ways to enhance
their functionality. DICE was realized with the

1 This project was supported by Siemens AG Munich

framework ET++, which was implemented in C++ and
runs under UNIX and either SunWindows, NeWS, or the
X11 window system.

Building DICE on the basis of an application framework
is an approach that is often considered to be optimal for
object-oriented system development. Further facts that
allow the derivation of general implications from the
development of DICE are:

• The project size itself (DICE having been developed
with an effort of about two person years) provides a
sufficient empirical basis for drawing conclusions.

• DICE is a “pure” object-oriented software system
consisting only of classes. DICE makes no use of the
ability to mix conventional routines that are not
members of any class with object-oriented method
calls, a typical feature of a hybrid language like C++ .

• DICE is a “typical” application-framework-based
software system (i.e., the components of the
framework ET++ satisfy the needs of DICE to a high
degree).

2 Basic Concepts of the
Cluster Model

Meyer [Meye89, Meyer90] coined the term “cluster
model” of the software life cycle; a cluster, in this
context, is a group of related classes. The development
of classes belonging to one cluster constitutes one life
cycle. The following changes to the usual software life
cycle become necessary in this model:

• Activities of the software life cycle are not applied to
the system as a whole. (The all-or-nothing approach
considers a system as a monolithic entity.) Instead,
system development is split into several sub-life
cycles overlaping in time.

• The early software life cycle activities (analysis,
specification and (re)design) and implementation are
merged into one activity—a fact that completely
contradicts the usual software life cycle models. The
reason why this is possible and makes sense is
explained in the next chapter.
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• A new activity—called generalization—is introduced
in order to produce reusable software components.

This activity can be merged with the test activity.

Analysis, Specification, (Re)Design,
and Implementation

Test and
Generalization

Cluster 1

Test and
Generalization

Cluster 2

Test and
Generalization

Cluster N

...

Analysis, Specification, (Re)Design,
and Implementation

Analysis, Specification, (Re)Design,
and Implementation

Figure 1: Cluster model of the software life cycle (adapted from [Meye89])

• A new activity—called generalization—is introduced
in order to produce reusable software components.
This activity can be merged with the test activity.

A software life cycle as depicted in Figure 1 results.
Note that the activities analysis, (re)design, specification
and implementation are merged into one activity.

The recommended order of the cluster life cycle is from
the most general clusters (providing some utility
features) to the application-specific ones.

The following case study illustrates that the cluster
model is applicable for the object-oriented development
of whole software systems, especially if these systems
are based on powerful class libraries/application
frameworks.

3 Cluster-Oriented System
Development: A Case Study

This section is divided into two parts: First we draw
general statements from the development of DICE that
confirm the cluster-oriented software life cycle of object-
oriented systems. DICE-specific examples substantiate
these statements and further illustrate the cluster-oriented
development strategy.

3 . 1 Derived Results

We derive the following general results from the
development of DICE:

(1) Clusters are formed in a natural way (either
prescribed by the application framework or by tasks
to be accomplished by the system under
development). These clusters have independent life
cycles, although some classes may be part of
different clusters. This is possible because one
cluster implies only the development of certain
methods of a class. These methods are usually
independent of other features of a class. This fact
implies that the chronological order of particular
sub-life cycles is left to the system developer.

(2) Analysis, specification, design and implementation
activities are merged into one activity if object-

oriented programming techniques are applied in order
to construct a system bottom-up from reusable,
predefined software components:

• Analysis,  specif icat ion, design and
implementation are strongly influenced by
application framework classes.

• Abstract classes are the main reason why design
and implementation activities can be merged: the
methods of the abstract classes are developed
together with the design/implementation of other
classes within a particular cluster. Class design of
one class typically evolves with the
design/implementation of other classes.

