
DICE
AN OBJECT-ORIENTED TOOL FOR

RAPID PROTOTYPING

Wolfgang Pree
Institut für Wirtschaftsinformatik

Johannes Kepler University of Linz

A-4040 LINZ, Austria

E-mail: K2G0190@AEARN

Abs t rac t

This paper deals with object-oriented
programming in several ways. On the one
hand it presents DICE (Dynamic I nterface
C reation E nvironment), a tool for rapid
prototyping implemented in an object-
oriented manner. In particular it discusses the
question of how dynamic behavior can be
added to a user interface prototype. It also
presents a useful and powerful way to
combine conventionally developed and
object-oriented software systems. On the
other hand, the possibilities and limits of
currently available application frameworks
for prototyping-oriented software develop-
ment are examined on the basis of DICE’s
implementation.

Keywords:
prototyping, integration of conventional and
object-oriented systems, application
frameworks, class libraries, ET++, C++,
reusability, extensibility

1 Introduct ion

The object-oriented programming paradigm
gave rise to great hopes of drastically
improving the extensibility and reusability of
software components. The assertion that in
object-oriented programming a linear
increase in coding effort can produce an
exponential rise in functionality is reinforced
by such user interface application
frameworks as MacApp [Wil90], AppKit
[NeXT89] and ET++ [Wei88, Gam89,
Wei89]. Experience has proven that writing a
complex application based on frameworks
such as those mentioned above can result in a
reduction in source code size of 80% and
more compared to software written with the
support of a conventional graphic toolbox.

Apart from this enormous code reduction,
application frameworks offer other important
advantages: the abstraction level is raised,
and a standardization is achieved in terms of
both the user interface and the code structure.

However, the abstraction level of an
application framework is considered to be too
low to support prototyping in a comfortable
way. Implementing applications with a
framework absolutely requires specialized
programming ability (especially in object-
oriented programming). Furthermore, the
programmer must become familiar with the
particular application framework—a time

investment that cannot be neglected. This fact
is contrary to the philosophy of prototyping.

DICE was implemented for/with an appli-
cation framework in order to extend such a
tool in the direction of rapid prototyping.

We chose ET++ for the following reasons:
Compared to other available application
frameworks, ET++ was the cleanest object-
oriented implementation based on a small set
of basic mechanisms. ET++ provides a
homogenous object-oriented class library that
integrates user interface building blocks,
basic data structures and high level
application components. ET++ was
implemented in C++ and runs under UNIX
and either SunWindows, NeWS, or the X11
window system. The design and
implementation of ET++ is described in detail
in [Wei88, Wei89]. Furthermore, the author
(and implementor of DICE) had the
opportunity to work directly with the
developers of ET++, E. Gamma and A.
Weinand, and thus got to know ET++
intimately.

One of our basic premises was not to change
the application framework itself. Only this
restriction would allow us to test the
suitability of the object-oriented approach to
the extension and modification of given
software building blocks.

This report portrays DICE as a rapid
prototyping tool based on an application
framework (Section 2) and describes case
studies around the prototyping-oriented
design and implementation of DICE’s
components (Section 3). The suitability of
object-oriented programming for prototyp-
ing is summed up in the conclusion (Section
4).

2 Prototyping with DICE

Prototyping is a paradigm that is well
established in research and practice for
enhancing the Software Life Cycle and
improving software quality. There are various
publications discussing definitions of
prototyping in depth (e.g., [Flo84, Jör84,
Bisch90]). User Interface Prototyping in

Figure 1. DICE’s Control Panel

particular is important for the development of
applications that have non-trivial user
interfaces by providing better requirement
definitions. This is especially true for
applications with highly interactive graphic-
oriented interfaces. Prototyping this kind of
user interface with proper tools can
significantly reduce the implementation
effort (especially if the prototype can be
enhanced to the final product). Furthermore,
the acceptance of the software system is
improved since the interface can be discussed
with the later user at an early stage of the
development.

