Multiple Real-Time Semantics on top of
Synchronous Block Diagrams

Andreas Naderlinger
C. Doppler Laboratory Embedded Software Systems
University of Salzburg, Austria
andreas.naderlinger @cs.uni-salzburg.at

Keywords: Model-based design, embedded real-time sys-
tems, synchronous, Simulink, preemption

Abstract

Synchronous block diagrams form an established fundament
for the model-based development of embedded real-time sys-
tems. Their synchronous reactive (SR), also called zero exe-
cution time, semantics offers indisputable advantages in de-
signing, testing and verifying control algorithms but poses
problems in the translation of multi-rate models into code.
In this paper, we contrast the semantics of three different
real-time programming paradigms and discuss a mechanism
to represent them in models with SR semantics. This repre-
sentation is based on MATLAB/Simulink blocks that are not
characterized by the typical zero time behavior but whose ex-
ecution may last for and optionally consume a finite amount
of simulation time. Each such block represents a task in the
sense of a real-time operating system. All tasks within a
model may be scheduled with a static-priority approach. This
allows us to observe simulations that are closer to the real
timing behavior of control applications and also to consider
preemption effects already in the simulation.

1. INTRODUCTION

Model-based design has become an established develop-
ment approach in the field of embedded real-time systems and
is a promising candidate to tame the ever increasing complex-
ity. The model-based methodology moves away from manual
low-level coding and is centered around an abstract mathe-
matical model. Formal models are well suited in proving cer-
tain system properties and for performing analysis and verifi-
cation. Code generators allow to automatically synthesize the
implementation code. This reduces both development time
and errors and is thus considered best practice for software
development.

1.1. Synchronous Reactive Models

The development of real-time control systems involves
multiple disciplines and has to consider control engineering,
software, and hardware aspects. In many cases, it starts with
a time-invariant controller model that is high-level and as-
sumes concurrency under unlimited resources. In particular,

synchronous reactive (SR) [1] models are well understood and
heavily used in designing hardware logic and control applica-
tions, for example, in the automotive and aeronautic domain.
In SR models, a reaction (e.g. the execution of a task) to an
event must be completed before the occurrence of another
event. Accordingly, task execution times may assumed to be
zero. A major difficulty is that the ideal SR semantics does
not hold in the implementation and that the original behavior
is not preserved at run-time, although the generated code may
match the modeled functionality perfectly. Typically, simula-
tion does not properly consider the timing of the software that
will implement the controller functionality [10]. While tasks
are assumed to always complete in zero time in the simula-
tion, they are known to require a finite execution time at run-
time on a hardware platform. Additionally, at run-time, mul-
tiple tasks compete for the limited resource CPU, however
many model-based development environments are not suited
for gathering scheduling, system load or other non-functional
requirements. With regard to a reasonable CPU utilization,
code generators synthesise multi-rate models into multi-task
implementations [20]. A real-time operating system (RTOS)
employs, for example, a preemptive scheduling policy to exe-
cute the tasks at the specified rate. Even without any data de-
pendencies between tasks, the execution of one task may have
effects on the results provided by another one. So, the actual
behavior can only be tested on the hardware target and since
the generated code is typically fine-tuned manually, the cor-
respondence to the model is lost. As a consequence, sooner
or later, models and simulation results are often abandoned,
when the hardware platform and communication topology
starts dominating the development process [17].

1.1.1.

Ideally, a model is valuable throughout the different devel-
opment phases and simulation results are incrementally refin-
able. This requires models to be valid at different levels of ab-
stractions, from a high-level, time invariant, and platform in-
dependent to a concrete and possibly platform specific model
(PIM and PSM in the Model-Driven Architecture [13]). The
final model eventually allows simulation results to be close to
the real behavior on a hardware platform as it already consid-
ers aspects that exceed pure control engineering concepts.

Incremental Refinement vs. Transparency

A different research direction strives to move away from
the platform-centric approaches and to apply a different pro-
gramming paradigm that eliminates the need for platform-
specific models to a certain extent. Timing constraints are
expressed by high-level programming languages and guar-
anteed by a compiler that checks the constraints for a given
platform [9].

