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Abs t rac t
This paper deals with human-computer interaction in several ways. On the one hand it presents the
roots of interactive, graphic user interfaces and how such interfaces are implemented on the
abstraction level of programming languages: The construction of graphic, direct-manipulation
interfaces with conventional programming techniques is compared with an object-oriented
approach based on powerful class libraries (called user interface application frameworks).

Although application frameworks substantially ease the building of highly interactive applications
the abstraction level is considered to be too low to support prototyping such interfaces in a
comfortable way. Hence we portray DICE1 (Dynamic Interface Creation Environment), a tool for
prototyping graphic user interfaces implemented itself in an object-oriented manner. In particular
this paper discusses the question of how dynamic behavior can be added to a user interface proto-
type. It  also presents a useful and powerful way to combine conventionally developed and object-
oriented software systems.
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1 Graphic User Interfaces—Typical Object-Oriented
Systems

Object-oriented programming is defined in [Knu90] as follows: “A program execution is
regarded as a physical model, simulating the behavior of either a real or imaginary part of the
world. Instead of describing a part of the world by means of mathematical equations or other
abstraction mechanisms, a physical model is literally constructed. Objects are just the
computerized material, used to construct the computer based physical model”. This view of
programming was supported for the first time by Simula-67, a simulation language, which was
restricted to a narrow range of application (i.e., mere simulation of real parts of the world).
Simula-67 was initially described in [Dah70]. [Nyg81] gives a survey of Simula’s history.

Imaginary things (like the computer “desktop”, which mimics a real desktop but does not map
to the physical world) were first modelled in an object-oriented manner by a research group at
the Xerox PARC (Palo Alto Research Center), which started to investigate effective

1 This project was supported by Siemens AG Munich



human/computer interaction in the early seventies. They tried to find concrete metaphors—
imaginary things which give the user a certain illusion—from the real world, so that users
would have a set of expectations to apply to computer environments. Smalltalk-80 [Gol84,
Gol85]—an object-oriented programming language together with a convenient environment—
was developed in order to realize these concepts. Smalltalk as programming language has
served as a model for object-oriented extensions of existing languages and the definition of new
languages. Smalltalk’s interactive programming environment provided the foundation for
window-based graphic user interfaces. This kind of user interface is often called an object-
oriented user interface since its elements are metaphors of real world objects. PARC, for
instance, supplied the first explicit expression of the computer desktop. Icons, typically
representing familiar objects, appeared on the computer desktop to provide direct and visible
access to files, operations and so on.

It appears that object-oriented programming techniques have drastically reduced the effort of
programming such user interfaces. The class libraries developed for that purpose together with
their underlying concepts gave rise to great hopes that these ideas would make it possible to
rationalize software development in general. The subsequent chapter compares conventional
implementation techniques based on procedural programming languages with the object-
oriented way of programming such user interfaces.

2 “Low-Level” Implementation Techniques
Applications with an object-oriented graphic user interface do not carry out a sequence of steps
in a predetermined order. They are driven primarily by unpredictable events (e.g., moving and
clicking the mouse, typing). Thus the central activity of an application with an object-oriented
user interface is to constantly look for input events (mouse actions, keystrokes) that occur in
any order. This application structure is often called an event loop. The application is event-
driven: input events are accepted asynchronously from different devices and gathered in an
event queue. As long as the application is running, events from that queue are read and
processed in a specific way. This approach contrasts with programs that systematically limit the
alternatives available to the user. It allows the user the widest possible range of activities (this
characteristic is often called “modelessness”), since the emphasis is on responding to each local
request the user makes. Possible implementation techniques of the event loop are discussed in
the subsequent sections.

2 . 1 Conventional Solutions

We speak of “conventional solutions”, since they rely on routine libraries which are
implemented in conventional programming languages, i.e., languages which are based on the
concepts of procedures and (eventually) modules, but which do not support the basic object-
oriented concepts: class hierarchies, encapsulation, data abstraction, inheritance, polymorphism
and dynamic binding.