DICE supports the graphical specification of
the user interface layout (see Section 2.1). In
order to enhance the functionality of the
prototype, most comparable tools available
today provide interfaces to third generation
languages or some kind of an integrated third
generation language. DICE offers three
possibilities for enhancing the functionality
(see Section 2.2):

• Without programming: Interface elements
communicate with one another by sending
predefined messages.

• With object-oriented programming: Sub-
classes of ET++ classes can be generated.
Application-specific behavior is added in
subclasses of the generated classes.

• With conventional programming: A
protocol was developed that allows the
prototype to be connected with other
UNIX processes using the UNIX Inter-
process Communication mechanism.

The simulation of the constructed interface
(screen layout together with its dynamic
behavior) is at the designer’s disposal.

2 . 1 Static Layout Aspects

The main building block of a DICE
application is a Window. When the “Edit
Window” button in DICE’s Control Panel is
pressed (see Fig. 1), an empty window is
opened. To insert user interface elements, one
has to choose the proper element in the
control panel and mark the position where
the item is to be placed in the window.

Besides the usual interface elements (Buttons,
Text Fields, Popup Items and scrollable
Subwindows, as shown in Fig. 1) there are two
elements for grouping interface items –
Clus te r and E x p a n d e r. They allow a
comfortable specification of the window
layout and of the behavior of the contained
elements if a window is resized.

Figure 2. Sample user interface specified with DICE

Figure 3. Message Editor

DICE provides undoable editing functions as
known from state-of-the-art WYSIWYG
editors: moving and resizing of the elements,
cut/copy/paste between windows and different
DICE prototypes, etc. The parameters of
interface elements are defined in specific
parameter sheets. Figure 2 shows the
parameters for an action button.

2 . 2 Adding Functionality
to the Prototype

The behavior of a system is above all
determined by its dynamics. Therefore it is
not enough just to describe screen layouts.
Rather, it should also be possible to portray
the dynamic behavior of a system and at the
same time to develop the prototype to an
accomplished application. For this purpose,
DICE offers the possibilities described below.

2 . 2 . 1 Predefined Messages

Certain messages are assigned to each user
interface element (e.g., the messages “Open”
and “Close” to a window, the messages
“Enable”, “Disable” and “SetText(...)” to
a text field, etc.). Let us take the “Cash
Dispenser” interface (see Fig. 2) as an
example. The “Cash Dispenser” window is
to be closed when the “Stop” button is
pressed. To specify this functionality, one
presses the “Link...” button in the parameter
sheet of the “Stop” button (see Fig. 2). By
means of DICE’s Message Editor (see Fig. 3),
the desired dynamic behavior can then be
defined for the “Stop” button (i.e., that the
message “Close” is sent to the window

“Cash Dispenser” when the “Stop” button
is pressed).

From each element that can be activated
(Buttons and Menu Items), any number of
messages to other elements can be specified.
If you test the prototype (by pressing the
“Test Prototype” button in DICE’s Control
Panel – see Fig. 1) and activate an interface
element, the messages specified for that
element are sent to their receivers. They
effect the corresponding change in the user
interface. Thus rudimentary dynamics can be
realized without programming effort.

One of the criteria for judging prototyping
tools is their extensibility (e.g., adding new
messages to DICE’s interface elements). This
aspect is discussed in Section 3.

2 . 2 . 2 Generating Classes

DICE simulates the static and dynamic
behavior of the specified prototype when that
prototype is tested. Thus no code generation
and no compile/link/go cycles are necessary
for testing. In order to enhance the prototype
based on the application framework ET++,
DICE creates subclasses of ET++ classes by
pressing the “Generate Code” button (Fig.
1). The compilation of the generated classes
results in an application which works exactly
like the specified prototype. The generated
classes need not (and should not) be changed
when further functionality is added in the
sense of evolutionary prototyping. Additional
functionality can be implemented in sub-
classes of the generated classes by overwriting

or extending the corresponding dynamically
bound methods (see Fig. 4).

ET++ classes

classes generated
by DICE

user-defined, application-
specific classes

...

...

...

