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Abstract. The goal of this paper is to descrithe design and impleentation aspects of

a framework architgture for decision support systems thaely on artificial neural
network technology. Besides keepitige design open for supporting variougural
network models, a smootimtegration of neurahetwork technologyinto a decision
support system forms another important design goal. Many conventigpiementations

of suchdecisionsupport systems suffer fromlack of flexibiity, thatis, theyare built

for a particular application domain and rely on one specific algorifiinthe intelligent
engine. In general, fodifferent applicationdomains,large portions of the decision
support system have to be reimplemented from scratch. The principal contributions of this
paper are: the description of flexible and reusablepom@nts forcore aspects of neural
networks implementations, the integration of different neungtwork models in a
decisionsupport systemand the presentation of a decisisumpport systenarchitecture

that can be easily adapted to handle different doprahlems.The chaptefirst outlines

the flexibility problems of aypical conventional implementatioand then goes on to
discuss in detail the overall architecture of the object-oriented redesign together with some
relevant implementation aspects.

Key words: frameworks, object-oriented design, object-oriented architectures, decision
support systems,artificial neural networks, hybrid intelligent systems, software
reusability.
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1 An overview of the domain area

One characteristic ofotnputer-based decisigupport systems is that thelgal with
complex, unstructured real-world tasks (Bonzek, 198&j's take alook at a sample
application of a decision support systentha realm of a maibrder reseller. Customers

order goodstypically via telephone or byending an order form. The information
associated with aorder, such ashe value oforderedgoods, the customer'shome
address and the customer’s age are useful for customer’s classification. For example, the
marketing departmemteeds such elassification to optimize the selection afiistomers

who receive informatiorbrochures regularly. In order implement acomputer-based
decision support system for the classification task, the mail order reseller proladgs a
amount of customer data from recent years that describes customer behavior.

The construction of decision support systems reqtin@sntegration of several methods
from knowledge engineering aradtificial intelligence (Al)researchareas. Anadequate
decision support system should:

Have sufficient knowledge about the problem domain

Be able to learn

Have logical, deductive, and inductive reasoning capabilities
Be able to apply known solutions to analogous new ones
Be able to draw conclusions

Expert systems represent a well-knovemample ofthis kind of system. In order to
overcome several problems of expgystems such as difficulties building up a huge
consistent knowledgbase,so-called hybricsystems were proposddedo and Rocha,
1990). They try to integrate various single Al technologiepaticular expersystems,

artificial neural networks, fuzzy logic, genetic algorithms and case-based reasoning.

Artificial neural networks support knowledge acquisition and representation. Fuzzy logic
(Kosko, 1992) isuseful tomodel imprecise linguistigariables, such apredicates and
quantifiers (expressions like high, short, etc). Genetic algorithms excel in the ability to do
deductive learning (Lawrence, 1991). Case-based reasoning remembers previous
problems and applies this knowledge to solve or evaluate new problems.

Why build a framework for decision support systems?

Onedifficulty in implementinghybrid systems ighe smoothintegration of thevarious

single Al technologies. A hybrid system should also be flexible enough to solve problems
in several applicatiomlomains.Medsker and Bailey1992) discusshe formeraspect,
whereas thishapterfocuses orthe latteraspect. We assume thae reader igamiliar

with the most basic concepts of artificial neural networks and expert systems.

In artificial neuralnetworks (ANNSs) softwarelevelopment it is common to redevelop
models from scratckach time aifferent applicationmust be accomplishedhere are
some toolsthat tries to avoidhis and help orthe main ANN development aspects
offering some pre-defined buildingdeks. Unfortunately, in generathese tools are
commercializedsoftware andheir structure is not opefor analysis.Various important
aspects of ANN development must be cited here. ANN software developers usually:

» Think about only one neural model to solve a specific application problem.
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« Come up with too specific implementations for a particular problem.

» Are worried abouthe ANN performance and not about the construction of different
ANN models and its reusability in different problem domains.

Thus object-oriented (OO) design and implementation have hardlyappéed so far in
this domain area. Our intention is to build a flexible OO architectuoeder to solve the
following problems related to the implementation of decision support systems:

* The architecture should be extensible to deal with additional neural models.