Toolboxes: Simple Routine Libraries

Simple routine libraries which support the programming of object-oriented interfaces implement
the low-level components of the user interface like windows and menus. The programmer has
to implement the event loop (i.e., the whole application structure) himself. The library just
supports the programmer providing a set of routines that every application calls to implement
the common behavior (see Figure 1). Such routine libraries are often called toolboxes. Since the
terms are not yet standardized, we define a routine library to be a toolbox if it has the following
properties:



(1) It serves for the construction of graphic user interfaces.
(2) The functions of the toolbox are grouped in several parts which are related to the objects

of the user interface they help to implement.
(3) The routines, although they might be quite powerful, do not provide any application

structure.
The major drawback of a toolbox is described above in (3). Hence, the application structure is
often given as a program skeleton which can be copied and modified to fit the specific
application’s requirements. This is not an optimal solution, of course, since code is always
duplicated—a fact that indicates that this code should go into the library. Furthermore the
programmer has to determine the order of routine calls, which allows a great deal of flexibility.
But this flexibility is not desirable, because it increases the overall complexity and prevents
from “wiring” standards of the user interface into the toolbox. This is why “look-and-feel” stan-
dards of the user interface have to be explained textually. Examples of toolboxes are the
Macintosh Toolbox [App85], and the X-Window System [Rao87].

application

library routines

Figure 1. Use of a simple routine library

Toolkits: Routine Libraries Based on the “Hollywood Principle”

A first step to reduce the programming effort  of graphic user interfaces with conventional
libraries is the so-called Hollywood Principle: “Don’t call us, we’ll call you”. Let us illustrate
this principle by taking the typical event loop of applications with an interactive, graphic
interface as an example: The whole event loop including the initializations could go into a library
if the application-specific parts could be added later. This is possible if such a more powerful
library routine calls routines the application programmer provides. This is why the principle
used in such libraries is called Hollywood Principle or Callback Style of Programming. The
difference to the toolbox approach is illustrated in Figure 2. The main control loop resides in the
library routines, not in the application. The library routines read events and call out to various
procedures which the application has previously registered with the library routines. Libraries
which have the properties (1) and (2) of a toolbox as described above, but rely on this style of
programming are often called toolkits. The advantage of this callback style of programming is
that it takes over the burden of managing a complex, event-driven environment.

application

library routines

Figure 2. Callback style of programming (= Hollywood Principle)

The striking drawback of toolkits is their  lack of fexibility and extensibility, since functionality
can only be added where the developer of toolkit parts provides that possibility. In other words,
there are only certain spots in toolkit routines where functions are “called back”. Changes to the
behavior of toolkit routines not forseen by its designer can only be realized by adapting the
source code of the toolkit. Another disadvantage of toolkits is the fact that the callback style of



programming takes some getting used to. Examples of toolkits are SunView (a toolkit for the
Sun Window System, [Sun90]), XView [Sun91] and the like.

Libraries with an “Object-Oriented Flavor”

The so-called X-Toolkit (Xt [McC88]) is based on the X window system. It implements the
class concept of object-oriented languages in the not-object-oriented C language by means of
conventions (the Xt Instrinics). Thus implementations that use Xt have to take care of these
conventions: they mimic object-oriented concepts in C. This is rather complicated compared to
the real object-oriented solutions described in the subsequent Section 2.2. The main “class” of
Xt is called widget. All specific user interface elements (buttons, text, scrollbars, etc.) are
derived from that abstract building block, which is based on one X window. Weinand [Wei89]
states that such a class design can be very inefficient: “It is questionable whether the
implementation of a spreadsheet, for example, could use a widget for each cell without
substantial performance penalty.”

2 . 2 Object-Oriented Solution – Application Frameworks

We presuppose that the reader is familiar with the basic object-oriented concepts (independent
of a specific language): class hierarchies, encapsulation, data abstraction, inheritance, polymor-
phism and dynamic binding. One of the main advantages of object-oriented programming is that
it “actively” supports software-reuse. An application framework is a collection of abstract and
concrete classes and the interfaces between them, and is the design for a subsystem [Wir90].

The first widely used framework was Model/View/Controller, the Smalltalk-80 user interface
framework [Gol84]. It showed that object-oriented programming is ideally suited for implemen-
ting highly interactive, graphic user interfaces. As described in [Wir90] a framework is the
design of a subsystem, just as an abstract class is the design of a concrete class. Like a
subsystem, a framework is a mixture of abstract and concrete classes. It differs from a
subsystem by being designed to be refined. It can be refined by changing the configuration of
its components or by creating new kinds of components (i.e., new subclasses of existing
classes) without affecting the existing classes.