Figure 4. Code generation

The basic idea of code generation is the
following: A subclass of the ET++ class
Document is generated for each window
specified with DICE. The dynamically bound
method Control of this class is called if an
interface element is activated. Let us look at
the cash dispenser interface (Fig. 2) as an
example: When the “Ok” button
(component name: “OkButton”) is pressed,
a check of the correctness of the displayed
amount (in the Text Field called “Display”)
is necessary. The generated class
CashDispenser implements no special
behavior if the “Ok” button is pressed; this
behavior couldn’t be specified with the
predefined messages:

class CashDispenser: public Document {
...
void Control(int id) {

...
case OkButton:

break; // no action
...
}

};

For this reason the class ExtCashDispenser
(stands for “Extended Cash Dispenser”) is
implemented in order to check the
correctness of the amount:.

class ExtCashDispenser:
public CashDispenser { ...

void Control(int id) { ...
case OkButton:

int disp=Display->Val();
if (AmountOk(disp))

...
break;
...

CashDispenser::Control(id);
}

};

This kind of code generation separates
changes of the user interface from coded
functionality as far as possible. For instance,
if the user interface layout is changed, code
(i.e. ET++ subclasses) must be generated
again. The user-defined classes that have
been derived from the originally generated
classes are not concerned. Changes of these
classes become only necessary if interface
elements are removed (this would result in
redundant code) or switched between
windows of the prototype.

2 . 2 . 3 Int egration of Conventional

and Object-Oriented Systems

Writing applications based on frameworks
can result in an enormous reduction in source
code size (see Section 1) since they provide
powerful building blocks for the kind of
applications they support. Unfortunately, the
only frameworks available are for user
interface programming. Therefore it is very
important for a user interface prototyping
tool to facilitate communication with other
systems. Since ET++ is implemented on
UNIX systems, the socket mechanism is used
for interprocess communication of indepen-
dent processes. The interface specified with
DICE and the process interacting with the
interface form a so- called UIMS (User
Interface Management System) with
mixed control ([Bet87, Hay85]).

UNIX
Process

User
Interface

Figure 5. Communication between application and user
interface

Communication between the application and
user interface (see Fig. 5) is based on a
simple protocol: If a user interface element is
activated, the name and (if meaningful) its
value are sent to the connected process. The
value of a Radio Button, for instance, is
“TRUE” or “FALSE”; an Action Button
and a Menu Item do not send a value. On the
other hand, the connected process can ask for
the value of each interface element by
sending its name and a “?” to the interface.

Thus the user interface developed with DICE
can be connected with any conventional
software system. E.g., the functionality of the
cash dispenser depicted in Fig. 2 was
implemented in C. Necessary modifications
or enhancements of the functionality are
implemented in a C program. Immediately
after compilation and starting of this
program, the modified functionality can be
tested together with the user interface
prototype without restarting DICE.

The development of software systems that are
to be connected with the interface prototype
can be supported by available methods and
tools. [Bisch90], for instance, describes a new
paradigm called “Prototyping-Oriented
Incremental Software Development”. On the
other hand it is, of course, possible to connect
the interface prototype with object-oriented
systems developed by means of any domain-
specific class libraries that might be available.

3 Implementation of DICE

An application framework can be classified as
a simple prototyping tool: The abstraction
level is raised and the implementation effort
can be drastically reduced due to powerful
building blocks. If we assume that a software
developer is familiar with object-oriented

programming and a specific application
framework, the prototyping cycle as depicted
in Fig. 6 results.

The suitability of an application framework
for prototyping depends on the reusability
and extensibility of the available building
blocks. DICE itself is implemented on the
basis of ET++. Short case studies drawn from
the implementation of DICE components
show that the desired reusability of software
components often cannot be achieved even
by using state-of-the-art application frame-
works or object-oriented programming in
general.

Extend generic application by
modifying or adding classes

experiment with prototype

modify or add class

Figure 6. Prototyping with an application framework

First the Good News

One of the most important advantages
associated with object-oriented software
building blocks is that they naturally lend
themselves to bottom-up reuse, extension and
combination [Mey88, Mey89]. Application
frameworks in particular provide a structure
in their “empty” application, which is to be
extended accordingly for an application that
is based on it. Certain extensions are
necessary for almost every application. These
extensions are prescribed by the framework
and forseen by the designer of the framework
classes. Thus it is easy to reuse and extend
those building blocks.