This article is organized as follows. Section 2 summarizes
three well-known paradigms in real-time programming. Sec-
tion 3 describes the main contribution, a mechanism to rep-
resent them in models with SR semantics. We use MAT-
LAB/Simulink [19] as a prominent software product that en-
ables the development and simulation of SR models using
block diagrams. A case study of the presented approach is
described in section 4. We discuss related work in section 5
and conclude the article in section 6.

2. RT PROGRAMMING PARADIGMS

According to [11], we can differentiate between three pro-
gramming paradigms for concurrent real-time (RT) software,
only one of which is covered by Simulink directly. In the fol-
lowing we shall describe all of them and present subsequently
how the remaining two can also be considered in Simulink.

2.1. Zero Execution Time (ZET) Model

The zero execution time (ZET) (aka synchronous) model
[5] abstracts from the physical execution time of tasks. The
key assumption of this model is that tasks execute in zero
time, i.e., they provide their results immediately. A major ad-
vantage of ZET-based languages is their amenability to veri-
fication making them attractive to safety-critical applications.
Practical implementations of the ZET model must ensure that
a task reads its input values at the occurrence of the trigger-
ing event and provides the output before the occurrence of
the next event. Although not based on a formal semantics,
Simulink follows the synchronous approach (see section 3.1).

2.2. Logical Execution Time (LET) Model

In the LET (aka timed) model, the execution of a task is as-
sociated with a logical time span, called the logical execution
time (LET) [7]. Inputs are read only at the beginning and out-
puts are written only at the end of the LET, i.e. at predefined
time instants called release and termination time respectively.
These I/O operations are assumed to execute in ZET, i.e., they
are synchronous operations. During the LET of a task there
is no communication or synchronization point. The LET is
independent from the time it takes the task to execute on a
particular platform. The actual execution of the task is sub-
ject to some scheduler and may start after its release time or
even get preempted. However, the task must be completed no
later than the end of the LET. The worst case execution time

(WCET) of the task must be known and the following relation
must hold: execution time < WCET < LET. Tasks that are
completed before the termination instant buffer their results.
Applications following the LET paradigm exhibit equivalent
behavior on different kinds of computational nodes and com-
munication systems [4].

2.3. Bounded Execution Time (BET) Model

The bounded execution time (BET) (aka scheduled) model
is the classical and probably most widely used model for
real-time programming. It relies on classical scheduling the-
ories as described, for example, in [12]. For a BET program
to execute correctly, it must be ensured that each task com-
pletes before its deadline, i.e., within its execution bounds.
The necessary runtime support for BET programming is pro-
vided by the underlying operating system, e.g., by means of
adequate scheduling mechanisms. Tasks in the BET model
provide their output when they finish execution, thus the re-
sponse time is equal to the execution time of tasks. The exe-
cution time of a task depends, for example, on processor per-
formance, scheduling mechanism, system load, and memory
caches. Consequently, the programs based on the BET model
may suffer from variations in their input/output behavior (jit-
ter) and are not compositional with respect to their observable
timing behavior.

3. SIMULATION OF TIMING BEHAVIOR

In this section we present a mechanism to simulate tasks
conforming to different programming paradigms. We sup-
port all three paradigms discussed above within Simulink.
Simulink is close to SR semantics and naturally supports the
ZET paradigm only. The two other paradigms differ in the
sense that computation takes time. Simulink provides explicit
delay blocks to postpone the propagation of signals. This is
a widely used mechanism to mimic the execution time of a
control algorithm on an actual hardware platform in the sim-
ulation. We argue that a simulation would benefit from a more
fine-grained consideration of execution time to become more
realistic. This becomes even more true if complex control al-
gorithms are executed as a single block, for example, when
whole subsystems are translated into S-Function blocks that
execute their corresponding C code (see the case study in sec-
tion 4). To properly support the BET paradigm, time must not
only pass after a block has been executed. Time must pass
during the execution of a block. Currently, to the best of our
knowledge, Simulink itself provides no mechanism to support
this. We will start with a short summary of how Simulink ex-
ecutes blocks and then describe a mechanism to support also
tasks based on BET and LET as Simulink blocks.