A mature framework will have a large class library of concrete subclasses of each abstract class,
so that most of the time an application can be “plugged” from existing components. Even when
new subclasses are needed, they are easily produced because the abstract superclasses provide
their design and much of their code. While the framework approach is useful for the
development of any software, it is especially attractive if a user interface should be encouraged,
for it is possible to completely define the components that implement this standard and to
provide these reusable components as building blocks to other developers [Wei89]. In an
application with a graphic user interface these components are, for example, documents,
windows, commands, and the application itself.

Such user interface frameworks offer several advantages: Compared to the toolbox and toolkit
approach where user interface look–and–feel standards are explained textually, such standards
are “wired” into the framework components. Furthermore, experience has proven that writing a
complex application based on powerful frameworks (such as MacApp [App86, Wil90], AppKit
[NeXT89] and ET++ [Wei88, Gam89, Wei89]) can result in a reduction in source code size of
80% and more compared to software written with the support of a conventional toolbox.

Apart from this enormous code reduction, application frameworks have other important
benefits:  the abstraction level is raised, and a standardization is achieved in terms of both the
user interface and the code structure. However, the abstraction level of an application
framework is considered to be too low to support prototyping in a comfortable way. Imple-



menting applications with a framework absolutely requires specialized programming ability
(especially in object-oriented programming).  Furthermore, the programmer must become
familiar with the particular application framework—a time investment that cannot be neglected.

This fact is contrary to the philosophy of prototyping. Therefore we implemented DICE
(Dynamic Interface Creation Environment) for/with an application framework in order to
extend such a tool in the direction of rapid prototyping. The subsequent section describes
DICE. We implemented DICE with the application framework ET++ for the following reasons:
Compared to other available application frameworks, ET++ was the cleanest object-oriented
implementation based on a small set of basic mechanisms.  ET++ provides a homogenous
object-oriented class library that integrates user interface building blocks, basic data structures
and high level application components. ET++ was implemented in C++ and runs under UNIX
and either SunWindows, NeWS, or the X11 window system. The design and implementation
of ET++ is described in detail in [Wei88, Wei89].

3 DICE – An Object-Oriented Tool for Rapid
Pro to typ ing

Prototyping is a paradigm that is well established in research and practice for enhancing the
Software Life Cycle and improving software quality. There are various publications discussing
definitions of prototyping in depth (e.g., [Bud84, Flo84, Pom87, Bis90, Pom91]). User
Interface Prototyping in particular is important for the development of applications that have
non-trivial user interfaces by providing better requirement definitions.

This is especially true for applications with graphic-oriented interfaces. Prototyping this kind of
user interface with proper tools can significantly reduce the implementation effort (especially if
the prototype can be enhanced to the final product). Furthermore, the acceptance of the software
system is improved since the interface can be discussed with the later user at an early stage of
the development. DICE supports the graphic specification  of the user interface layout (see
Section 3.2). In order to enhance the functionality of the prototype, most comparable tools
available today provide interfaces to procedural languages or some kind of an integrated
procedural language. DICE offers three possibilities for enhancing the functionality (see Section
3.3):

• Without programming: Interface elements communicate with one another  by sending
predefined messages.

• With object-oriented programming: Subclasses of ET++ classes can be generated.
Application-specific behavior is added in subclasses of the generated classes.

• With conventional programming: A protocol was developed that allows the prototype to be
connected with other UNIX processes using one of UNIX’s interprocess communication
mechanisms.

The simulation of the constructed interface (screen layout together with its dynamic behavior) is
at the designer’s disposal.

3 . 1 Prototype Management

Experience has proven that user interface prototypes developed for different software systems
often consist of similar or even identical parts. This is why DICE’s Control Panel (see Figure 3)
was implemented. It manages an arbitrary number of prototypes so that several prototypes can
be viewed and compared at the same time. Thus prototype parts may be interchanged, too (see
Section 3.2). A prototype in DICE is a set of windows which contain specific interface



elements. Section 3.2 focuses on how these windows and their contents are specified and
modified.

After DICE is started, DICE’s Control Panel (see Figure 3) and DICE’s Tool Palette (see Figure
4) appear on the screen. The left part displays a list of currently opened prototypes (¿). If a
prototype is selected in the prototype list (¿), all windows belonging to that prototype are
displayed in the window list (¡). As Figure 3 shows, the prototype “Accounting”, for example,
consists only of one window, “Overview”.