(3) Experience gained during the cluster-oriented
development of DICE raises the question whether
analysis and design methods can ever be developed
that adequately support object-oriented system
construction. Many of the “object-oriented”
development methodologies (such as those from
Booch [Booc86, Booc87]) were structured
specifically with Ada in mind [Hend90]. So object-
oriented programming techniques like inheritance
and dynamic binding are not taken into consideration
since Ada is just a module-oriented language. Other
methodologies (like that of Abbott [Abbo83])
neglect both the reusability aspect as well as the fact
that design and implementation phases are merged
by means of abstract classes.

Reusable/extensible classes are not designed a priori.
Design and redesign cycles (including a
generalization activity) are absolutely necessary in
order to yield satisfying solutions for a particular
software system, as well as classes that might be
reusable in other projects. It is questionable whether
the optimum can ever be reached since weaknesses
of classes are only discovered when they are used.

3 . 2 Examples Corroborating
Derived Results

In each case we choose an adequate, but not unique
example from the development of DICE to illustrate
statements made in the previous section. In order make
the examples comprehensible, we have to explain a few



details concerning DICE and the employed application
framework, ET++:

DICE consists of several logical components that are
typical of user interface prototyping tools: Graphic
editors form the prototype specification component. The
internal prototype representation plays an important role
in each user interface prototyping tool. We designed an
abstract class DICEItem (the design process is described
below) that factors out common behavior of user inter-
face elements so that other components of DICE
(simulation and code generation components) can be
based on that class. Instances of a class ProtoInfoItem
represent a DICE-prototype (consisting of several
windows, specific attributes, etc.) as a whole.

The ET++ classes Application, Document, View and
Window implement as far as possible the generic design
(the look and feel) of a graphic user interface built with
ET++. VObject (visual object) is the abstract superclass
for all visual objects that are displayed on the screen. It
factors out high-level algorithms (e.g., methods for
drawing a graphic object on the screen—which are
typically overridden in subclasses) working on any kind
of visually represented object. CompositeVObject
combines an arbitrary number of VObject instances into
a single one. As CompositeVObject is itself a subclass
of VObject, instances of CompositeVObject or VObject
can easily be nested in a tree-like manner.

The general mechanisms of VObject and Composite-
VObject (i.e., event handling and the display or grouping
of visual objects) together with classes Group and
Expander (subclasses of CompositeVObject that care for
the alignment of contained VObject instances) and other
concrete or abstract classes (ActionButton, RadioButton,
ToggleButton, PopupItem, View, etc.) are used to build
every visible component of the user interface with which
the end user interacts by means of the keyboard or
mouse. Another ET++ class Command  supports
undoable commands and feedback for operations like
dragging visual objects.

Example: Splitting DICE’s Principal
Classes into Clusters

This example substantiates result 1 presented in the
previous section: In DICE we discern four principal
development clusters:

• application cluster, consisting of the ET++ classes
Application, Document, and Window, and appropriate
DICE-specific subclasses

• graphic-oriented-editor cluster, consisting of the ET++
classes View  and Command  as well as of class
DICEItem with all its subclasses

• simulation cluster, consisting of DICEItem and
ProtoInfoItem

• code generation cluster, consisting of DICEItem and
ProtoInfoItem

The application and graphic-oriented-editor clusters are
prescribed by the application framework ET++. The
simulation and code generation clusters result from
DICE-specific tasks (prototype simulation and C++ code
generation) as well as from the design decision to unify
methods for these tasks in a class DICEItem.

The clusters sketched above have independent life cycles,
although the classes DICEItem and ProtoInfoItem are
part of different clusters. This is possible because the
methods accomplishing the simulation in DICEItem and
ProtoInfoItem are independent of methods for code
generation, which are also implemented in these classes.

Example: Merging Specification, Design
and Implementation Activities

The following example illustrates the influence of
abstract classes on the software life cycle activities (see
result 2 in the previous section).

DICE, for instance, needs a simulation component in
order to transform the specification of a prototype into
an operational one. Among other tasks the simulation
component has to open windows according to the
specified windows of a particular prototype. The only
thing that cannot be implemented in the simulation
component is the window contents to be displayed in
these windows. Thus a method

           virtual VObject *AsSimulationPart();

is defined in a class DICEItem for this purpose. The
functionality of AsSimulationPart is simply to generate a
copy of the particular user interface element and return a
pointer to this cloned object. So the simulation
component can be based on this method.