3.1. Block Execution in Simulink

In simple terms, at each simulation step, the Simulink en-
gine first computes the set of all outputs of all blocks in the
model as a function of the current state (and optionally of
the input), second it updates the state of all blocks. This is
done by executing the blocks in a fixed order that was derived
during the initialization. Executing a block means to invoke
a set of C functions. Most importantly, the engine executes
the output function of all blocks in a first and then all the up-
date functions in a second iteration. In the output function, the
block calculates and potentially updates its output signals. In
the update function, the block calculates its new state. After
the model’s state has been updated, the engine advances the
simulation time. For deriving a fixed-point solution, Simulink
requires each block in the model to be executed only once at
every time step. Thus, the whole code corresponding to a par-
ticular block is executed at one simulation time instance and
without consuming any simulation time.

3.2. Simulation-time Consuming Blocks

In the following we present the concept of a Simulink block
that is not necessarily characterized by the typical zero exe-
cution time behavior [14]. Instead, the execution of the block
may last for a finite amount of simulation time and span sev-
eral simulation steps. During the execution, the block may
perform I/O operations by reading input signals and updating
output signals. The block is based on Simulink’s S-Function
interface and integrates well with standard Simulink blocks.
Each such block in a model represents one task in the sense
of an RTOS and is described by a set of properties, such as
period and offset, as well as a task function implemented in C.
This block serves as the basis to implement tasks that may fol-
low the various programming paradigms. Depending on the
paradigm in use, different additional properties, such as the
LET or the priority of the task are required to be specified.

3.2.1. The Task Model

In our model, a task is a sequential program without any
internal synchronization point (comparable to OSEK’s basic
task concept [16]) and can consequently not be blocked by
waiting for an external event. The task function consists of
a finite number of contiguous segments. Each segment has
an associated execution time. Segment boundaries represent
barriers that allow synchronization with the simulation envi-
ronment. The execution of the segment is performed instan-
taneously, i.e. the operations are performed in zero execution
time. However, the next segment is not executed before the
specified execution time of the previous segment has elapsed.
Execution times of the individual segments are assumed to be
known, e.g. using WCET analysis tools. The execution time
information is part of the C code. It may have been introduced
by means of adequate code instrumentation tools.

The timely progress to the next segments of a task function
is based on a synchronization mechanism that decides when
to proceed with the execution of a particular task and when
to return the control to the simulation engine to execute other
parts of the model such as the plant or to put the simulation
clock forward.

3.3. A Synchronization Mechanism

This subsection exemplifies the usage of a synchroniza-
tion mechanism in order to enable simulation of all three
paradigms ZET, BET, and LET. Figure 1 shows a Simulink
model containing a ramp block as signal source, an instance
of our simulation-time consuming block (X-Task) represent-
ing a task, and a scope. The task may follow either the ZET,
the BET, or the LET paradigm. Individual sample implemen-
tations are listed below. For demonstration purposes, they all
read two input values and write these values on a single two-
dimensional output signal without performing any meaning-
ful computation. Their different behaviour is discussed sub-
sequently.

The task functionality is to be implemented in
a single function called taskFunction and all
three implementation share the following code frame.
InputRealPtrsType is a type definition provided
by Simulink for accessing input signals. Task is part of
our synchronization API and used, for example, to hold
information about the task period, priority, etc.

#define IRPT InputRealPtrsType

void taskFunction(SimStruct *S) {
Task =t = ssGetUserData(S);
real_ T a, b; //input
real T xc; //output

/l (i) ZET, (ii) BET,
// or (iii) LET implementation from below

3.3.1. ZET ()

The ZET code conforms to an ordinary S-Function
implementation. The synclnput and syncOutput func-
tions are aliases for ssGet InputPortSignalPtrs and
ssGetOutputPortSignal from the S-Function API re-

/ X-Task l:l

Ram S
P ZET | BET | LET cope

Figure 1: A task with either ZET, BET, or LET semantics in
Simulink. The different results of the Scope block are shown
in Figure 2.

spectively and access the input/output signals. The first sync-
Input call reads the first (and only) element ([0]) of the input
signal of port O (which is signal a). The second call reads sig-
nal b. The call syncOutput returns a pointer to the output sig-
nal c. Subsequently, the two-dimensional signal c is assigned
to a and b. No simulation time passes during the execution of
the code.

