
Reusability Problems of Object-
Oriented Software Building

Blocks
Wolfgang Pree

Institut für Wirtschaftsinformatik, University of Linz, Altenbergerstr. 69, A-4040 LINZ, Austria
Tel.: ++43-732-2468-9433; Fax: ++43-732-2468-9430

E-mail: pree@swe.uni-linz.ac.at

Abs t rac t
Object-oriented programming is a new glimmer
of hope on the horizon to allow the production of
reusable software components and thus to over-
come the software crisis [McIl76]. The reusability
aspect of software systems is viewed to be crucial
since many software quality attributes depend on
reusability (e.g. correctness, reliability, maintain-
ability, efficiency).

There is no doubt that the object-oriented
paradigm (encapsulation, inheritance, polymor-
phism and dynamic binding) encourages the
building of extensible systems and software reuse.
Nevertheless, the desired reusability of software
components often cannot be achieved even by
using state-of-the-art class libraries/application
frameworks or object-oriented programming in
general. Based on a large-scale project (object-
oriented implementation of a graphic user inter-
face prototyping tool) we identified some prob-
lems that arise in reusing object-oriented software
building blocks. This paper explains the concepts
of object-oriented software building blocks and
discusses the most striking reusability problems
of such components.

Keywords:
reusability, efficiency, maintenance, object-
oriented programming, class libraries, application
frameworks, C++

In t roduct ion
We presuppose that the reader is familiar with
basic object-oriented concepts (independent of a
specific language): encapsulation, data abstrac-
tion, inheritance, polymorphism and dynamic
binding. Application frameworks like MacApp
[Schm86, Wils90], AppKit [NeXT90] and ET++
[Wein88, Gamm89, Wein89] apply these con-
cepts in order to provide reusable object-oriented
software building blocks. These frameworks were
developed for the implementation of graphic user
interfaces and gave rise to great hopes that the
object-oriented concepts would make possible to
rationalize software development in general.

We implemented DICE1 [Pree90, Pomb91]
(Dynamic Interface Creation Environment, a tool
that supports the graphic specification of user
interface layout and that offers several ways to
enhance its functionality) with the framework
ET++. DICE extends ET++ in the direction of
prototyping. ET++—a framework implemented
in C++ that runs under UNIX and either
SunWindows, NeWS, or the X11 window
system—was chosen especially for the following
reason: Compared to other available application
frameworks, ET++ was the cleanest object-
oriented implementation based on a small set of
basic mechanisms. The design and implementa-
tion of ET++ is described in detail in [Wein89].

Taking an application framework as the basis of
DICE can be seen as a constellation that is often
considered to be optimal for object-oriented
system development. Further facts that allow the

1 This project was supported by Siemens AG Munich

W. Pree: Reusability Problems of Object-Oriented Software Building Blocks

OvalShape

Draw

OvalShape

RectShape

Legend: Class

Method

Draw

RectShape

Shape

Shape

Draw

Figure 1: Code factoring

derivation of general implications (like reusability
problems of object-oriented software building
blocks) from the development of DICE are:

• The project size itself (DICE having been
developed with an effort of about two person
years) provides a sufficient empirical basis for
drawing conclusions.

• DICE is a “pure” object-oriented software
system consisting only of classes. A typical
feature of a hybrid language like C++ is not
used, namely the ability to mix conventional
routines that are not members of any class
with object-oriented method calls.

• DICE is a “typical” application-framework-
based software system (i.e., its structure—the
application model—as well as components
defined in ET++ satisfy the needs of DICE to a
high degree).

We first discuss concepts of object-oriented soft-
ware building blocks (=class libraries) before
defining the term application framework. This ex-
planation is a precondition for the understanding
of reusability problems that are still inherent in
object-oriented software.

Concepts of Object-
Oriented Software
Building Blocks
Compared to conventional routine libraries, class
libraries are hierarchical with the most general
class at the top of the hierarchy tree (if single
inheritance is used). This hierarchical organization
helps to reduce the complexity of a library. An
important principle behind the design of a class
hierarchy is that the common behavior of classes
is factored out into their superclasses. For

example, classes implementing various graphic
objects (e.g., the classes RectShape and Oval-
Shape) will all have—among other common-
alities—a method Draw(). As shown in Figure 1,
commonalities can be factored out into a super-
class Shape.

Although the method Draw() cannot be imple-
mented in class Shape, its name and parameters
are standardized (because of the inheritance
mechanism of object-oriented languages) for all
subclasses of Shape. For instance, a comment
accompanying this method describes what
behavior is expected from it.

