Framelets—small is beautiful

Wolfgang Pree Kai Koskimies
Software Engineering Group Nokia Research Center
University of Constance Box 45
D-78457 Constance, Germany FIN-00211 Helsinki, Finland
pree@acm.org kai.koskimies@research.nokia.com

Abstract. The contribution introduces the notion of framelets. They are essentially small frameworks. Thus
framelets can be easily understood and modified. As framelets are not aimed at complex application domains,
they can also be assembled without the problems associated with the combination of large frameworks. Our
first experiences with framelets demonstrate that these architectural building blocks allow the integration of
framework technology into legacy applications. Furthermore, framelets might form a suitable means for
structuring software architectures.

1 Frameworks and legacy applications

Conventional wisdom implies that legacy applications and framework technology do not
match well. Framework experts usually advise the development of a domain-specific
architecture for the domain at hand. The legacy application would have to be replaced by the
adapted framework. Most companies are not willing to pursue such a radical approach,
which renders the investments into legacy applications worthless. Furthermore, the
development of a complex framework from scratch represents a formidable risk. The brilliant
architects who would be able to design domain-specific frameworks are often not available.

This situation forms the starting point of our considerations, i.e., how framework technology
can be harnessed in the realm of legacy applications. The legacy system at hand is a client-
/server application of a bank. Our approach is straight-forward: Taking a look at the overall
conventional system architecture and then at the underlying source code reveals that some
qguite small aspects of the system are implemented numerous times again and again in a
similar way.

For example, the legacy application relies on remote procedure calls (RPCs) implemented in
C. The code associated with a particular RPC implies tedious programming work, in
particular handling the parameter value transfer for each RPC. For example, the return
parameter types are C-style arrays, which have to be properly processed. The RPCs are too
diverse to come up with a simple reusable procedure/function. Instead we found that a small
framework is the solution in order to automate the calling of remote procedures. The hot spot
of the RPC framelet is the processing of parameters.

Another example of reimplemented code can be found at the client side of the legacy system.
Most dialogs provide one or more list boxes (a.k.a. grid controls) together with buttons to

add items to the list box, and to modify and remove them. Thus these GUI elements and their
interactions have to be implemented again and again. The associated programming task is



another typical example of a piece of programming work that can easily be packaged into a
small self-contained framework. The hot spot of the so-called list box framelet is the dialog,
which displays an item. Figure 1 shows a sample specialization of the list box framework.
The dialog on the left-hand side consists only of the framework’s GUI and the button labeled
Close. The arrows in Figure 1 indicate the interactions between the framework components.

List

open empty dialog

taier [12345; card) = Add
Schmidt [30000; card)

it Wodify | opendialog &
Jackson (54367 no card) S w&m ™ .ange ltem
Huber [44553; card) emave |

teier [54738; no card) additem
Leitrer [40034; card] < =]

Close |

Name: |Schultze
Account number: ISSSSS Cancel |

™ Has Card

Hot Spot

Figure 1 A sample specialization of the list box framework.

Besides the RPC framework and the list box framework, we found a few other aspects that
could be packaged as small frameworks. All these frameworks are implemented in Java and
deployed as Java Beans. As the legacy application is steadily extended (new dialogs) and
changed, application developers already reuse these assets. Other parts of the legacy
application are simplified by replacing source code fragments with calls to these frameworks.
This reduces significantly the source code size and thus the maintenance costs in the long
term. The next section will introduce the concept of a small frameWvarkelet and discuss

its relationships with other architectural concepts.

2 Framelets as architectural units

The conventional idea of an application framework as an application skeleton has well-known
drawbacks: a framework easily becomes a large and tightly coupled collection of classes that
breaks sound modularization principles and is difficult to combine with other similar
frameworks. Complex, implicit specialization interfaces are hard to manage by application
programmers. For a discussion of problems in application frameworks, see for example
Fayad and Schmidt (1997), Sparks et al. (1996), Lewis (1995), and Casais (1995). Our
thesis is that only small software units should be white boxes.

These considerations and our experiences with re-organizing legacy systems led us to the
concept of aframelet a small framework. In contrast to a conventional application
framework, a framelet

* issmallin size (< 10 classes),
» does not assume main control of an application,

* has a clearly defined simple interface.



Otherwise a framelet follows the general principles of frameworks, in particular the
Hollywood principle. Essentially, a framelet is thus a component that defines two interfaces:
one for calling its services and another to be implemented by the specializer. This notion is
particularly suitable for re-organizing legacy code: if one removes a part of a legacy system
that represents some logically related services, usually that part will then contain dangling
calls to other services provided by the rest of the legacy system. The latter calls correspond to
the specialization interface: An implementation of the called routines must be provided in
order to make the removed part functional. If the removed part is intended to become a
reusable unit, the implementation of these routines can be given in different ways by different
reusers. A natural way to implement such a unit is a small framework, that is, a framelet.

The relationships between framelets, layered architectures, components and application
frameworks can be explained as follows. Assume that a system has been organized as a
layered architecture, and that you wish to make different layers reusable in other systems.
First, consider the uppermost layer. If this layer is disconnected from the system, there will
be a set of services that are called but not implemented in the layer. On the other hand, the
only interface through which its own services can be accessed is the Ul. This corresponds
therefore to an application framework: the layer is a semi-finished application.

Consider next the lowest layer, or a part of it. When disconnected, such a unit provides an
interface for the services it implements, but it needs no specialization. This corresponds to a
conventional black-box component.

Finally, consider a middle layer. If the middle layer is disconnected as a separate unit, there
will be both an interface defining the services provided by the unit itself, and another
interface specifying the methods that have to be implemented by a lower layer to make the
unit functional. Such a unit could be implemented as a single framework with large service
and specialization interfaces, but this kind of unstructured framework would be very hard to
understand and use. The idea of a framelet is to split this framework into smaller parts
corresponding to slices of a middle layer, with independent service and specialization
interfaces. Hence, framelets can be viewed as a means to bring structure to reusable
software.

References
Casais, E. (1995): An Experiment in Framework Development. Theory and Practice of Object Systems 1, 4,
269-280.

Fayad, M. and Schmidt, D (1997) Object-Oriented Application Frameworks. CACM, Vol. 40, No. 10,
October 1997.

Lewis T., Rosenstein L., Pree W., Weinand A., Gamma E., Calder P., Andert G., Vlissides J., Schmucker K.
(1995):Object-Oriented Application FrameworKglanning Publications/Prentice Hall.

Sparks S., Benner K., Faris C. (1996): Managing Object-Oriented Framework Reuse. Computer 29,9;
September 96.