» Flexible ANN architectues that can change their structure and behaviounatime
allow experiments for gaining better results.

* It should be easy to have different models of neural network matigtisbuted over a
network. Inthis way, asuitable solution of a decision problezan befound more
quickly.

In thelong term,the OO architecture couldrm the basis ofbuilding up hierarchies of
ANNSs working together, cooperatingnd acting asntelligent agents in a distributed
environment.

We chose Java as implementation language. Neural networks form &egbbdd to test

the performance of Java, in particular when just-in-time (GbRpilation isapplied. The

first comparisons witithe conventional C implementations revealed that there are no
significant performancéosses, ifthe virtual machineand JIT compiler are reasonably
well implemented.

2 Characteristics and problems of a conventional architecture

Hycones (short for Hybric€Connectionist Expert Systerhedo1993) is a sample hybrid
systemthat is especiallydesigned for clssification decisionproblems. Thecore
technology isartificial neural networks based omhe Combinatorial NeuraModel
(Machado and Roch&989, 1990). Theexperiments with this modgdroved that it is
powerful for classificationproblems, having good results fronmedical diagnosis to
credit analysis (Led@993a,Reateguil994, da Rosa 1995)Y.his section starts with a
discussion othe principal features dflycones.Based on this overviewhe problems
regarding its flexibility areoutlined. These problems were encountesden Hycones
was applied to different domains.

2.1 Hycones as generator of decision support systems

The fact that Hycones is a generator sysaneady indicates that thiesign of ageneric
architecture constitutes an important goal rifjptm the beginning. Unfortunately, the
conventional design and implementation did not provide the required flexibility as will be
outlined in section 2.2.

The first step in using Hycones is to spedifig inputnodes and output nodes of the
ANNSs that are generated. In the case of a customer classificatiemstrse inputnodes
correspond tdhe information on therder form. Hycones offerdifferent datatypes
(e.g., Boolean values, fuzzy value ranges) to spéo#yinputnodes. The outputades,
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hypotheses, correspond tlee desired decisiosupport. Inthe case of the customer
classification system, the customer categories become the output nodes.

Output Neurons O O
?

lnputNeuronso O O O O

HYCONES

Output Neurons

Combinatorial Neurons

Input Neurons

Figure 1 Hycones as ANN generator.

Based on the information describaldove, Hyconegenerates the Combinatorial Neural
Model (CNM) topology depending on sonalditional parametergrarious thresholds,
etc.). Figure 1 schematically illustrates this feature of Hycones. Edhlh ebmbinatorial
nets contributes to the overall decision.

Learning

We discern inductive and deductive learningechanisms. Inductive learning is
performed throughhe training of the generate®NN based oravailable dataising a
punishment and rewamgorithm and arincremental learning algorithm (Machado and
Rocha, 1989). Inductive learning allowsautomatic knowledge acquisition and
incremental learning.

Deductive learning can be implementidough geneticalgorithms. Thismight imply

further modifications in thdopology of the ANN, creating orrestoring connections
betweenneurons.Deductive learning is not implemented in the curreaetsion of

Hycones.

Inference

Once the generated ANN fsained, Hycones pursudise following strategy toccome up
with a decision for one specific cageg. acustomer): ThANN evaluates the case and
calculates a confidence valfer eachhypothesis.The inference mechanisfimds the
winning hypothesis and returns the corresponding result.

Expert rules

Additional expert knowledge can be modeled in expert rules (Ledo and Rocha, 1990). For
example, rules describingypical attributes ofcustomers belonging to particular
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category could be specified for theail order decisiorsupport system. Such ruleaply
modifications of the weights in the ANN. Figure 2 exemplify this Hycones property. The
expertrule 13 & 14 & In => OZorresponds tthe strengthened connections among the
input nodes 13, 14 and In, one thfe combinatorial nodes, and the outpatle O2 of an
ANN.

0Ol 02

Figure 2 Incorporating expert rules into the ANN topology.