Classes which factor out common behavior of
other classes typically contain some methods that
cannot be implemented. Any class that contains
one or more “empty” methods (i.e., methods with
some kind of dummy implementation) is termed
abstract class. It doesn’t make sense to generate
instances of them. Nevertheless abstract classes
may also contain methods that can already be
implemented in advance for all subclasses.
Abstract classes form the basis of extensible and
reusable software systems:

Extens ib i l i t y

Sometimes it is possible to realize even whole
software systems using only the methods of
abstract classes. If subclasses of abstract classes
are added to the class library, these software
systems need not be changed. They also work
with the new components, since objects that are
instances of subclasses of the abstract classes (on
which other software systems are based) have at
least all the methods (though implemented in a
specific manner) defined in their (abstract)
superclasses. The methods of abstract classes are
dynamically bound, so that the corresponding

W. Pree: Reusability Problems of Object-Oriented Software Building Blocks

method A

method B

method C

class P

class ExtendedP

dynamically bound
hook methods

method calls

method B

method C

Figure 2: Concept of extensible classes

methods of the objects which are instances of the
new classes are called at run time.

Figure 2 shows an example of an extensible class
P which has the three methods A, B and C. The
methods B and C are application-specific and
cannot be implemented in the abstract class P
(only their interface is specified). These dynam-
ically bound methods are called in method A. In
order to add specific behavior to class P , a
subclass (for instance, ExtendedP in Figure 2)
must be defined which implements the hook
methods accordingly. The point is that software
systems which are based on objects of type P still
work if objects of type ExtendedP are supplied,
since subclasses are compatible to their super-
classes. Due to dynamic binding, the method calls
depend on the object’s run time type.

Reusabi l i ty

New subclasses can reuse all the code that was
already implemented in their superclasses. Class
libraries are called application frameworks if they
apply the ideas presented above in order to provide
a software system which is a generic application
for a specific domain. Applications based on such
an application framework are built by customiz-
ing its abstract and concrete classes. Thus a given
framework already anticipates much of an
application’s design which is reused in all ap-
plications based on the classes of that application

framework. User interface application frame-
works, for example, provide a reusable, blank
application that implements much of a given user
interface look-and-feel standard.

Frameworks are not limited to the construction of
interactive, graphic-oriented user interfaces, but
can be applied to any area of software systems.
Examples are frameworks for VLSI routing
algorithms [Goss89] and for controlling real-time
psychophysiology experiments [Foot88]. Never-
theless almost all of the publicized frameworks
focus on graphic user interfaces. User interface
frameworks are domain-independent, are useful to
most programmers, and correspond to a traditional
computer science area of specialization. They are
one of the main reasons why object-oriented
programming enjoys such a good reputation for
promoting extensibility and reuse.

Weinand [Wein89] states that frameworks are
especially attractive if a standard user interface
should be encouraged, for it is possible to com-
pletely define the components that implement
this standard and to provide these reusable
components as building blocks to other devel-
opers. This is an advantage over the (conven-
tional) toolkit approach where most user interface
look-and-feel standards are explained textually
rather than “wired” into the software. A user inter-
face application framework defines much of an
application’s standard user interface, behavior, and

W. Pree: Reusability Problems of Object-Oriented Software Building Blocks

operating environment, so that the programmer
can concentrate on implementing the application-
specific parts.

Reusability Problems
DICE is based on the application framework
ET++. During the development of DICE we
identified some problems that make the reuse of
software components (though implemented with
object-oriented programming techniques) rather
difficult:

Inefficient Reuse

It is often unclear how specific behavior can be
added to predefined software components:

• by the extension of classes (creating sub-
classes),

• by the implementation of new classes, or

• by using mechanisms (e.g., change propa-
gation as described in [Kras88]) that are sup-
ported by the particular class library/applica-
tion framework.

The root of this problem is the high complexity
of class libraries and especially application frame-
works. In order to decide how specific behavior
can best be implemented on the basis of a class
library/application framework, a high degree of
familiarity with the respective class library/ap-
plication framework is mandatory. The user of
classes must know exactly which features the
individual classes provide and even sometimes
how the behavior of individual classes is
implemented.

Thus applications based on powerful, complex
class libraries/application frameworks will some-
times be inefficient: application programmers
who reuse software components often do not (and
should not) have intimate knowledge about
implementation aspects of particular features
provided by reusable components. Although one
can assume that particular services of software
components rely on efficient implementation
techniques, it is difficult to assess whether certain
combinations are still efficient.

