8. Lean Product-Line Architectures for Client-Server
Systems — Concepts & Experience

Wolfgang Pree

Summary

This chapter describes the context and software engineering issues of a technology
migration project. Significant parts of a conventional client-server system have been
replaced by a set of lean product-line architectures implemented in Java. The applica-
tion of framework and Javatechnology |eads to better modularisation and to improved
component reuse. Experience has proven that the focus on small frameworks, called
framelets, and on partially self-configuring components are a key factor for rearchi-
tecturing legacy systems. A brief discussion of project management aspects and an
evaluation of the applied Java technology rounds out the chapter.

8.1 Introduction

CACS (Component Architectures for Client-Server Systems) is a cooperative project
between RACON-Linz Software GmbH, a software company of the Austrian Raif-
feisen banking group, and the Software & Web Engineering Group at the University of
Constance. CACS began at the end of 1997. The project started by eval uating whether
framework and Java technology could be applied in the realm of the RACON-specific
client-server architecture®. The following aspects had to be considered in particular:

e what are the implications of replacing a 4th generation language (4GL) tool for de-
veloping the client system parts with a devel opment environment based on Java? In
particular, can the object-oriented approach lead to a significantly better modulari-
sation?

e can Javaimprove the productivity compared to the 4GL tool ?

e what are the qualitative and quantitative differences between a Java and a 4GL
solution?

e istheintegration of server and host components possible? RACON uses a remote
procedure library implemented in C to manipulate data stored on the servers and
the mainframe.

In order to evaluate the various aspects of framework and Java technology, we imple-
mented representative system aspects resulting in a CACS prototype. It became clear

1 RACON-Linz develops three-tier client-server applications for the banking domain, consist-
ing of the host layer (mainframe), the server layer (currently Unix servers; the migration to
Windows NT is on the way) and the client side with Windows PCs.



146 8. Lean Product-Line Architectures for Client-Server Systems

quite early in the project that the available Java technology represented a viable al-
ternative to the Windows 4GL tools in use, and so the focus of CACS shifted to the
development of appropriate small product line architecturesin Java.

After presenting the characteristics of the CACS prototype’s architecture, this
chapter discusses how framework technology was applied in this specific setting in
order to gain reusable architecture components. Some facts about the project itself
and an evaluation of Javatechnology in the realm of CACS conclude this chapter.

2 ]
Eparch Ll
Huwe | Prreansl Hemiaer | A count Kemiaer | Teisom himas: | Compary bume I LiD-hirmkn I D W Hamiesr ||
Fams J I Lireii o sk s
RN =

FirmiFdura
Ciwie: o’ Bl
Cawth Annad

e Aukdrean i o Bt Feraoral b amded F ke

armrarminn | weaw |

Figure 8.1. Searching for customers with the last name Schwarzenegger

8.2 The CACS System: an End User Perspective

Two screen shots demonstrate the characteristics of the CACS prototype from the
perspective of an end user. The overall client system consists of several hundred di-
alogues analogous to the ones depicted in Figures 8.1 and 8.2. All these dialogues
provide quite simple GUI dialogue elements, such as edit text fields, pop-up menus,
buttons, and lists. The principal purpose of the dialogues is to enter data for queries
on the mainframe/server databases and to display the results.

For example, an end user wants to retrieve information about a bank customer by
means of the dialogue in Figure 8.1. The tab control alows the selection of various



8.3 Rearchitecting Client-Server Systems 147

I
Puriers on Dter imkoerashion

Frolasikn = a
Apnd Trbs Fam Siwie ii
Ml 211
el =
Foef Harre: i il et par! 7
LEg] HEn =L st Dot GO Cure. Do
Mame 3 Talsfan Humiaen
FasE 3 Frival
Ciwle i Birts 12360 -0 Duniresn
(LRSS T Epscini |
Sl |-
DPCEE T Bania MOnks Parzanad [ty |
e Wi B s Flaks o M Serams
Fimber BIE Fairm YT FrPAEw
- Hix | i [ Shos Macdy I
L= | S | Carecwl | Cwlabe I

Figure 8.2.Dialogue for editing customer data

search criteria such as name, personal identification number, account humber, and
telephone number. In the case of a name-based search, the end user enters the last
name, and/or first name, and/or the birthdate. After pressing the Search button, thelist
inthe lower half of the dialogue displaysthe search results, i.e. customerswith the last
name Schwarzenegger.