Figure 3. DICE’s Control Panel

Until now we have used the term “window” as a generic term for “prototype window”,
“window title”, and “window editor”. To be exact, we have to define what we mean: an
operational prototype consists of several prototype windows (rectangular areas on the screen
that contain user interface elements (such as buttons, menu, lists, etc.) and have a specific
window title. For example, the window title of DICE’s Control Panel in Figure 3 is “DICE”).

Windows of a prototype are specified in a window editor in DICE. Each window has its own
dedicated window editor that is itself  a window and mimics the prototype window which is
specified by means of it as far as possible (WYSIWYG principle): the window title in the win-
dow editor is the same as in the window that is specified by means of that editor—this window
title is also displayed in the window list (¡ in Figure 3). The position of the editor window is
identical with the position of the prototype window; the window contents of the window editor
almost looks like the contents of the prototype window.

The only difference is the behavior of the window contents: a window editor allows us to edit
components of a window (e.g., to insert, move or resize constituent interface elements, to edit
the window title, etc.—see Section 3.2 “Static Layout”), but these user interface items do not
work (e.g., action buttons cannot be pushed, text cannot be edited in a text subwindow, etc.).
If a prototype is tested (by pressing the “Test Prototype” button), “real” prototype windows are
generated out of their specification in corresponding editor windows so that the behavior of
constituent user interface elements can be tested. For each window displayed in the window list
(see ¡ in Figure 3), a checkmark at the left indicates that its corresponding window editor is
open. The possibility to close window editors of a particular prototype helps to prevent the user
from having a mess of open windows on the screen.

3 . 2 Static Layout Aspects

DICE provides graphic window editors that allow comfortable specification of prototype
windows. Since these window editors mirror the way windows are specified in ET++, we need



to explain one ET++ concept first: ET++ offers two specific interface items, Cluster and
Expander, together with a number of layout operators, that allow the grouping of interface
elements. Both, Cluster and Expander elements have the following attributes:

• alignment of contained interface elements

• distance between contained interface elements

Cluster and Expander elements follow the principle of recursion: these objects may contain
“single” interface elements (e.g., text subwindows, buttons) as well as Clusters and Expanders.



Figure 4. DICE’s Tool Palette

Figure 5. Sample user interface specified with DICE

This concept fits the needs of all complex layouts without the user having to position interface
elements explicitly. Furthermore, these two grouping elements allow layout specification of
user interface elements that copes even with window resize operations: Interface elements that
are grouped in an Expander grow and shrink proportionally to the size of their surrounding
Expander, the distance between the constituent elements remains unchanged. If a Cluster is
resized, the distance between the constituent elements changes, but not the size of the elements.
The outermost interface element of each prototype window is an Expander: when the “Add



Window” button in DICE’s Control Panel (see Figure 3) is pressed, a window editor that
contains an empty Expander is opened.

Insertion of Interface Elements

To insert user interface elements, one simply chooses the proper element in DICE’s Tool Palette
(see Figure 4) and mark the position in a group (Expander or Cluster) inside a window editor
where the item is to be placed.

Editing Functions

DICE’s window editor provides undoable editing functions as known from state-of-the-art
graphic editors. The editing functions described below all require that the Pointing Tool be
chosen in DICE’s Tool Palette (see Figure 4):

• Elements are selected with a mouse click. (A selected element has handles on the corners of
its boundary box.)

• A selected element is resized by dragging its handles with the mouse.

• A single element or a group (i.e., a Cluster or Expander) can be moved with the mouse
within a window editor. If an element is dragged outside the outmost Expander, it is thrown
away.

• Cut/copy/paste works within a window editor, between window editors of a prototype and
between window editors of prototypes that are opened in DICE’s Control Panel (see Figure
3). A group item must be selected in order a cut or copied element can be pasted as the last
element of a selected group.

The parameters of interface elements are defined in specific attribute sheets. Figure 5 shows
attributes for an action button.

To sum up, DICE’s Window Editor component together with DICE’s Tool Palette represent a
graphic specification language for graphic user interfaces. The specification of a prototype is
transformed within a neglectable amount of time (a fraction of a second on a SUN Sparc Station
1+) into an operational prototype simply by pressing the “Test Prototype” button in DICE’s
Control Panel (see Figure 3). The same button (whose label changes from “Test Prototype” to
“Edit Prototype” during a prototype test) has to be pressed again in order to further modify a
prototype—so DICE either operates in a specification mode or a test mode. All operations
described in this section for modifying the static layout of a prototype are only available in the
specification mode.