2.2 Adaptation problems

Despite of the intention oHycones to be aeusable generator of decisi@upport
systems,the Hycones immgmentationhad to be changed fundamentallgr each
application domain over the recergars. Inotherwords, the Hycones system had to be
implemented almost from scratch for eaxgw applicationdomain.What are theeasons
for this unsatisfying situation?

Limits of hardware & software resources

The first Hycones version is implemented in CLOS. CLOS simplifiesmplementation
of core parts oHycones,but the executiortime turns out to bensufficient for the
domain problems at hand.

In subsequent versions of Hycongmrts of the systemare even implemented on
different platforms to overcome performance problems and memory IFoitsexample,
the ANN training algorithm is implemented in C on a Unix workstationvaS chosen to
gain executiorspeed.Other parts ofHycones, such as dnteractive toolfor domain
modeling by means of specifying expautes, are implemented oRCsand use Borland
Delphi for building the GUI.

Complex conceptual modeling

This issue is also related to performance probleétgsopnesmanages the complex ANN
topology by storingthe information ofall the connections and theicorresponding

weights in nain memory. (Hycones provides nmarallelization ofANN training and

testing.) Due to memory limits, only parts of the ANN structure can be kept there and rest

is stored in a database. Roughly speaking, database records represent the connections and
weights of one ANNtopology. Overall this forms aquite complex conceptuahodel,

involving overheadvhen swapping ANN weightsetween memory and database. The

way the information about the generafeldN is stored indatabase tabldsas had to be
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changed several times to be optimal for the database system in use. These changes are not
only tedious but error-prone.

The fact that Hycones became a hybrid system also regarding its implementplies
complex data shifting between different computing platforms. The parameters comprising
the specificatiorfor the ANN generation are entered &Cs, buthe ANN training and
testing is done orUnix workstations. Finally, ifthe user prefers to work with the
decisionsupport system oRCs, the generated and traindNN have to be transferred
back from the Unix platform to the PC environment.

Neural network models

Hycones supports only one ANN modtile Combinatorial Neurdodel, but it should
be possible to choose from a set of ANN modbés one that isest suited for the
decision support problem at hand.

Conversion of data

Companieghat want to applyHyconeshave to providedata for ANN training and
testing. Of course, various different ways of dealing with this data have to be considered.
For example, some&ompanies providedata in ASCIlI-format, others agelational
databaseables, others asbject databasesThe data readrom thesesources must be
converted to valid data for the ANN input. This conversion is done bastt @omain
knowledge, which also changes from application to application. Though this seems to be
only a minor issue and a small part of the overall Hycones system, experience has proven
that a significant part of the adaptation work deals with the conversion of training and test
data.

In order toovercome theroblems mentionedbove, Hycones is conagtely redesigned
based on framework construction principles. The problentseo€onventionaHycones
implementation form a goostarting pointfor identifying the required hospots (see
another chapter in the book: Hot-Spot-Driven framework Development). The next section
presentsthe hot-spot-driven redesign and impientation of Hycones in anobject-
oriented way.

3 Design of a neural network framework architecture

We usethe termJavaANN-Businesscomponents,Java-ABC for short, because the
resulting set of frameworks implemented in Java. The hgpots ofJava-ABC can be
summarized as follows:

* ANN training: Java-ABGshould supporseveralANN models. Asmentionedabove,
Hycones is restricted to one specific model, the Combinatorial Neural Model.

» Data conversion: Java-ABGhould provideflexible mechanismdor convertingdata
from various sources.

» The ANN internal structure and behavior chand@esn model tomodel, but some
significant aspects can be kept flexible ander to facilitate any ANN model
implementation.

Modeling the core entities of th&NN, neuronsand synapses, as objects solves the
complex conceptual modeling élycones. Instead of storintpe generatedANN in
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databaseables,the topologies areaved as objectgia Java’sserializationmechanism.
The object-oriented model al$orms the basis forthe parallelizatiorand distribution of
ANN learning andeesting, however those aspeet® not related to fraeworks, we
won't discuss them in this paper. Finallyeing Java a portable language and system
solves the problem of the splitting of the original system soflosystemémplemented in
various programming paradigms on differguiatforms. Java-ABCruns onall major
computing platforms.