Our experience has shown that application-
specific solutions are often chosen that are too
cumbersome, even after a designer has
accumulated extensive experience with a particular
application framework. For example, in DICE’s
window specification editor ET++’s change
propagation mechanism was used to recompute

the layout after making size changes in user
interface elements. After consulting one of the
developers of ET++, it was determined that
recomputation of the layout could be invoked by
directly calling a particular method (at the right
time), which is much more efficient than using
change propagation.

Difficult Maintenance of Reusable
Software Components

If classes are reused in other projects, the need for
more general versions becomes apparent. To
address this issue, Winblad et al. [Winb90]
suggest dividing programmers into two groups:
class programmers and application programmers.
Class programmers are preferably highly qualified
software engineers who develop classes and
enhance them for reusability in future projects.
Application programmers produce applications as
quickly as possible by means of reusable
components and give the class programmers
necessary feedback to make these components
more reusable.

Nevertheless, the evolution of class hierarchies by
the class programmers can also have subtle side
effects. The “advance warning” of application
programmers by class programmers about
changes in reusable software components is
almost impossible since the effects of (even
slight) modifications in class libraries/application
frameworks often cannot be predicted. A report of
all changes is also unpracticable because
application programmers would have to under-
stand many implementation details in order to
comprehend all changes and their effect on
applications based on these modified classes.

For example, DICE was always ported to more
recent versions of ET++ as soon as these versions
were available in order to profit from
improvements. The migration to more recent
ET++ versions was usually no problem, although
class interfaces often changed radically. The
benefits (unification of concepts in new classes,
better performance, etc.) outweighed the effort (in
average 1-2 person days). But one example
demonstrates that even almost negligible changes
can have enormous effects on applications that are
based on a class library/application framework:
ET++, for example, implements a hook method

virtual bool IsEqual(Object *op);

in class Object, the root of ET++’s class hierar-
chy. IsEqual is used in several other classes—

W. Pree: Reusability Problems of Object-Oriented Software Building Blocks

especially in collection classes like SortedObjList
and Set—in order to compare two objects. The
implementation of this method in class Object
can only check pointer identity. Subclasses (e.g.,
T e x t I t e m) have to override this method
accordingly.

All editing operations of DICE’s window
specification editor are based on pointer identity
of DICEItem instances. (DICEItem is the abstract
superclass of all classes that implement concrete
user interface elements supported by DICE.
DICEItem is derived from the ET++ class Visual-
Object which is in turn a sublass of ET++’s root
class Object.) Since the desired behavior of
IsEqual is already implemented in Object, it was
not necessary to override this method in DICE-
Item. After DICE was ported to an improved
version of ET++, some of the editing functions
did not work properly (user interface elements that
were moved within a window specification editor
were removed together with others, etc.). Only a
careful examination of the source code of ET++’s
collection classes made it obvious that
comparison of objects by means of IsEqual was
wrong: This method of class Object was not
overridden in VisualObject in earlier versions of
ET++. The new ET++ version implements a
method IsEqual in VisualObject. So DICEItem
inherits a behavior of IsEqual from VisualObject
which is different from pointer identity. The
elimination of such errors is easy (in this
example a proper IsEqual method in DICEItem),
but their detection can sometimes mean hard work
that requires knowledge of implementation details
of reusable classes.

Restricted Extensibility of C++

Classes

C++ requires that the programmer explicitly de-
clare methods to be dynamically bound.
Furthermore, instance variables of a class can be
protected so that subclasses have no access to
them. These characteristics of C++ imply that
C++ classes can often only be reused and extended
without problems if the designer has forseen the
wishes of future users. In many cases reuse is
only possible if the source code of the class to be
modified is available. These facts directly
contradict the promises of object-oriented
programming.

Let us illustrate this statement. Class behavior
can be modified by overriding dynamically linked

methods (called hook methods) in subclasses.
This procedure is possible only at locations where
the class designer provided hooks. Application
frameworks like ET++ in particular provide a
structure in their “empty” application which is to
be extended accordingly for an application that is
based on it. Certain extensions are necessary for
almost every application. These extensions are
prescribed by the framework (by means of hook
methods) and forseen by the designer of the
framework classes. In this case it is easy to reuse
and extend those building blocks. For extensions
that were not foreseen, the source code of the
respective superclass method(s) must be copied
and complemented by the desired statements. This
procedure is only possible if

• the source code of the class to be modified is
available; and

• the instance variables used in the respective
method(s) can be accessed in their subclasses.