Generally speaking, classes can be reused and
extended without problems if the designer
has forseen the wishes of future users. The
classes of DICE, for example, have been

designed in such a way that the following
adaptations can be achieved by means of
object-oriented techniques (i.e., without
modifying the source code of the tool):

• adding new interface elements,

• modifying the parameters to be defined for
an interface element, and

• adding new messages that are “under-
stood” by the interface elements.

Modifications not forseen by the designer
can be pretty hard to realize, as the following
case studies show.

Then the Bad News

[Mey88] states that reusability does not work
automatically for object-oriented software
bui lding blocks: Disregarding the
economical, political and psychological
problems involved, software will only be
reused if the potential beneficiaries know
about available components. Unfortunately,
this is not the only problem, as two examples
will demonstrate.

We must note in advance that ET++ is not yet
construed by its designers as a finished class
library. DICE was implemented on ET++
Version 1.1. The conclusions drawn about
application frameworks are not, however,
weakened by the argument that ET++ is
continually being improved. In our opinion
complex software systems will always be
inadequate for certain problems. Object-
oriented programming is intended to
eliminate precisely this weakness of software
systems. The general reasons why this is not
always possible in a clean way even with the
object-oriented programming paradigm can
be discerned from the ET++ specific case
studies.

Missing Hook Methods

In order to be able to modify the behavior of
a class in subclasses, hook methods need to be
called at the respective locations in the
methods of the base classes. By overwriting

these dynamically linked methods in
subclasses, class behavior can be modified.

The above procedure is possible only at
locations where the class designer provided
hooks. In order to make a more general
extensibility possible, the following
(theoretical) solutions could be suggested:

• A hook method is invoked between every
pair of statements of a method.

• Every class method consists of exactly one
statement.

The idea of a narrow inheritance interface
that is usually implemented in application
frameworks [Wei89] contradicts these
suggestions: Behavior that is spread over
several methods in a class should be based on
a minimal set of dynamically bound
methods. This allows a client deriving
subclasses from an existing class to override
just a few methods in order to adopt its
behavior. Not adhering to this narrow
inheritance principle often means that too
many methods have to be overridden,
resulting in ugly and bulky code.

For extensions that were not foreseen, the
source code of the respective superclass must
be copied and complemented by the desired
statements. This procedure was unavoidable,
for example, in the modification of the ET++
class VObjectStretcher (which stands for
“Visual Object Stretcher”), which is outlined
below:

The ET++ class VObjectStretcher is a subclass
of the ET++ class Command and can be used
for stretching VObject objects. Thus it serves
as a basis for resizing interface elements in
DICE. The direct use of this class without
adaptation is undesirable for the following
reason:

If the size of an interface element has
changed, the entire window contents must be
recalculated (while the mouse is being
moved) in order to maintain the interface as
WYSIWYG. If the class VObjectStretcher is
used directly, only the respective outline
rectangle of the interface element to be

changed is drawn when the mouse is moved
(with mouse button pressed). The window
contents itself are recalculated and redrawn
only after the mouse button is released.

Thus the class ItemStretcher was created as a
subclass of VObjectStretcher in order to
implement the behavior described above.
There was no dynamically linked hook
method in the class VObjectStretcher that is
invoked with each mouse movement (with
mouse button pressed). In the missing hook
method, the desired behavior could have been
implemented in two statements.

Since the superclass VObjectStretcher pro-
vided no other possibility, the source code of
the relatively extensive method TrackMouse
was copied into the method TrackMouse of
the class ItemStretcher and extended by the
necessary statements at the required position.
This procedure was only possible because

• the source code of the class to be modified
was available; and

• the instance variables used in the method
TrackMouse of the class VObjectStretcher
can be accessed in their subclasses.

These facts directly contradict the promises
of object-oriented programming.