In order to display or modify the detailed i nformation associated with the customer
selected inthelist, the end user pressesthe Modify button in the dialoguein Figure 8.1.
This opens the edit dialogue (see Figure 8.2).

8.3 Rearchitecting Client-Server Systems

Many 4GL tools produce a monolithic architecture on the client side. All dialogue
windows form one executable which has to be loaded to a client — no matter how
small the percentage of required dialogues. From a development point of view, it is
hardly possible to package dialogues, or parts of dialogues, into reusable components.
From an architectural point of view, the module structure of the client system is quite
simple to envision: one dialogue forms one module. In some cases a small group of
dialogues might be packaged into one unit. Of course, object-oriented |anguages such
as Java and C++ allow such a modul arisation.

A closer look at the resulting module structure of dialogues reveals that almost
every such module contains one or more components for handling remote procedure
calls and one or more components for managing itemsin alist. Naturally, the compo-
nents differ in various contexts. For example, beforearemote procedureisinvoked, the
input parameters of the procedure have to be read out of specific GUI elements. The



148 8. Lean Product-Line Architectures for Client-Server Systems

number of parameters and the GUI elements differ between remote procedure calls
(RPCs). RPCsreturn their resultsin C-arraysthat have to beinterpreted properly. The
results are then displayed again in GUI elements. This infrastructure surrounding an
RPC isan example of source codethat hasto beimplemented again and again for each
RPC, but that offers similar functionality.

As with most dialogues in the real world client-server systems have one or more
GUI elementsthat display itemsin lists (by means of a GUI component called multi-
column grid control; see dialogue in Figure 8.1), interactions associated with lists are
also replicated in most dialogues. Pressing a button to add an item opens a dialogue
window for entering data. Pressing a button to modify an item aso opens a dialogue
window and transfers data representing the item to the corresponding GUI elements
for the purpose of editing them. The aspects that differ in the various list handling
components are the types of listed items, the dialogue window to display an item and
some details such as button labels and the location of buttons for manipulating the list
(for example, below the grid control or on the side of it).

Figure 8.3 illustrates schematically the problem of replicated componentsin the
architecture of the client-server system at hand. As proposed by Bass et al. [1], solid
arrows represent control flow, dotted arrows depict data flow. Though the size of the
replicated componentsis small (about 200 to 300 lines of source code), they are im-
plemented from scratch several hundred or even thousand times.

Sarver S Haal

Figure 8.3. Architecture of a client-server system with replicated components

In both cases — remote procedure calls and list handling — the differences be-
tween the specific instances are subtle, so a procedure/method with parameters would
not suffice. In each of the replicated code fragments a few componentsinteract. Thus
framework technology forms a sound basis for generically implementing these sys-
tem aspects. Figure 8.4 illustrates the idea for rearchitecturing such systems based on



Framework Technology and Reflection 149

small product line architectures. The two components representing the product line
architectures are shown as grey ovals.

Client

I
Yy

Server / Host

Figure 8.4. Architecture of the client-server system with two small frameworks

8.4 Framework Technology and Reflection as a Basis of
Self-Configuring Product-Line Architectures

For a detailed description of the concepts and construction principles of object-
oriented frameworkswe refer the reader to [5, 6, 2, 3]. Theterm framework impliesno
upper or lower limits regarding the number of its components:. the same is true for the
size of the particular components. Thus frameworks can range from one or afew sim-
ple classes to large sets of complex classes. Neverthel ess, the tendency in the software
community is to develop large frameworks comprising generic solutions for various
application domains, such as manufacturing, banking, health care, and process control
systems. Sparks et al. [8] discuss typical problems associated with complex frame-
works. Not only the design, but a so the reuse of such artifacts becomes difficult. The
integration of large frameworks forms another challenge.