a = *x((IRPT) syncInput(0, t))[0];
//...computation

b = % ((IRPT) syncInput(l,
//...computation

¢ = (real_.T %) syncOutput(0, t);
c[0] = a;

c[1] = b;

t))[07];

3.3.2. BET (i)

The BET code is very similar. The additional parameter in
syncInput and syncOutput, however, indicates the modified
semantics. This parameter refers to the time it takes to exe-
cute the last code segment, i.e. the simulation time that should
have passed since the last synchronization call. The task reads
its first input immediately when the task is released (i.e. af-
ter 0.0 seconds). We then assume a computational operation
that requires 2us. Then the second input is read (consequently
0.000002 seconds after the last API call). After another oper-
ation that requires lus, the two output values are written. In
the case of BET, synclnput and syncOutput also perform the
synchronization with the simulation environment, such that
simulation time may pass or other blocks may execute. The
total execution time of this task is 3us.

a = *x((IRPT) syncInput(0, t, 0.0))[0];
//...computation

b = *x((IRPT) syncInput(1l, t, 0.000002))[0];
//...computation

¢ = (real_T %) syncOutput(0, t, 0.000001);
c[0] a;

c[1] b;

Optionally, the specified execution time does not only de-
lay the execution of the subsequent code segment, but also
prevents other blocks from executing for this particular time
span. This simulates the behavior on an actual hardware plat-
form, where the execution of a task consumes CPU time.
Scheduling of multiple BET tasks is discussed in section 3.4
in more detail.

3.3.3. LET (iii)

The LET paradigm requires a different coding style as I/O
operations are only allowed at the release and termination
time. The task function is split into two pieces. The first part
is executed immediately when the task is released. All inputs
are read and the actual functionality is performed. The sec-
ond part is executed after the LET has expired, independently

of the actual execution time of the task. Then all outputs
are written. The I/O operations syncInput and syncOutput are
again only aliases for the appropriate Simulink functions. The
syncRelease and syncTerminate call mark the release and ter-
mination time of the task, respectively. It delays the propa-
gation of the output value until the end of the task’s LET (as
specified as a task parameter) without consuming CPU time
for the duration of the LET.

Obviously this is the same behavior as executing a ZET
task (or an ordinary S-Function) whose output signals go
through a unit delay block with a sample time equal to the
task’s LET. However, simulating tasks that have different
LETs in different modes is not feasible with this delay block
approach [18]. Additionally, the presented LET approach
helps to verify that the execution time of a particular program
path is really smaller than the specified LET of the task.

syncRelease(t);

a = *x((IRPT) syncInput (0,
b = *((IRPT) syncInput(l,
//...computation
syncTerminate (t);

¢ = (real_.T %) syncOutput(0, t);
c[0] a;

c[1] b;

t))[0];
t))[0];

3.3.4. A Comparison between ZET, BET, and LET

Figure 2 shows the different behavior of the three
paradigms. Note that in order to obtain a reasonable axes-
labeling of the Simulink scope, the timing values (x-axis)
have been scaled, such that 10us represents 1s. In all three
cases, the period of the task is 10us and the offset is 0. The
LET in (iii) is specified to be Sus. The ramp parameters are
as follows: slope = 1, start time = 0, initial output = 1.

The black line corresponds to the ramp signal, the green
line corresponds to output ¢[0] (input a), and the red line cor-
responds to output c[1] (input b). For the ZET and LET im-
plementation, both input values are read at the same time, i.e.
when the task is released. Thus the two output signals over-
lap in both cases (c[0] = c[1]). However, the ZET implemen-
tation provides the outputs instantaneously (at release time),
whereas the LET implementation delays the output by the
logical execution time of the task (Sus). The BET implemen-
tation only reads the first input (a) at release time. The second
one (b) is read with a delay of 2us (thus the ramp counter has
already increased further). When the task provides its outputs
Lus afterwards, the different values become obvious.