Correcting Framework Errors

In order to correct errors or to eliminate
restrictions in the library classes by creating
subclasses, the source code is often necessary
in order to understand class behavior and
find the methods to be modified. The ET++
class MatrixView serves as an example that an
error couldn’t have been removed without
the source code. Mat r i xV iew is a basic
building block for user interface elements
that include a matrix of selectable objects
(e.g., menu items, graphically depicted tools
in a toolpalette, etc.). If one object is selected,
a class method returns the row and column of
that object in the matrix.

Since the objects in such lists are usually
ordered vertically in only one column, an

error in the implementation of the method
mentioned above was not detected. The
modifications of the class MatrixView by
creating a subclass would not have been
possible without the source code since the
relationships between the class methods could
not have been discerned otherwise.

The comprehension of a class to be modified
can become more difficult due to the “Yoyo
Problem” ([Taen89]). This issue is related to
objects sending themselves messages, which
may cause the execution of methods up and
down the class hierarchy.

4 Conclusion

We are convinced that application
frameworks available today are well suited as
a basis for object-oriented programming.
System design decisions are partially
prescribed. A number of object-oriented
ideas, as offered in an application framework,
significantly reduce the implementation
effort for systems.

DICE demonstrates how currently available
application frameworks can be enhanced in
order to serve as powerful prototyping tools.
DICE was evaluated in several small and
medium-scale projects. Parts of the tool
(especially dialog sheets) were generated with
DICE itself. The next step will be the
integration of a simple programming
environment for C++ so that application
specific behavior can be programmed in an
object-oriented manner within DICE.

References

[Bisch90]
Bischofberger W.R.: Prototyping-Oriented
Incremental Software Development: Paradigms,
Methods, Tools and Implications, doctoral
thesis, University of Linz, 1990.

[Bet87]
Betts, B. et al.: Goals and Objectives for User
Interface Software; in: Computer Graphics, Vol.
21, No. 2, April 1987, pp. 73-78.

[Flo84]
Floyd, Ch.: A Systematic Look at Prototyping;
in: Approaches to Prototyping, Springer, 1984,
pp. 1-18.

[Gam89]
Gamma E., Weinand A., Marty R.: Integration
of a Programming Environment into ET++ A
Case Study, Proceedings of the 1989 ECOOP,
July 1989.

[Hay85]
Hayes, P.J., Szekely, P.A., Lerner, R.A.:
Design Alternatives for User Interface
Management Systems Based on Experience with
COUSIN; in: Human Factors in Computing
Systems: CHI’85 Conference Proceedings,
Boston, Mass., April 1985, pp. 169-175.

[Jör84]
Jörgensen, A.H.: On the Psychology of
Prototyping; in: Approaches to Prototyping,
Springer, 1984, pp. 278-289.

[Mey88]
Meyer B.: Object-Oriented Software Construc-
tion; Prentice Hall, 1988.

[Mey89]
Meyer B.: From Structured Programming to
Object-Oriented Design: The Road to Eiffel; in:
Structured Programming Vol.10 No.1, Springer
1989.

[NeXT89]
NeXT, Inc.: 1.0 Technical Documentation:
Concepts; NeXT, Inc., Redwood City, CA,
1989.

[Taen89]
Taenzer D., Ganti M., Podar S.: Problems in
Object-Oriented Software Reuse, Proceedings of
the 1989 ECOOP, July 1989.

[Wei88]
Weinand A., Gamma E., Marty R.: ET++ - An
Object-Oriented Application Framework in C++;
OOPSLA 88, Special Issue of SIGPLAN
Notices, Vol. 23, No. 11 (1988)

[Wei89]
Weinand A., Gamma E., Marty R.: Design and
Implementation of ET++, a Seamless Object-
Oriented Application Framework; in: Structured
Programming Vol.10 No.2, Springer 1989.

[Wil90]
Wilson D.A., Rosenstein L.S., Shafer D.:
Programming with MacApp; Addison-Wesley,
1990.

Trademarks:
Apple and MacApp are trademarks of Apple
Computer Inc.

NeXT and App Kit are trademarks of NeXT Inc.

SunWindows and NeWS are trademarks of Sun
Microsystems.

UNIX and C++ are trademarks of AT&T.