We argue that the reason for these problems is the conventional idea of a frame-
work as a skeleton of acomplex, fully-fledged application. Consequently, aframework
becomes alarge and tightly coupled collection of classes that breaks sound modulari-
sation principlesand is difficult to combinewith other similar frameworks. Inheritance
interfaces and various hidden logical dependencies cannot be managed by application
programmers. A solution proposed by many authors is to move to black box frame-
works which are specialised by composition rather than by inheritance. Although this
makes the framework easier to use, it restricts its adaptability. Furthermore, problems
related to the design and combination of frameworks remain.



150 8. Lean Product-Line Architectures for Client-Server Systems

8.4.1 Framelets — Small is Beautiful

Given these problems, we propose a significant downsizing of frameworks and intro-
duce the term framelet [2] to emphasise that it is a small framework.
A framelet:

e issmall insize (< 10 classes);
e does not assume main control of an application; and
e hasaclearly defined simple interface.

Like any framework, a framelet can be specialised by subclassing and composition.
Our vision is to have a family of related framelets for a domain area representing an
aternative to a complex framework. Thus we view framelets as a means of modular-
ising frameworks. On a large scale, an application is constructed using framelets as
black box components: on asmall scale, each framelet is atiny white box framework.
The case studies in Section 8.5 exemplify a framelet family developed in the CACS
project.

Frameworks and framelets have in common that they implement flexible object-
oriented software architectures. For this purpose they rely on the constructs provided
by object-oriented programming languages. Thefew essential framework construction
principles, as described, for example, by Pree [6], are applicable to framelets as well.
A framelet retains the Hollywood principle characteristic of white box frameworks:
framelets are assumed to be extended with application-specific code called by the
framelet. In other words, the term framel et makes explicit that it is asmall framework.

8.4.2 Reflection Versus Abstract Classes and Interfaces

A framework consists of specific componentsthat interact with abstract ones; these are
called hot spotg6]. Usually, the abstract components are defined as abstract classes or
(Java) interfaces. The methods of an abstract component express the semantics asso-
ciated with a particular component. In typed languages this restricts the set of specific
componentsthat can be plugged into the framework. Only instances of classes which
are compatible with the abstract components can be plugged in. Usually, these arein-
stances of subclasses of the abstract classes or instances of classes that implement a
particular interface.

Instead of restricting the range of components with which the framework can in-
teract, we could allow any component to be plugged in the framework. Thisis done at
the programming languagelevel by choosing the most common class, in most libraries
called Object, as the required type. Systems that support meta-information allow var-
ious operations on any object, such as iterating over the methods, invoking methods,
iterating over the instance variables, and getting/setting the values of (accessible) in-
stance variables.

Onfirst consideration, this seems to be | ess than useful as no semantics are associ-
ated with these operations, as opposed to abstract classes or interfaces whose methods
define a specific type with an associated behaviour on which the framework devel oper
can rely.



8.5 A Sample Framelet Family 151

The advantage of such reflection-based hot spots that assets with a little bit of
‘intelligence’ can be constructed which exhibit self-configuring properties. The frame-
work or framelet generically couples itself with the objects that fill the hot spots.
In order to make this happen, some semantics have to be defined for the abstract
components. The sample framelets discussed in the next section apply a very sim-
ple mechanism for defining semantics, i.e. naming conventions. Note that the seman-
tic definitions are completely decoupled from the programming language level. They
reintroduce a notion of typing on a more domain-related level. Thus, proper seman-
tic definitions render void the drawback of giving up strong typing. They introduce
equivalence of types on the domain level. For example, the Oberon operating environ-
ment designed and implemented by Wirth and Gutknecht [9] heavily relies on generic
message handlers which correspond conceptually to reflection-based hot spots.

Naturally, naming conventions are probably one of the most basic means of defin-
ing semantics. We are currently investigating more sophisticated ways of pragmati-
cally defining domain-specific semantics based on speech acts[7].