3.1 Object-oriented modeling of the core entities of neural networks

Neuronsandsynapses of ANNsimic their biological counterparts and fortihhe basic

building blocks of ANNs. Java-ABC provides two classes, NeuronSymapse, whose

objects correspond to these entities. Both classes are abstract and offer properties that are
common to different neural networkodels.The idea is that thes#asses provide basic
behavior independent of the specific neuralwork model. Subclasses atie specific
properties according to the particular model.

Receptor Neuron
Synapses

Source Neuron

Figure 3 The relationship between Neuron and Synapses objects.

An object ofclass Neuron hathe activation as its interngtate, provides methods to
calculateits activationand to manage a collection &ynapses lgects thatprocess
outgoing signals of a sourceeuron. A Synapsebjectrepresents airected connection
between two neurons (see Fig@®e Theincoming signal from one neuron psocessed
and forwarded to the neuron on the outgoing side of the synapse. Thus, a Syjegise
hasexactly one Neuronobject connected td, that is thesource ofthe computational
flow. ThereceptorNeuronmanages a list afynapsesand computes itscéivation from
all incoming synapsesExample 1shows some aspects ahe Neuron and Synapse
classes.

Example 1 Neuron and Synapse classes.

public class Neuron extends Object implements Serializable {
float currentActivation; // stores the resulting activation computation
Vector incomingSynapses; // vector of input Synapse objects
ComputationStrategy compStrategy;
/I strategy for processing input values (see explanation in the text)
Neuron () {incomingSynapses = new Vector();}
Neuron (Vector sourceNeurons) {
incomingSynapses = new Vector();
generateSynapses(sourceNeurons);
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void compute() {
Synapse s;
for (int i=0; i<incomingSynapses.size; i++) {
S = incomingSynapses.elementAt(i);
s.compute();// calculates next pathway current flow
}
/I take Synapses currentFlow and apply its own calculation strategy
currentActivation = compStrategy.compute(incomingSynapses);

}
void generateSynapses(Vector sourceNeurons) {
Synapse s;
for (int i=0; i<sourceNeurons.size; i++) {
s= new Synapse(sourceNeurons.elementAt(i));
incomingSynapses.addElement(s);
}
}

float getCurrentActivation() {return (currentActivation);}
.../l other methods are implemented

}

public class Synapse extends Object implements Serializable {
Neuron sourceNeuron; // the neuron that the synapse receives computation
ComputationStrategy compStrategy;
/I strategy for processing input values (see explanation in the text)
float weight; /I synaptic weight
float currentFlow; /I stores the result of synapsis computation
Synapse(Neuron newSourceNeuron) {
weight = (float)1.0;
sourceNeuron = newSourceNeuron;
}
void compute(){
sourceNeuron.compute();
currentFlow = compStrategy(getCurrentActivation(),weight);
/I calculate currentFlow using the incoming activation from the
/I sourceNeuron and the synaptical weight
}
void setWeight(float newWeight) {weight = newWeight;}
float getWeight() {return (weight);}
float getCurrentFlow() {return (currentFlow);}

}

As the synapse knowsts sourceneurons,different neuron architeates can be build
such as multilayer feedforward or recurreetworks. The process ofeating the neural
network architeture is controlled by a method callgénerateNet() and belongs to the
class Netlmplementation that is explained in the se@&i@nEach neurahetwork model

is responsible by its ehitectureconstruction.Different neural modelsise the Neuron
and Synapse classes the basic buildingblocks forthe neuralnetwork structure and
behavior construction.

Using Neuron and Synapse classes to create a feedforward architecture

In case of a multilayer feedforward neural netwankially the neurons forall necessary
neuron-layers arereated. Laterthe necessary synapses tmnnect theneurons at
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different layers arecreatedand correctly connected to theeuron layers. Alist of
synapses (called incommingSynapses) controls each instance of Synapse that connects an
output neuron to a hidden neuron. The class Neuron (see Example 1) impleméists this
When creating instances of tlskass Synapse (sdexample 1 —class Synapse), it is
informed in its constructor to which hidden neuron it must be connéldtedreference to

the hiddenneuron is stored inhe instance variableourceNeuron. This process is
repeated for all network layers. The method generateSynapsis(Neuron sourceNeurons) in
classNeuron, is responsible fahe generation oBynapse instances and @ppropriate
connection to source neurons.