3 . 3 Adding Functionality to the Prototype

The behavior of a system is above all determined by its dynamics. Therefore it is not enough
just to describe screen layouts. Rather, it should also be possible to portray the dynamic
behavior of a system and at the same time to develop the prototype to an accomplished
application. For this purpose, DICE offers the possibilities described below.

3 . 3 . 1 Predefined Messages

Each user interface element has certain messages assigned that it “understands”: the messages
“Open” and “Close” are assigned to windows; Clusters, Expanders, and Empty Subwindows
react to no message; all other interface elements understand at least “Enable” and “Disable”. In
addition, Text Subwindows, Static Text Fields and Editable Text Fields change their text if they



receive a “SetText(...)” message. A List Subwindow switches its list if it receives a
“SetList(...)” message. Enumeration Items display another integer value according to the integer
number sent in a “SetValue(...)” message. (Labeled) Radio and Toggle Buttons alter their state
depending on the parameter of a “SetState(...)” message.

Figure 6. Message Editor

From each element that can be activated (buttons and menu items), any number of messages to
other elements can be specified by means of DICE’s Message Editor (see Figure 6). If the
prototype is tested and an interface element is activated in the test mode, the messages specified
for  that element  are  sent to their receivers. They  effect the corresponding change(s) in the
user interface. Thus rudimentary dynamics are realized without programming effort.

Let us take a simple “Cash Dispenser” prototype (see Figure 5) as an example. The “Cash
Dispenser” window is to be closed when the “Stop” button is pressed. To specify this
functionality, one presses the “Link...” button in the attribute sheet of the “Stop” button (see
Figure 5). By means of DICE’s Message Editor (see Figure 6), the desired dynamic behavior
can then be defined for the “Stop” button (i.e., that the message “Close” is to be sent to the
window “Cash Dispenser” when the “Stop” button is pressed—the button with the component
name “StopButton” being the sender). The left list (“Target Objects”) in the Message Editor
displays component names of already existing user interface elements. After a component name
is selected in the left list, all messages that are understood by the selected user interface element
are displayed in the list “Possible Messages”. The right list of already defined messages shows
message names together with the component names of their receivers. Pressing the “Set Up
Link” button as demonstrated in Figure 5 will add the message “Close” (to be sent to the
component “CashDispenserWindow”) to the list of already defined messages.

One of the criteria for judging prototyping tools is their extensibility (e.g., adding new
messages to DICE’s interface elements). The classes of DICE have been designed in such a
way that this adaption can be achieved by means of object-oriented techniques (i.e., without
modifying the source code of the tool).

3 . 3 . 2 Generating Classes

DICE simulates the static and dynamic behavior of the specified prototype when that prototype
is tested. Thus no code generation and no compile/link/go cycles are necessary for testing. In
order to enhance the prototype based on the application framework ET++, DICE creates
subclasses of ET++ classes (i.e., C++ classes) when the “Generate Code” button is pressed



(Figure 3). The compilation of the generated classes  results in an application which works
exactly like the specified prototype.

The generated classes need not (and should not) be changed when further functionality is added
in the sense of evolutionary prototyping. Additional functionality can be implemented in sub-
classes of the generated classes by overwriting or extending the corresponding dynamically
bound methods (see Figure 7). The basic idea of code generation is the following: A subclass of
the ET++ class Document is generated for each window specified with DICE. The dynamically
bound method Control of this class is called if an interface element is activated.

ET++ classes

classes generated
by DICE

user-defined, application-
specific classes

...

...

...

Figure 7. Code generation

Let us look at the cash dispenser interface (Figure 5)  as an example: When the “Ok” button
(component name: “OkButton”) is pressed, a check of the correctness of the displayed amount
(in the Text Field called “Display”) is necessary. The generated class CashDispenser implements
no special behavior if the “Ok” button is pressed; this behavior could not be specified with the
predefined messages:

class CashDispenser: public Document { ...
void Control(int id) {

...
case OkButton:

break;  // no action
...

}
};

For this reason the class ExtCashDispenser (stands for “Extended Cash Dispenser”) is
implemented in order to check the correctness of the amount.

class ExtCashDispenser:  public CashDispenser { ...
void Control(int id) {

...
case OkButton:

int disp=Display->Val();
if (AmountOk(disp)) ...
break;

...
CashDispenser::Control(id);

}
};



This kind of code generation separates changes of the user interface from coded functionality as
far as possible. For instance, if the user interface layout is changed, code (i.e., ET++
subclasses) must be generated again. The user-designed classes that have been derived from the
originally generated classes are not concerned. Changes of these classes become only necessary
if interface elements are removed (which would result in extraneous code) or switched between
windows of the prototype.