8.5 A Sample Framelet Family

This section sketches the two core framelets developed in the realm of the CACS
project, the List Handling framelet and the RPC framelet. They were designed as
a framelet family, i.e. as two independent framelets that can nevertheless be easily
coupled. The List Handling framelet consists mainly of GUI components, the RPC
framelet is acomponent without GUI representation. Both are provided as Java Beans.

8.5.1 List Handling Framelet

Many dialogues on the client side contain one or more lists of items that have to
be displayed in a tabular view. The so-called grid control represents the appropriate
GUI element for this purpose. A grid control usually comes along with buttons that
alow the editing of the list of items, i.e. adding items to the list, removing items
from the list, and modifying selected list items. The interactions associated with the
corresponding buttons have to be implemented from scratch for each such list, no
matter what specific items are handled. For example, the Modify button should only
be enabled if an item is selected in the list. The List Handling framelet generically
implements these interactions.

Adaptations of the List Handling framelet differ mainly in the dialogue window
which displays the attributes of a particular item. Figure 8.5 illustrates a sample adap-
tation of the framelet. The arrows schematically represent the interactions between
the visible framelet components. If the end user presses the Add button or Modify
button, the framelet opens the dialogue window for displaying the item’s attributes.
Thisis shown in the lower right dialogue in Figure 8.5. Pressing the OK button in this
dialogue adds an item to the list or modifies the selected one. The Remove operation



152 8. Lean Product-Line Architectures for Client-Server Systems

ET T _.v.wll mauway | hap Gt |

AT g AL 8 15 T

SrEuTerE T Arnald T TSR A Flos ing

madd or ety il e

Figure 8.5. Component interactions in a sample adaptation of the List Handling framelet.

(Remove button in the upper |eft dialogue) deletes the selected list item. The framelet
aso has to take care that the buttons Modify and Remove are only enabled if an item
isselected in thelist.

Design and implementation of the list handling framelet Theinterface of areusable
asset should be designed in as straightforward away as possible for the user. If thelist
handling is packaged in a reusable asset, the ideal situation would be that the reuser
just provides the following components/parameters:

o the dialogue window that displays the item attributes;

e the classwhich represents alist item;

o if necessary, the names of the remote proceduresthat have to be invoked for storing
and retrieving list items.

The reflection-based hot spots of the List Handling framel et are the attribute dialogue
window and the item’s class. The framelet automatically transfers the attribute val-
ues of an item between the instance variables of any object and the attribute dialogue
window based on meta-information and a simple naming convention. The names of
the instance variables of the class whose instances represent the list items must have
the same name as the GUI elements in the dialogue. For example, a class Account
hastheinstance variablesname, accNo, address, andhasCard. The names of the
GUI elements in the dialogue window correspond to the instance variable names (see
Figure 8.6). Note that the internal names? of the GUI elements are not visible in Fig-

2 The GUI editor assigns a name to each GUI element. A tool generates Java code which cor-
responds to the visual/interactive specification of the GUI. In general, a dialogue window is



8.5 A Sample Framelet Family 153

ure 8.5. For example, the GUI element with the internal name address displays the
string “6789 M.S. Plaza’ in the screen shot. Thestatic text “Address.” represents a sep-
arate GUI element that does not correspond to an instance variablein class Account.

Let us take a look at how the automated transfer takes place from an attribute
dialogue to an item. The framelet iterates over the instance variables of an item and
assigns to them those values which it retrieves from the GUI elements of the attribute
dialogue window that have the same name. For this purpose, the framelet iterates over
theinstance variables of the dialogue window. The precondition for thisisthat the GUI
elements of a dialogue window manifest in public instance variables of that dialogue
window object. An analogous processtransfers datain the other direction, i.e. froman
item to an attribute dialogue.

Bt fec it |l i masd bcu

chin Acceunl | |

PR LS AT B PR

b AHF e x:m.‘—\i&\\* _ o |
pubilc AT beste wddress, e

pubiic AHribafs basCand, [[ReSesta s Hre _Canwn |

* |y Cored|

Figure 8.6. Automated data transfer between list item and dialogue window

The sketched transfer mechanism works independently of the specific item class
and attribute dial ogue window. In this sense the two reflection-based hot spots— the
item and the dialogue — are generically coupled by the framelet according to the
simple naming convention.