3.4. Scheduling of BET Tasks

As described above, when executed on a hardware plat-
form, the tasks compete for the CPU and the scheduling
schema applied may considerably influence the behavior.
However, whether or not these scheduling effects are ob-
servable depends on the programming paradigm. The LET

i i H i i H i
05 1 5 2 25 5 05 1

(i) ZET

i
5

(i) BET

(iii) LET

Figure 2: Output of the scope block from Figure 1 with the respective paradigm.

paradigm abstracts from the physical execution and thus from
a particular scheduling. A LET program behaves exactly the
same on any platform where the program has been shown
to be time safe [8]. This time safety check also includes a
schedulability analysis.

A BET program, in contrast, is prone to scheduling ef-
fects such as preemption, variations in task execution times,
or overhead of the real-time operating system. These effects
may cause nondeterminism and data integrity problems. Even
without any data dependencies between tasks, the execution
of one task may have effects on the results provided by an-
other one (see the example in section 3.4.3).

34.1.

In our simulation, each BET task block represents one task
in the sense of an RTOS. It may autonomously read its inputs
and write its outputs. Additionally, interaction between tasks
may be based on shared memory communication via global
variables. All BET tasks share the CPU and are subject to rate
monotonic scheduling [12].

In addition to period and offset (phase), each BET task
has a priority assigned statically. The priority of the individ-
ual tasks of a model serves as the basis for our scheduling
mechanism and is also used to impose the correct sequence
in Simulink’s block update order. This order is derived once
in the start-up phase of the simulation and remains constant
during the whole simulation. The scheduling and timely exe-
cution of the individual segments of a task function is based
on our synchronization mechanism mentioned above that de-
cides which task to execute and when to continue with the
simulation.

Currently, we only support static-priority scheduling [2].
We plan to further investigate, whether dynamic-priority
scheduling mechanisms are also possible without distorting
the exact timing. Compared to other simulation environments,
such as Ptolemy [3] that fosters different execution strategies
(models of computation), Simulink does not give much lee-
way in this respect and ensuring correct semantics is nontriv-

Static-priority Rate Monotonic Scheduling

ial. Our current implementation assumes that only one active
instance for each task exists at any time, i.e. the worst-case
reaction time of each task is assumed to be smaller than its
period. Furthermore, the current implementation is limited to
the simulation of single-processor systems and task priorities
must be unique.

3.4.2. Full Preemption vs. Cooperative Tasks

The presented approach does not provide full preemption
support. The scheduling rather relies on cooperative tasks.
Tasks cannot be interrupted arbitrarily, but only at defined
points (see sync. . . calls above). As long as all I/O opera-
tions are synchronized, the observable behavior is the same.
It must be noted, however, that I/O operations are assumed
to be atomic. Consequently, potential data integrity problems
are ignored by now.

3.4.3. Scheduling Example

In the following example we contrast the traditional ap-
proach of using S-Functions in combination with standard
Unit-Delay blocks with our proposed mechanism to consider
task execution times.

We consider a low priority task Tp with phase ¢9 = 0 and
period po = 3 and a high priority task t; with ¢; = 3.5 and
p1 = 5. Their execution times co and ¢ are both assumed to
be 1. At the end of its execution time, Ty provides an output.
The different behaviors are shown in Figure 3 and discussed
below:

(i) When implemented as ordinary S-Function, the blocks
execute in zero time and the output is provided instanta-
neously. The execution time of the tasks are ignored.

(i) Although the output of T(can be delayed by a constant
time using a Unit-Delay block, the execution of the tasks does
not consume simulation time. Consequently, the other tasks
are not scheduled correctly and potential preemption is ig-
nored. In addition, execution times may in general be data
dependent and result from the control flow.

|mto ..T; X..outputis written
1 f f 1
[T | T T T | | T T
0 1 2 3 a4 5 6 7 8 9 10
®
[1 I I
[T T T I T I T T I 1
0 1 2 3 4 5 6 7 8 9 10
(i)
[) [) | [
T T T 1 T T T T T 1
0 1 2 3 a4 5 6 7 8 9 10
(iii)
[) | m |
T T T T T 1 T 1
0 1 2 3 a4 5 6 7 8 9 10
(iv)

Figure 3: Scheduling example.

(iii) When implemented with BET semantics, Ty executes
for cp = 1 and thus provides its output with the expected de-
lay. For the scheduler, the execution task consumes simula-
tion time. This becomes obvious in (iv).