The software ahitecture explained aboweas successfully used tmplement different
neural network models involving different neural network architectures. Besides the
CNM model, the Backpropagation (Rumelhart and McClellad®86) network was
implemented as another feedforwamdtwork. The Self-Organizing Feature-Mapping
(Kohonen, 1982) wasnplementedepresentindattice structures with two-dimensional
array of neuronsFinally the Hopfield Network (Hopfield, 1982) wasnplemented as
recurrent network architecture example.

The implementation of recurrent computation in theposed afdtecture implies
synchronization of the computational flow by choosing which neuron is going to process
in a learning step. Randomly choostihg nextneuron to compute ithe typicalsolution
(Haykin, 1994).

A classcalled Netlmplementation is tightlgssociated with claddeuron (this class is
explained in the sectioB.2). Roughly speaking, &letimplementation objedtarnesses
the ANN in order to make decisions. The Netimplementation objeaepresents the
inference engine (= neural network model) of thiening Java-ABGystem. Itsabstract
interface reflects theveeds ofthe decision makingrocess. For example, rethod
getWinner() computes which output neurbas the maximum activationDue to the
abstract design oNetManager and\euron, Java-ABC supports different inference
engines. How to switch between different ANN models is discussed in the next section.

3.2 Support of different neural network models through the Separation
pattern

Java-ABCshould beflexible regarding its underlyindNN model. It depends on the
particular decision problem at hand, which ANN model proves thdmost appropriate
one. Thus the design should allow the trial of different ANN models.

Java-ABCshould beable to managerarious ANN models tryinghe solution for a
specific problem at the santiene. Several neural modetanrun atthe sameime in a
distributed way. To handle thidea theclassNetManagemwas createdThe NetManager
class is responsible for controlling, at run time, a set of instancelffefent neural
models, oreven a set of instances of the same neural modelwiiht different
configurations.

As the learning of a neural model can takays, itcan be interesting to change the
underlying ANNmodel atrun-time. It is necessary to allothe user to add new ANN
models at run-time in order to start different learning trials duhedgearning or testing
process of other neural models, without stoppimgprocesseslreadystarted. It is also
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desirable to allow changes in the ANN that is already learning. This rtreapsssibility
of adding or deletingneurons andsynapses orthe ANN structure and @mnging its
behavior by changing learning strategies and tuning learning parameters. To have these
kinds of simulation characteristics, it is necessary to hawgite flexible architecture
design. This design was obtained through the hot-spot-driven design methodology.

To permit the addition of new neural models at run-time, it is necessanplEment the
NetManager witithe Separatiopattern.The NetManager have a list of instances of the
Netimplementationclass that areresponsible fordifferent ANN implementations. A
specific ANN model is defined bysubclassingNetimplementation and overriding the
corresponding hook methods suchgasWinner() and compute(). Figureekemplifies
how three commonlyused ANN modelscan be incorporated in Java-ABC:
Backpropagation, SOM and CNM.

NetManager ! Manages B +| NetImplementation
abstract
BackPropagation SOM CNM

Figure 4 ANN models as subclasses of Netimplementation.

The neural network behavior

Specific ANN models also imply the need for specific behavior of the classes Neuron and
Synapse. Asimple solutiorwould be tocreatesubclasses of Neuron ar®ynapse, but

this solution wouldgenerate a nested hierarchy becdosesach neuramodel, similar
subclasses of Neuron and Synapses would be created. For exartipecase of CNM

the subclasses woultlave the name€NMNeuron andCNMSynapse. CNMNeuron
would factor out commonalties of the CNM-specifidasses CNMInputNeuron,
CNMCombinatorialNeuron and CNMHypothesisNeuron. Backpropagation the same
would be required.