8.5.2 RPC Framelet

Reusing the RPC framelet should also require minimal effort on the client side. One
has to provide the following:

¢ the name of the remote procedure as a string;

o areferenceto an object whoseinstance variables correspond to the input parameters
of the remote procedure. Typically thisis a reference to the dialogue window (=
input dialogue window) that contains the GUI elements which should become the
input parameters of the remote procedure;

o areference to an object whose instance variables correspond to the output param-
eters of the remote procedure. In most cases this is a reference to the dialogue
window (= output dialogue window) whose GUI elements display the values of the
result parameter.

represented in one class. The GUI elements contained in a dialogue window become instance
variables of this class. The GUI element names determine the instance variable names.



154 8. Lean Product-Line Architectures for Client-Server Systems

The input dialogue window and the output dialogue window can be identical. Both
dialogue windows represent the reflection-based hot spots of the RPC framelet. A
naming convention analogous to the one in the List Handling framework allows the
automated data transfer between the dialogues and the remote procedure parameters.
The GUI elements of the dialogues must have the same names as the remote procedure
parameters.

The framelet is based on a parameter description for each remote procedure. The
type of each parameter of a particular remote procedure hasto be known. Furthermore,
a parameter has to be classified as an input or an output parameter. In the realm of the
RPC framelet, the class construct was chosen to describe a remote procedure. These
classes do not have to be written by hand. A tool generates these descriptions out of
the available remote procedure documentation. Besides, an empty constructor for each
such class contains only public instance variables. The instance variables correspond
to the parameters of the remote procedure. The instance variable names reflect the
parameter names in the remote procedure documentation. A suffix Out marks output
parameters. The types of the instance variables correspond to the types of the remote
procedure parameters.

Figure 8.7 schematically depictsthe interactions between the framel et components
and the data flow. According to the remote procedure name, the framel et generates the
corresponding parameter description object. Relying on the naming convention and
meta-information, the framel et then transfers the data from the input dial ogue window
to the input parameters, calls the remote procedure and assigns the output parameters
to the corresponding GUI elements of the output dial ogue window. We do not describe
the details of interpreting the return parameter which is provided as a C-array. This
can also be done genericaly for al remote procedures based on a return parameter
description.

i r:-arna Dialeg prowiding input [ealog displaying outpul
parameter values parameter values
w .. *
- 1
s I
* 1
i ¥ parayel e

.

___" Server (Host

Figure 8.7.Schematic representation of the internal structure and working of the RPC framelet



8.6 Discussion and Conclusions 155

8.5.3 Framelet Coupling

Both framel ets can be used on their own or together — they form avery small framel et
family. The previous section sketches the stand-alone usage of the RPC framelet. The
framelet is directly coupled with the dialogue(s) that contains the input/output pa-
rameter values. Otherwise, the List Handling framel et invokes remote procedures and
should reuse the RPC framelet. In this case the reflection-based hot spots allow such
flexible reuse. The RPC framelet couples itself with any object that adheres to the
naming conventions. The List Handling framelet just has to pass the object(s) whose
instance variables represent the input and output parameters of the remote procedure.
This can, for example, be an instance of the item’s class or a dialogue, depending on
the specific context.

8.6 Discussion and Conclusions

The RACON-Linz management clearly positioned the CACS project project asafoun-
dation for technology migration, and thus separated it from day-to-day business. Five
peopleworked on the prototypefor 8 months, two people at RACON-Linz and three at
the Software & Web Engineering Group at the University of Constance. All members
of the project team had in-depth knowledge of object and Java technology including
experience in developing and adapting frameworks. The current state of Java tech-
nology is sufficient for fulfilling the specified development requirements. Within the
CACS project around ten framel ets have been devel oped so far. The List handling and
RPC framelets were reused in building the CACS prototype.