Another design principle of application
frameworks restricts its extensibility independent
of the particular implementation language. State-
of-the-art application frameworks usually adhere
to the idea of a narrow inheritance interface
[Wein89]: Behavior that is spread over several
methods in a class should be based on a minimal
set of methods that have to be overridden in
subclasses. Thus a client deriving subclasses from
an existing class has to override just a few
methods in order to adapt its behavior. Not
adhering to this narrow inheritance principle often
means that too many methods have to be
overridden, resulting in ugly and bulky code.

As a consequence modifications not forseen by a
class designer imply a reimplementation of con-
siderable parts of the respective class.

Source Code Required for Mod-

i f icat ions

Experience has proven that almost no software
component is free of errors. This is also true of
components that are intended to be reused. In
order to correct errors or to eliminate restrictions
in the library classes by creating subclasses, the
source code is often necessary to understand class
behavior and to find the methods that have to be
modified.

The comprehension of a class to be modified can
become more difficult due to the fact that objects
often send messages to themselves, which may

W. Pree: Reusability Problems of Object-Oriented Software Building Blocks

cause the execution of methods up and down the
class hierarchy [Taen89].

Conclusion

If one considers application frameworks as an
effort to apply the object-oriented programming
paradigm as cleanly as possible, then one must

conclude that this paradigm is not sufficient for
the achievement of systems that are extensible/
reusable without considerable problems. Extensi-
bility/reusability still has limits that cannot
satisfy a system developer.

References
[Foot88] Foote B.: Designing to Facilitate

Change with Object-Oriented
Frameworks; master thesis, Univer-
sity of Illinois at Urbana-Champaign,
1988.

[Gamm89] Gamma E., Weinand A., Marty R.:
Integration of a Programming Envi-
ronment into ET++: A Case Study;
Proceedings of the 1989 ECOOP,
July 1989.

[Goss89] Gossain S., Anderson D.B.:
Designing a Class Hierarchy for
Domain Representation and Reusabil-
ity; Proceedings of Tools ‘89 (Paris,
France, 1989).

[Kras88] Krasner G.E., Pope S.T.: A
Cookbook for Using the Model-
View-Controller User Interface
Paradigm in Smalltalk-80; Journal of
Object-Oriented Programming 1, 3
(Aug./Sept. 1988).

[McIl76] McIlroy M.D.: Mass-produced Soft-
ware Components; in “Software
Engineering Concepts and Tech-
niques” (1968 North Atlantic Treaty
Organization (NATO) Conference on
Software Engineering), eds. Buxton
J.M., Naur P., and Randell B., 1976.

[NeXT90] NeXT, Inc.: 1.0 Technical Documen-
tation: Concepts; NeXT, Inc., Red-
wood City, CA, 1990.

[Pomb91] Pomberger G., Bischofberger W.,
Kolb D., Pree W., Schlemm H.:
Prototyping-Oriented Software Devel-
opment, Concepts and Tools; in
Structured Programming Vol.12,
No.1, Springer 1991.

[Pree90] Pree W.: DICE—An Object-Oriented
Tool for Rapid Prototyping; in
Proceedings of Tools ‘90 (Sydney,
Australia, 1990).

[Schm86] Schmucker K.: Object-Oriented
Programming for the Macintosh;
Hayden, Hasbrouck Heights, New
Jersey, 1986.

[Taen89] Taenzer D., Ganti M., Podar S.:
Problems in Object-Oriented Soft-
ware Reuse, Proceedings of the 1989
ECOOP, July 1989.

[Wein88] Weinand A., Gamma E., Marty R.:
ET++ - An Object-Oriented Appli-
cation Framework in C++;
OOPSLA’88, Special Issue of
SIGPLAN Notices, Vol. 23, No. 11,
1988.

[Wein89] Weinand A., Gamma E., Marty R.:
Design and Implementation of ET++,
a Seamless Object-Oriented Applica-
tion Framework; in Structured Pro-
gramming Vol.10, No.2, Springer
1989.

[Wils90] Wilson D.A., Rosenstein L.S.,
Shafer D.: Programming with
MacApp; Addison-Wesley, 1990.

[Winb90] Winblad A.L., Edwards S.D., King
D.R.: Object-Oriented Software,
Addison-Wesley, 1990.

Trademarks:
MacApp is a trademark of Apple
Computer Inc.

W. Pree: Reusability Problems of Object-Oriented Software Building Blocks

App Kit is a trademark of NeXT Inc.

SunWindows and NeWS are trade-
marks of Sun Microsystems.

UNIX and C++ are trademarks of
AT&T.