3 . 3 . 3 Integration of Conventional and Object-Oriented Systems

Writing applications based on frameworks can result in an enormous reduction in source code
size (see Section 2.2) since they provide powerful building blocks for the kind of applications
they support. Unfortunately, the only powerful frameworks available today are for user
interface programming. Therefore it is very important for a user interface prototyping tool to
facilitate communication with other systems. Since ET++ is implemented on UNIX systems,
the socket mechanism is used for interprocess communication of independent processes. The
interface specified with DICE and the process interacting with the interface form a so-called
UIMS (User Interface Management System) with mixed control [Bet87, Hay85].

Communication between the application and user interface (see Figure 8) is based on a simple
protocol: If a user interface element is activated in DICE’s test mode (i.e., all kinds of buttons,
Enumeration Items, Text Items in a List Subwindow, and Menu Items), an exact element
identifier and its value are sent to the connected process in the following format: identifier=value.
The identifier is usually the component name of the activated element. If a menu item is selected,
identifier is the component name of the user interface element the menu is part of (either a Pop-
up Item, a Text Subwindow, or a List Subwindow) concatenated with a dot (“.”) and the text of
the selected menu item. If a text item in a List Subwindow is selected, the identifier consists of
the component name of the List Subwindow concatenated with a dot (“.”) and the text of the
selected text item. Activated Action Buttons, menu items, and text items in List Subwindows
always send TRUE as their value. The value of an Enumeration Item is its current integer value,
(Labeled) Radio and Toggle Buttons send either TRUE or FALSE as value (depending on their
state).

UNIX
Process

User
Interface

Figure 8. Communication between application and user interface

A connected process can ask for the value of an interface element by sending identifier ? to the
user interface prototype. If a user interface element exists that matches identifier, it “answers” as
if it had been activated using the format described above. Values of user interface elements can
be changed from the connected process by sending identifier=value to it. This allows some
special changes in the user interface, too: windows, for example, can be opened or closed using
the value OPEN or CLOSE. A List Subwindow accepts EMPTY as value (to make the list
emtpy). A text string sent to a List Subwindow as value means that this text is to be appended as
a list item in the correspondent List Subwindow.

The communication protocol is the precondition that a user interface developed with DICE can
be connected with any conventional or object-oriented software system. E.g., the functionality
of the cash dispenser depicted in Figure 5  was implemented in C. (It could also be implemented
in Cobol or Fortran or what else is available.) Necessary modifications or enhancements of the
functionality are implemented in a C program. Immediately after compiling and starting this



program, the modified functionality can be tested together with the user interface prototype (in
test mode) without restarting DICE.

The development of software systems that are to be connected with the interface prototype can
be supported by available methods and tools. Bischofberger and Pomberger [Bis90, Pom91],
for instance, describe a paradigm called “Prototyping-Oriented Incremental Software Devel-
opment” and a tool that supports this paradigm, the System Construction Tool. It is, of course,
possible to connect the interface prototype with object-oriented systems developed by means of
any domain-specific class libraries that might be available.

4 Conclusion
We are convinced that application frameworks available today are well suited as a basis for the
programming of applications with graphic, direct-manipulation interfaces. System design
decisions are partially prescribed.  A number of  object-oriented ideas, as offered in an
application framework, significantly reduce the implementation effort for such systems. DICE
demonstrates how currently available user interface application frameworks can be enhanced in
order to serve as powerful prototyping tools. DICE was evaluated in several small and medium-
scale projects. Parts of the tool (especially attribute sheets and DICE’s Control Panel) were
generated with DICE itself. The next step will be an extension of available user interface
elements and the integration of a simple programming environment for C++ so that application
specific behavior can be programmed in an object-oriented manner within DICE.

Extensions of DICE (e.g., adding new interface elements, modifying the attributes to be defined
for an interface element, and adding new messages that are “understood” by the interface
elements) can be achieved by means of object-oriented techniques (i.e., without modifying the
source code of the tool) since the tool itself is implemented in an object-oriented way based on
the application framework ET++. Thus DICE can be extended in an incremental manner by the
user.
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