8.6.1 Java Evaluation

The CACS prototype is based on Java 2, i.e. the Java Development Kit (JDK) ver-
sion 1.2. It was developed with Borland/Inprise JBuilder 1.0, later 2.0 on Windows
NT. The CACS prototypeis ajust-in-time compiled stand-al one application. The GUI
was developed originally with the Abstract Windowing Toolkit (AWT) and later with
the Swing library. The Java Native Interface (JNI) forms the basis of the integration
of the RPC library which is a C library. The resulting framelets are provided as Java
Beans. JavaDoc was used for documentation. JBuilder together with the Java GUI li-
braries offer — like other Java development environments — a viable alternative to
4GL tools regarding the visua/interactive editing of dialogues.

From the language point of view, Java provides the meta-information support nec-
essary for the configuration capabilities implemented in the List Handling and RPC
framelets. The small number of language features in Java has a positive effect on the
quality of the program source code, though thisimpact is difficult to measure.

8.6.2 Quantitative Data

The CACS prototype executes on Windows PC clients. The execution speed of just-
in-time compiled stand-alone applications is adequate on the target platform, i.e. on



156 8. Lean Product-Line Architectures for Client-Server Systems

PCswith processorsrunning at > 100 MHz. Thetime-critical queriestake place onthe
servers or on the host invoked via the RPC interface. Measurements of the run-time
overhead of iterating over instance variabl es showed that overhead introduced through
reflection can be ignored. The time for generically assembling a RPC takes between
0.2 and 0.5% of aremote procedure call.

The CACS prototype can be described quantitatively as follows:

number of classes 25 (13 out of the 25 were generated
by the GUI editing tool)

number of interfaces 2

number of lines of code (LOC) ca. 2700

depth of class hierarchy of the newly 2
developed classes

number of reused Java components 10
(GUI)

number of reused framelet compo- 2
nents

8.6.3 Software Engineering Challenges

The focus on the development of small product line architectures allows the opening
up of a significant reuse potential. In particular, framelets and dynamic specialisation
through reflection turned out to be adequate means for extracting reusable elements
from legacy systems.

On the other hand, the develoment of reusable assets implies organisational
changes. The Expert Services Model, as described, for example, by Goldberg and Ru-
bin [4], seemsto be suitable for promoting the devel opment and evolution of domain-
specific framelets. In essence, the Expert Services Model comprises a reuse compe-
tence centre, which is staffed by an independent reuse team. Two members of this
reuse team are responsible at RACON-Linz for identifying, acquiring, certifying and
storing the reusable componentsin a shared library. This organisational measurement
will be evaluated in the future and, if necessary, adjusted to the specific needs.

In order to come closer to the vision of partialy self-configuring components,
pragmatic ways of describing component semantics still have to be found; the applied
naming conventions form a starting point. We feel that domain-specific vocabulary
and quite restricted semantics, instead of general purpose formalisms, could lead to
semi-automated component configuration workbenchesthat can be useful in practice.

References

1. BassL, Clements P, Kazman R. Software Architecture in Practice, Addison-Wesley, Read-
ing, Massachusetts, 1998

2. Fayad M, Schmidt D, Johnson R. Building Application Frameworks: Object-Oriented
Foundations of Framework Design, John Wiley & Sons, New York City, 1999



References 157

3. Fayad M, Schmidt D. Object-Oriented Application Frameworks. Communications of the
ACM 1997;Val. 40, No. 10

4. Goldberg A, Rubin K. Succeeding with Objects — Decision Frameworks for Project Man-
agement, Addison-Wesley, Reading, Massachusetts, 1995

5. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns — Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, Massachusetts, 1995

6. Pree W. Design Patterns for Object-Oriented Software Development, Addison-Wesley,
Reading, Massachusetts, 1995

7. Shoham Y. An Overview of Agent-Oriented Programming. In: Bradshaw J (ed) Software
Agents, Cambridge, Massachusetts, AAAI Press’The MIT Press, 1997, pp 271-290

8. Sparks S, Benner K, Faris C. Managing Object-Oriented Framework Reuse. Computer
1996;Vol. 29, No. 9

9. Wirth N, Gutknecht J. Project Oberon: The Design of an Operating System and Compiler,
Addison-Wesley, Reading, Massachusetts, 1992