To avoid this, the Bridge patterrvas used(Gamma etAl. 1995). This pattern is
equivalent to the separatidtetapatternPree, 1996)and thus hathe ability to change
neural network behavior at run-time. Figure 5 shévesapplication othis pattern to the

class Neuron. Itapplication is similar to thelassSynapse. Neuron is abstract class
having the threemost common neuron types as imibclasses: InputNeuron,
HiddenNeuron,and OutputNeuron. Thegbree classesare themost common in the

ANN implementations. The names refer to the layers they belong to. The hidden layer can
be of any size, and always reuse the HiddenNeuron class to bdild/ineural model is
based on these Neuron classes.
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The necessary behavior each neural model is added to thekesses by composition
throughthe associated abstradiass ComputationStrategy(see FigGje The different

behaviorsare implemented isubclasses o€omputationStrategy and can bheed by

different model implementatiorthrough the classes Neuron an8ynapse.The class

Synapse also has a relationship with the class ComputationStrategy.

Neuron 1 applies a 1 ComputationStrategy
Abstract Abstract

TN AN

InputNeuron HiddenNeuron OutputNeuron FuzzyOR FuzzyAND Multiplicator

Figure 5 Design of flexible behavior based on Bridge Pattern.

The ComputationStrategy class alsmplements the patterRlyweight (Gamma et Al.
1995). Theframework has only one itace of each ats subclassesEach instance is
shared by darge number oNeuron and Synapse instances. This keilbpsmemory
footprint significantly smaller and improves the behavior reusability.

An important design issue is that a developer who uses Java-ABC does not Wwavey to

about which specifisubclasses of Synapse and Neunom associatedith a particular

ANN model. In order to resolvéhis, the Factory pattern (Gamma el. 1995) was
applied. A concrete subclass of Netimplementation such as CNM already takes care of the
correct instantiation of Neuron and Synapse subclasses (see below).

CNM-Adaptation of Java-ABC

A sample adaptation of Java-ABC exemplifies thecessary steps to adjust the
framework components to a specific neural networkdel. For thisreason, it is
necessary to discuss the inner working (see Figure 6):
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CNM

manages listof Output Neurons

Output Neurons . . applies a

FuzzyOR
applies a Multiplicator

Upper Synapses

b) Hidden Neurons .

", arp lies a Multiplicator

<
S,
a

Figure 6 Building CNM architecture.

a) The CNM object isresponsible forthe creation of OutputNeuron objedisalled
Hypothesis neurons ithe CNM definition, Machado 1990), with the FuzzyOR
behavior.

b) An OutputNeuron instance then creatgapse olects that automatically create
HiddenNeuron instancegalled combinatorialneurons inthe CNM definition,
Machado 1990), with the FuzzyAND behavior.

c) The connections between thiiddenNeuron instances attie InputNeuron instances
are established in amalogousvay. The Synapsmstances of a CNM model have
similar behavior to the Backpropagation model using the $dutigplicator behavior,
that simple do the multiplication of the input activatieith the synaptic weight and
return the result.

For the neuralnetwork generatiomprocess,the Netimplementatiorsubclasses (in this
case the CNM object) rely on the problem-specific domanmowledge, whose
representation isliscussed irSection3.3. The basic idedehind the CNM inference
machine is thahumerous combinationghe smallnetworks that fornthe CNM hidden
layer) all test a certain case for which a decisioneisessaryAdding the activatiorirom

all combinations amounts tine OutputNeuron activation. The OutputNeureith the
maximum accumulated activation is tkénner (FuzzyOR).The CNM object also
provides an explanation lpalculatingthose inpuineurons that most strongly inénced
the decision. Machado and Rocha (1989, 1990) discuss the CNM-specific algorithm.

Adding behavior to a multilayer feedforward architecture

The computation of aase,either learning otesting, is done ithe following way: The

object Netimplementation knows the instances of outputons thaare implemented in

the structure already created. The result value of a case computation is implemented by the
output neurons’ compute() method acah be retrieved by thgetCurrentFlow(method
(seeExample 1 —classNeuron). TheNetimplementation objeatequestscomputation
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from the output neurons by calling the compute() methodsl ekistent outpuheurons.
When the outpuheuron is requested to do its computation, it first requires its list of
incomingsynapses to dthe same. The synapses alsave a source neuron thhey
request to do its own computation (see Example 1 — class Synapse).