The implementation of AsSimulationPart is very simple
and prescribed by ET++ because ET++ provides a
DeepClone method in its root class Object. This method
returns an exact copy (objects referenced by instance
variables being copied, too) of an arbitrarily complex
object. Thus the method AsSimulationPart can already be
implemented in DICEItem. Only a few subclasses (e.g.,
those which represent view objects) override this method
in order to make additional initializations. This is why
AsSimulationPart is a dynamically bound method (virtual
declaration).

The simulation component therefore constitutes a
framework based on the abstract class DICEItem. The
methods of D I C E I t e m  (in this example only
AsSimulationPart) and of the class(es) realizing the
prototype simulation evolve together.

The implementation of the appropriate methods in
subclasses of DICEItem may also overlap with the
design and implementation of the simulation
component, which can already be tested, regardless of
whether corresponding abstract methods of DICEItem are
overridden in subclasses.



Example: (Re)Design and Generalization
of Abstract Classes

We discuss this comprehensive example in detail in order
to illustrate the cluster-oriented design and development
of the abstract class DICEItem. This class plays a central
role in three principal development clusters of DICE
(i.e., the graphic-oriented-editor cluster, the simulation
cluster, and the code generation cluster). The difficulties
in the design of DICEItem also corroborate result 3 in
the previous section.

Class Name

instance variables

methods

Figure 2: Graphic representation of a class

Figure 2 shows a general scheme of how classes are
depicted. For each class the class name, then the relevant
instance variables (variable name and type), and finally
the definition of relevant methods (i.e., method name and
parameters) are given in separate boxes. Depicted
instance variables are assumed to be protected in  the
sense of C++, i.e. accessible only in methods of the
particular class and its subclasses. Methods are supposed
to be public, i.e., accessible from the whole system.

Initial Design of Classes Representing User Interface
Elements

Our primary design goal is to define an abstract class
that factors out common behavior of user interface
elements so that classes implementing graphic-oriented-
editor components as well as classes which initiate
simulation and code generation of the particular
prototype, can be based on such an abstract class.

We not only need an abstract class that factors out
common behavior of user interface elements; because of
the editing requirements placed on DICE’s prototype
window editor (recursive nesting of VObject instances in
Group and Expander objects, editing operations like
moving user interface elements within such a tree of user
interface elements, etc.), extensions of ET++ classes
become necessary, too:

(1) The ET++ classes Group and Expander only provide
a method Add that puts a VObject instance as the
last element in the group of VObject instances. Due
to the required editing operations of DICE’s window
editor, additional methods are necessary: Insert-
Before, which inserts a VObject instance before a
VObject instance that is already contained in the
group of the particular Group or Expander object,
and Remove to remove a VObject instance from the
group of VObject instances.

(2) Objects that are stored in a Group or Expander
object of a window editor also have to manage their
parent information in order to make, for instance,
undoable editing operations possible; i.e., objects

representing user interface elements must know
which Group or Expander object is their parent.

In order to extend the classes Group and Expander, we
simply built subclasses of these classes (EditGroup and
EditExpander) and added methods as described in (1).

All classes that implement user interface elements in
ET++ are subclasses of VObject. Thus class VObject
has to be modified to manage parent information: a new
instance variable that points to the parent of the
respective VObject  instance as well as methods
SetParent and GetParent to manage this instance
variable fulfill the requirements discussed in (2). Such a
change in the framework class VObject would be
possible (the source code of ET++ is available in the
public domain) and the easiest way to add parent
information for all subclasses of VObject. Since one of
our basic premises was not to change the application
framework itself, we refrained from such a modification.
This restriction allows us to test the suitability of the
object-oriented approach to the extension and
modification of given software building blocks.
Available object-oriented programming techniques offer
two possibilities to extend class VObject without
changing its source code:

• One possibility is to use single inheritance by
applying the wrapping concept: In order to add
instance variables/methods to a class (let us take
VObject, for example) and its subclasses, we have to
build a subclass—e.g., V O b j e c t N o d e  in our
example—of the respective class. VObjectNode has at
least one instance variable (let us call it
wrappedObject) that points to an instance of any
subclass of VObject; i.e., wrappedObject is of type
“pointer to VObject” and points to an arbitrary
VObject instance generated from one of VObject’s
subclasses. Thus VObjectNode “wraps” a VObject
instance by means of its instance variable wrapped-
Object. VObjectNode redirects all dynamically bound
methods of VObject to wrappedObject and adds
instance variables and methods that are necessary to
manage parent information. Thus instances of
VObjectNode unify the behavior of the wrapped
object and the additional behavior (managing parent
information) implemented in VObjectNode itself.

Figure 3 sketches class VObjectNode using the
general scheme presented in Figure 2. The arrow
denotes that VObjectNode is a subclass of VObject
(thus we let the class tree “grow” from the top down).
Note that VObject * means “pointer to an object of
dynamic type VObject”.

• Using multiple inheritance would imply a class
hierarchy as depicted in Figure 4. Wrapping a VObject
instance and redirecting dynamically bound methods to
the wrapped object become superfluous. Instead of
wrapping VObjectNode instances, we have to build a
new subclass that inherits from  VObjectNode and the
particular VObject subclass to which the behavior of



VObjectNode should be added. Class NodeTextItem in
Figure 4, for instance, inherits from class
VObjectNode and TextItem, so that instances of
NodeTextItem unify the behavior implemented in
both classes.

VObject

VObjectNode

VObject *parent;
VObject *wrappedObject;

void SetParent(VObject *p);
VObject *GetParent();

// methods redirected
// to wrappedObject

Figure 3: Class VObjectNode

The version of ET++ that was used is incompatible
with multiple inheritance (e.g., collection classes
cannot be used to store objects which are generated
from classes that are derived from more than one base
class). Furthermore, the author is convinced that
single inheritance produces cleaner class hierarchies.
For instance, if multiple inheritance is used as
depicted in Figure 4, the class designer has to decide
(in case of using C++) if the replicated behavior of
VObject in class NodeTextItem (behavior from
VObject is inherited from VObjectNode and TextItem)
is actually stored once or twice. Furthermore, ambigu-
ous access to base class members must be resolved by
qualifying names with the proper class name. (E.g.,
dynamically bound methods inherited from VObject
are ambiguous in NodeText I tem . So all these
methods must be overridden in NodeTextItem in order
to express explicitly whether the corresponding
methods of either TextItem or VObjectNode are to be
called.) If these drawbacks of multiple inheritance are
taken into consideration, the solution with single
inheritance is to be preferred, and not just because
ET++ is incompatible with multiple inheritance.
Thus the further design of the DICE-specific class
hierarchy is exclusively based on the solution with
single inheritance.

NodeTextItem

TextItem

VObject

VObjectNode

VObject *parent;
VObject *wrappedObject;

void SetParent(VObject *p);
VObject *GetParent();

Figure 4: Adding parent information to VObject 
subclasses with multiple inheritance

The data structure of user interface elements shown in a
prototype window editor results from a combination of
VObjectNode and EditExpander or of VObjectNode and
EditGroup: A prototype window edited consequently
contains a group of VObjectNode instances stored in an
EditExpander or EditGroup instance. An EditExpander
or EditGroup instance is itself wrapped by a VObject-
Node instance. Figure 5 outlines this data structure.

Thus a VObjectNode instance always wraps an object
that is created from a subclass of VObject. Figure 6
depicts the structure of one VObjectNode.

VObjectNode
instance wrappedObject

Button

Figure 6: Data structure of one VObjectNode

Next we discuss a design decision that turned out to be
wrong. Unfortunatley, we lacked sufficient experience
during the design process to choose a better solution a
priori, a situation that is typical in the design of classes.