(iv) When both tasks are present, T; preempts Tg at 3.5 and
the output of T is delayed by c; until 5. The 4™ execution
of Ty does not start until T; completes at 9.5. This case best
approximates the behavior expected when executing the two
tasks on a single-processor system.

Figure 4a shows 7o as the only BET task in a Simulink
model. The scope block shows the behavior described in (iii).
Figure 4b shows the behavior (iv) when T; is added.

4. CASE STUDY: AN AUTOMATIC TRANS-
MISSION CONTROLLER

In this section we apply the idea of a time consuming
Simulink block to one of the demo models that come with
Simulink.

The model is named sldemo_autotrans.mdl and is used
to demonstrate Simulink in combination with Stateflow for
modeling an automotive drivetrain. Originally, the gear selec-
tion for the transmission is modeled as a Stateflow diagram.
We used the Real-Time-Workshop Embedded Coder to gener-
ate C code for the shift logic and replaced the Stateflow block
by a BET task block executing the generated code. Figure 5
shows the Simulink model with the shift logic implemented
as a BET task block named Task_ShiftLogic. The period of the
task is equal to the original sample time (0.04 seconds) and
the offset is 0.

We instrumented the controller code with API calls of our
synchronization mechanism that also encode the time it takes
the code to execute. For lack of real execution times of the in-
dividual code segments on a particular hardware platform, we
applied the following strategy to arrive at a coarse estimate.
The time to execute a particular basic block is the number

Pl b e pf]
Ramp

Ramp T Scope T Scope
slope=1 0 slope=1
>
T
1

(a) Task 19 (b) Task 1 and task 7

Figure 4: The effect of task preemption in Simulink.

of assembly instructions in the block multiplied by a constant
factor. For now, we assume that all assembly instructions take
the same amount of time, which is somewhat justified as sim-
ple RISC machines like the ARM?7 finish an instruction and
start another in almost each clock cycle. For demonstration
purposes, the factor was chosen such that the maximum ob-
served execution time of the controller consumes about 0.02s,
which is 50% of the period.

Figure 6 shows a close up view of the EngineRPM signal to
compare the original behavior and the behavior when consid-
ering execution time. As a consequence of the different states
in the controller and the resulting differences in the taken exe-
cution paths, the execution time in each period varies. We ob-
served task executions with the number of assembly instruc-
tions ranging from about 30 to more than 500, an effect that
would be totally ignored in ordinary simulations. In total, we
inserted almost 100 synchronization calls. In case other BET
tasks are present, at every synchronization point higher prior-
ity tasks would preempt the shift logic controller.

ion Controller

Modeling an A ic Trar

ImprelerTorque —
- 3 Throtle |:|
N
Thotte 3 EngineRPM
.

VehicleSpeed

3
[Throttie

Task_ShiftLogic

Fon

BrakeTorque

Vehicle

TransmissionRPM

VehicleSpeed

Double-click on Ul and select a

Copyriaht 1990-2011 The MathWorks, Inc.

Figure 5: The modified automatic transmission controller
model.

EngineRPM

3200

3100

3000

2900

2800

2700

2600 [~ -
I I I I I I
41 415 42 4.25 43 435 4.4 4.45 45 455

Figure 6: A close up view of the RPM signal with the original
(red) Stateflow block and the BET task block (green).

S. RELATED WORK

The different programming paradigms discussed in this pa-
per are in detail described in [11]. The Simulink integration
of a LET-based software description language is presented
in [15]. Numerous papers propose mechanisms to reduce the
mismatch between the simulation and execution of SR mod-
els. We will confine ourselves to a few approaches related to
Simulink. Several wait-free mechanisms have been proposed
to ensure data consistency. The built-in Rate Transition (RT)
block, for example, is able to guarantee data consistency for
tasks with harmonic rates under rate monotonic scheduling
[19]. More general buffering protocols are described in [20].

While these approaches retain the data flow character of
Simulink, there is also a more software centric approach:
TrueTime [6] is a toolbox for Simulink that enables the simu-
lation of a real-time kernel (represented as a Simulink block)
that is able to schedule task implementations with different
policies. It facilitates the simulation of control software close
to its true temporal behavior. Currently, however, it requires
the implementation code to be in a special format with mul-
tiple entry points, making it difficult to use for existing sys-
tems. In contrast to our approach, all TrueTime tasks are exe-
cuted in the context of the kernel block, which consequently
subsumes the whole control software. In our case, tasks are
represented as individual blocks with their own input and
output signals and they can appear at different positions in
Simulink’s sorted block order.