The source neuron is a hidden neurontha architecture and its compute() method
implementation also requests the computation of the connected synapseswhy thise
request of computatiofiows from the outputneurons tothe inputneurons.The input
neuron instance’s behavior is simply to take the activation from outsideatoldoéo start
the ANN dataprocessing. This activatiocomes fromthe class Attribute, explained in
Section 3.3. In short, the Attribute classes prepare the activation values frdatahead

in the datasources.These preparedata (activation) idransferred tahe inputneuron
instances on demand.

When the computatioflows goesback fromthe inputneurons tathe outputneurons,

each synapse and neuron object then is able to deetessargalculation it issupposed

to do and return it to the object that requested (otterrons andsynapses). The
instances of class ComputationStrategy do this calckloally, the compute method of

each output neuron gettse computationalesults ofall connectedsynapsesnd does its
appropriate computatiof.he resulting values then can be consuttedughthe output
neurons getCurrentFlow() method. The Netimplementation object is able to evaluate these
values and make a decision.

The computationaflow explaned above is a parallgirocessinternal to the neural
network architecture. Instances 8fynapse and Neuron ithe same layer can be
completely independent processes. Depending on the neural model, synchronization must
be implemented irorder get the correctesults and to have optimal performance. The
parallel implementation strategy of the computational flow is specific to each model and is
not explained here.

To complete the appropriate behavior of the implemented neeabrks, it isnecessary
to have them related to th@owledge representation tfe problemdomain. Thenext
section explaindlow the domain model influences and interagith the neurahetwork
architecture.

3.3 Domain representation and data conversion

As the principal application domain of Java-ABC is classificapooblems,the chosen
object-oriented design of this system aspect reflects common propertiEssfication
problems. On one hand, so-called evidences form the input data. Experts use evidences to
analyze the problem iorder tocome upwith decisions.Evidences in the case of the
customer classification problemould bethe age of austomer, his home address, etc.

One or more Attribute objects describe the value of each Evidence élge&xample, in

the case of the honmldressseveralstrings formthe address evidence. Tlage of a
customer might be defined as a fuzzy (§&isko 1992; da Rosa 1997) adlues:child,

youth, adult, and senior.
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Fuzzy | |\ p— | pe—, = —— =
Value | 0,6 == /
child youth adult senior
0,3 _— 7|-\
12 15 50 60

16 19 20

Fuzzy Sets

Figure 7 Fuzzy set example.

On the other hand, the pgtheses (classification categorie®nstitute a further core

entity of classification problems. In Java-ABC an instance of @assainrepresents the
problem by managing the corresponding Evidence and Hypothesis objectsD@izsn

again applies the Singleton pattern. Even based on classification problems and focused on
neuralnetworks learning algorithmshe design presented heoan also be extended to
supportgeneral domain representatifar symbolic learning strategies. Edward Blurock
(1998) goedleep in the domain representatimm machine learninglgorithms. Even

being completely independent works, btghd to quite similadesigns. Figure 8hows

the relationship among the classes involved in representing a particular domain.

N Hypothesis

Domain | _manages B> abstract

1 1 '

*V manages Y Is described by
Evidence | Is described by B * Attribute

abstract
NumericAttribute StringAttribute
FuzzyAttribute

Figure 8 Domain representation.

The training and testing of aANN are the principal features dava-ABC. For both
tasks,datamust be provided. Foexamplefor training anANN to classify customers,
data might come from an ASCII file. One line of that file represents one cusiamehe
customer’s evidences artde correct claggcation. After training the ANN, customer
datashould be tested. To do thagva-ABC getshe evidences of a customer as input
dataand must classifyhe customer. Thelatasource might, in this case, beaelational
database management system. It shoulddser from this scenario that Java-ABtas to



Neural Network Framework Components 15

provide a flexibledata conversion subsystenData conversion must bélexible at run
time, as the user mayish tochange the datsourceanytimeduring learning or testing.
Thus the Separation patterdiscussed inSection 3 is the appropriate construction
principle underlying this framework.