Let us first sketch the reason for our wrong design: Up
to now we had designed classes (EditExpander ,
EditGroup , and VObjectNode) that implemented
behavior described in (1) and (2) at the beginning of this
example, i.e., classes that help to implement editing
functions. What we still needed to design was an abstract
class that factors out common behavior of user interface
elements. Let us call this class DICEItem. All user
interface elements supported by DICE had to be
subclasses of DICEItem and override the proper element-
specific methods.

As a consequence, VObjectNode instances should not
wrap arbitrary VObject instances, but only DICEItem
objects. Thus the type of wrappedObject has to be
DICEItem * instead of VObject *. The resulting class
hierarchy is depicted in Figure 7.

Redesign of the Class Hierarchy

Only with the use of these classes in the graphic-
oriented-editor, simulation and code generation clusters
and by considering the resulting complex data structure
of user interface elements (double encapsulation per user
interface element—see Figure 8) did it become clear that
the classes VObjectNode and DICEItem could be merged
into one class: DICEItem  can also implement the
behavior of VObjectNode (i.e., instance variables parent
and wrappedObject as well as the methods SetParent,
GetParent, and all dynamically bound methods of
VObject that must be redirected to wrappedObject).
Thus the class VObjectNode becomes superfluous. The
instance variable wrappedObject in this modified class
DICEItem is again of type VObject *.

The unification of VObjectNode and DICEItem to the
class DICEItem implies a data structure of user interface



elements that is again as simple as depicted in Figures 5
and 6. The only difference is that objects are not of type
VObjectNode, but of type DICEItem. The depicted

objects (static text, action buttons, and labeled buttons)
are instances of subclasses of DICEItem  (DICETextItem,

EditGroup / EditExpander
instances

VObjectNode
instances

Static Text

Button

Radio Button

Radio Button

Button

Figure 5: Data structure of user interface elements

DICEActionButton, DICELabeledButton) and thus also
have the type DICEItem due to polymorphism.

Generalization Activity

DICEItem itself will not be reusable in other applica-
tions since it implements an abstract protocol that is
specific for requirements of the user interface prototyping
tool DICE (e.g., simulation and code generation). Thus a
generalization activity is missing in one of the clusters
DICEItem is part of: DICEItem, for example, could be
split into two classes (e.g., VObjectNode and DICE-
Item). These classes should not be siblings in the class
hierarchy (as depicted in Figure 7), but DICEItem should
inherit from VObjectNode.   VObjectNode just manages

VObject

DICEItem

// no additional instance var.

// dynamically bound methods
// for attribute definition, sim-
// ulation and code generation

DICETextItem

TextItem *ti;

// element-specific methods
// for attribute definition, sim-
// ulation and code generation

...

VObjectNode

VObject *parent;
DICEItem *wrappedObject;

void SetParent(VObject *p);
VObject *GetParent();

// methods redirected
// to wrappedObject

DICEEditExpander

EditExpander *ee;

// element-specific methods
// for attribute definition, sim-
// ulation and code generation

Figure 7: Extended class hierarchy

parent information for a VObject  instance. Since
DICEItem  needs this behavior, it inherits it from
VObjectNode. DICEItem implements only DICE-
specific bahavior (simulation, code generation, etc.).
This redesign factors out general, (re)usable behavior
from the former class D I C E I t e m  into a class
VOb jec tNode , which will be reusable in other
applications that need parent information for VObject
instances.

This detailed example was presented in order to discuss
some aspects of class design in a cluster-oriented



software life cycle: initial design, redesign and
generalization of DICEItem have been sketched. The
described design/redesign cycles of DICEItem also
illustrate that reusable/ extensible classes are not
designed a priori.

Button

VObjectNode
instance wrappedObject

Figure 8: Double encapsulation per user interface element

4 Summarizing Remarks

To sum up, the development of DICE is characterized
best by a cluster-oriented life cycle: Classes belonging to
a cluster are refined, the refinement of different clusters
overlaps, and the system grows step by step to the final
application. The presented examples give a glimpse of
how object-oriented software systems are developed based
on the cluster model of the software life cycle.
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