6. CONCLUSION

In this paper, we sketched different paradigms for real-
time programming and contrasted their semantics to the syn-
chronous reactive like semantic of the widely used MAT-
LAB/Simulink environment. We presented a mechanism to
emulate the individual approaches by introducing the con-
cept of a Simulink block that is not characterized by the typ-
ical zero-execution time behavior but whose execution may
last for and optionally consume a finite amount of simulation
time. This reduces differences between the simulated control
algorithm and its real code behavior. A rate monotonic sched-
uler implementation allowed us to simulate task preemption
effects in multi-rate Simulink models.

REFERENCES
[1] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
Robert, and D. Simone. The synchronous languages 12 years later. In
Proc. of The IEEE, 2003.

[2] G. C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Aca-
demic Publishers, Boston, Massachusetts, 2002.

[3] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorf-
fer, S. R. Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy
approach. Proc. of the IEEE, Special Issue on Modeling and Design of
Embedded Software, 91(1):127-144, January 2003.

[4] E.Farcas, C. Farcas, W. Pree, and J. Templ. Transparent distribution of
real-time components based on logical execution time. SIGPLAN Not.,
40(7):31-39, 2005.

[5] N. Halbwachs.
Kluwer, 1993.

Synchronous Programming of Reactive Systems.

[6] D. Henriksson, A. Cervin, and K.-E. Arzen. TrueTime: Real-time con-
trol system simulation with MATLAB/ Simulink. In Nordic MATLAB
Conf., 2003.

[7]1 T.Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-triggered lan-
guage for embedded programming. Proceedings of the IEEE, 91:84—
99, January 2003.

[8] T. Henzinger, C. Kirsch, R. Majumdar, and S. Matic. Time safety
checking for embedded programs. In Proc. International Workshop on
Embedded Software (EMSOFT), volume 2491 of LNCS, pages 76-92.
Springer, 2002.

[9] T. Henzinger and J. Sifakis. The embedded systems design challenge.
In Proceedings of the 14th International Symposium on Formal Meth-
ods (FM), Lecture Notes in Computer Science. Springer, August 2006.

[10] D. Iercan and E. Circiu. Modeling in Simulink temporal behavior of
a real-time control application specified in HTL. Journal of Control
Engineering and Applied Informatics (CEAI), 10(4):55-62, 2008.

[11] C. Kirsch and R. Sengupta. Handbook of Real-Time and Embedded

Systems, chapter The Evolution of Real-Time Programming. Chapman
& Hall/CRC, 2007.

[12] J.Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2000.

[13] S. Mellor, K. Scott, A. Uhl, and D. Weise. Model-driven architecture.
In J.-M. Bruel and Z. Bellahsene, editors, Advances in Object-Oriented
Information Systems, volume 2426 of Lecture Notes in Computer Sci-
ence, pages 233-239. Springer Berlin, Heidelberg, 2002.

[14] A. Naderlinger. Execution-time aware Simulink blocks.
SpringSim’12, 2012.

Poster,

[15] A. Naderlinger, J. Templ, and W. Pree. Simulating real-time software
components based on logical execution time. In SCSC '09: Proceed-
ings of the 2009 Summer Computer Simulation Conference, 2009.

[16] OSEK/VDX. Operating system specification 2.2.3, February 2005.

[17] T. W. Pearce. Simulation-driven architecture in the engineering of real-
time embedded systems. In Proc. of RTSS-WIP, 2003.

[18] G. Stieglbauer. Model-based Development of Embedded Control Soft-
ware with TDL and Simulink. PhD thesis, University of Salzburg, 2007.

[19] The MathWorks. Simulink, User’s Guide, R2011b, 2011.

[20] G. Wang, M. D. Natale, P. J. Mosterman, and A. Sangiovanni-
Vincentelli. Automatic code generation for synchronous reactive com-
munication. In Proc. of ICESS, Washington, DC, USA, 2009. IEEE
CS.