Two abstract classes constitute the framework for processing problem-sgataficlass
Fetcher and class EvidenceFetch@lassFetcher is abstractly coupled withe class
Domain (see Figured). A Fetcher object igesponsible forthe preparation/searching
operations associated withdatasource. Ifthe datasource is glain ASCII file, the
specific fetcher opens and closes the file. This includes some basic error handling.

1 hasa P 1 Fetcher
abstract

J X -

ASCIIFetcher RDBFetcher OODBFetcher

Domain

Figure 9 Dealing with different data sources.

ClassEvidence andlass Hypothesiare abstractly coupledith ClassEvidenceFetcher

(see Figure 10). Specific subclasses of EvidenceFetcher know hemeess thelata for

the particular evidence. For example, an EvidenceFetcher for redatafgom an ASCII

file stores the position (from column, to awin) of the evidence data withame line of

the ASCII file. An EvidenceFetchefor reading datdrom arelational databaseould

know how to access the data by means of SQL statements. Figure 10 shows the design of
theseclassespicking out only class Evidenc&he class Hypothesis has an analogous
relationship with the class EvidenceFetcher.

Note that the Attribute objects prepare the diaim externalsources so that theyan be
directly feed to the input neurons of the ANN (see Figure 6). This wortke fiollowing
way: each Evidence instance fetchts value fromthe datasource,and this value is
applied automatically taall atributes the evidencéias. Each attribute applies the
conversion functiorthat is inherent to the specific Attributdass. For example, the
StringAttribute conversion function receives the string ftbe database and compares it
to a given string modeled Hiie expert, returning 1 or 0 based on whettrer strings
match. This numeric value is stored by the attribute object and will be applied in the ANN
input byrequest. The ANNnput nodeshave a direct relationshipith the attributes of
the evidencgsee Figures). When the learning or testing erformed,each inputnode
requests from itgelative attribute thevalues previouslyfetched andconverted. The
attribute simply returns the converted value.
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Domain 1 manages P~ * Hypothesis
bgtract
1 1 ;
M manages y asd
Evidence I hasa  » 1| EyidenceFetcher
abstract

P N

ASCIIEvidenceFetcher RDBEvidenceFetcher OODBEvidenceFetcher

Figure 10 Data conversion at the evidence level.

Visual/interactive tools support the definition of the specific instances of EvidenceFetcher
and Fetchesubclasses. For exegle, inthe case of fetchinffom ASCII files, the end-

user of Java-ABC who does tdemainmodeling, simply specifiethe file namefor the
ASCIIFetcher objectand, forthe ASCIIEvidenceFetchenbjects, specifythe column
positions in a dialog box.

4 Summary and conclusion

The chapter illustratesow the uncompromising application diramework technology

leads tosystems withappropriate flexibility. Thechosen casstudy corroborates that a
sound object-oriented design of neural network components delivers the expected benefits
a conventional solution could nptovide. The currentdesign and impleentation of
Java-ABC is a generisystem decision-making system based on neweddiorks. An
ambitious goal is to enhance further tramework so that other decisiosupport
problems such as forecastintan be supported. Also ambitious is to allow the
implementation of other learning mechanisms that do not rely only on mesivedrks

such as machine learning algorithms.

This framework developed ithe Java-ABC project is the bak®w the new Hycones
implementation that is planned to b@ew product fordecisionsupport.The framework
design is givingflexibility and reliability to thesystem. Its goalare being expanded
from a classificatory system with only one learnialgorithm to thepossibility of
implementing many different learning algorithsisch as clustering. Furthermore, some
experiments of the technology as a data mining tool have been toe design also
allows the framework to easily add other inmpétation facilitiessuch agparallelization
and distribution.

Currently, most excellent frameworks are products of a more ochessic development
process, often carried out in the realm of researchskitengs. Inthe realm ofdesigning
and implementing Java-ABC wieund tat hot-spot-analysis iparticularly helpful for
coming up with a suitable framework hrecture quicker. An explicit capturing of
flexibility requirements can indeed contribute to a more system@atimmework
development process.
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