
Reusing Microsoft’s Foundation
Class Library—A Programmer’s

Perspective

Wolfgang Pree
C. Doppler Laboratory for Software Engineering

Johannes Kepler University Linz, A-4040 Linz, Austria
Voice: ++43 70-2468-9432; Fax: ++43 70-2468-9430

E-mail: pree@swe.uni-linz.ac.at
http://www.swe.uni-linz.ac.at/wolf

Preview

Microsoft’s Foundation Class Library1 (MFC; Microsoft 1996) constitutes a GUI
application framework implemented in C++ for the development of Windows
applications. Its principal architecture builds on the lessons learned from other GUI
frameworks such as MacApp (see Chapter 5 in this book), ET++ (see Chapter 7 in this
book) and Interviews (see Chapter 8 in this book).

A sample application for analyzing capital gains is used to illustrate how to use MFC. A
user of this capital gain analysis application enters an initial amount, the interest rate and
monthly payments or withdrawals. The application plots a curve that reflects the implied
effects over the years. Figure 6.1 shows a snapshot of this application.

We point out MFC’s core architecture and mechanisms and demonstrate how the
framework specialization is reduced by appropriate tools. A discussion of MFC’s design
concludes this chapter.

6.1 Features of the MFC Framework

MFC applications can perform the following functions:

• Manage an arbitrary number of windows, together with their data and the visual
representation of these data.

1 This contribution is based on MFC version 4.0 and Microsoft’s Developer Studio 4.0

2

Figure 6.1 Sample application built with the MFC framework

• Take care of windows (moving, resizing, activation on clicking, and so on) and
their contents (invalidating regions when windows are brought in front of others,
etc.).

• Handle the File menu commands Open, Save, Save As, Print and Print Preview via
the corresponding default dialogs. These commands can also be invoked by
pressing buttons on the tool bar.

• Process input data of control items in dialog boxes.

Supporting the following features of Windows applications requires specialization of
MFC reusable components:

• Event handling: In order to make possible the selection of objects by means of the
mouse, MFC provides mechanisms for handling events (mouse movements, mouse
clicks, menu selection, keyboard input and so on).

• Access to relational databases: MFC database classes allow the programmer to
manipulate data relying on the Open Database Connectivity (ODBC) standard. So a
high degree of database management system independence is achieved.

• Object Linking and Embedding (OLE, see [Brockschmidt, 1995])

• Context-sensitive help

3

6.2 An MFC-Friendly Environment

The minimum set of tools required to adapt the MFC framework are a text editor and a
suitable C++ compiler and linker. Fortunately, a much more powerful tool suite is
offered, for example, by Microsoft’s Developer Studio. Since the tools AppWizard and
ClassWizard are specifically tailored to MFC, we will describe them in more detail (see
Section 6.4). AppWizard and ClassWizard directly support the adaptation of MFC
classes and mechanisms. AppWizard is used only once during application development,
to generate all necessary classes forming a blank Windows application with default
menus, window handling, etc. ClassWizard eases the task of reacting to specific events.
It also allows the user to generate new classes and to map instance variables to control
items in dialogs. ClassWizard is used during the whole development cycle of an
application.

Furthermore, the development system smoothly integrates the following tools:

• A resource editor

• A source editor tailored to C++ sources

• A class viewer, class browser and query tool

• A component gallery

• A debugger

• A project manager

• And last but not least a C/C++ compiler and linker

6.3 MFC’s Cornerstones

This section focuses on principal mechanisms and concepts incorporated in the MFC
framework. The MFC framework provides elementary user interface building blocks (for
example, buttons and menus), basic data structures (for example, the classes CObList,
CObArray, CDate, and CString) and high-level application components such as the classes
CWinApp, CDocument, CView and CWnd. Together with the elementary building blocks
the high-level application components predefine, as far as possible, the look and feel of
MFC-based applications.

Figure 6.2 shows the inheritance relationships of MFC classes that are relevant in this
context. Abstract classes are written in italics. According to MFC’s naming conventions,
class names start with C.

4

CCmdTarget CWinApp
CDocument ...
CWnd CFrameWnd CMDIFrameWnd

CView ...
CScrollView

CControlBar ...
CToolBar
CStatusBar

CButton ...
CDialog ...

CListBox
CEdit
...

CObject

CMenu
CObList
CObArray
...

Figure 6.2 Core classes of the MFC framework

Root Class

Almost all MFC classes are derived from class CObject and so inherit its behavior. The
abstract class CObject defines and partially implements the protocol for meta-information
and object serialization.

Meta-information is a generic term for information about objects and classes. C++ does
not allow inquiries about an object, such as its class. Due to this C++ deficiency, many
C++ libraries implement a mechanism to provide meta-information. Like other class
libraries, MFC uses macros to extract the necessary information out of a class in header
and implementation files. MFC offers access to meta-information by the methods
IsKindOf(classname) and GetRuntimeClass(). The former method returns TRUE if the
receiving object is an instance of classname or one of its subclasses. GetRuntimeClass()

return a metaclass object that can be asked for an object’s size, its (base) class, etc.

Serialization by means of method Serialize allows the user to write and read the contents
of an object, i.e., the values stored in the instance variables, to and from a file.

Data Structure Classes

The MFC framework offers classes to store objects in lists, arrays and dictionaries (called
maps in MFC; they store key/value pairs). These components are typically used without
any modifications.

Classes Defining a Generic Windows Application

In general, GUI applications are event-driven, and try to avoid modes. As a
consequence, the user of an event-driven application ideally can enter commands in any
order via input devices such as a mouse or keyboard. A GUI application has to process
incoming events accordingly. For example, clicking with the mouse on the title bar of a

5

window should be handled by a GUI application in such a way that the window can then
be moved by the mouse. Clicking on the menu bar should cause the corresponding menu
to open. The user should be able to select an item by moving the mouse over the menu
and releasing the mouse button over the desired item. While the mouse is moved over a
menu, the corresponding menu items have to be highlighted.

In MFC a CWinApp object gathers incoming events and dispatches them to the various
components of the application. Each running application has exactly one CWinApp object.
After a Windows application is started, MFC’s WinMain function is called and sends the
messages InitInstance and Run to the particular CWinApp object—actually to an instance of
a subclass of the abstract class CWinApp. Invoking method Run starts the event loop, a
loop that constantly processes incoming events (see Figure 6.3).

(CWinApp)

WinMain

T
im

e

. . .

InitInstance

Run

User input
Event loop

Message
sending

Application
components
(window,
button, etc.)

Figure 6.3 Starting the event loop in an MFC application

Many GUI applications are document-oriented; i.e., they manage documents. For
example, any number of spreadsheets can be handled by a spreadsheet application. The
data constituting one spreadsheet (its numbers, formulas and text contained in the cells)
are handled by a subclass of the abstract class CDocument.

MFC directly supports document-oriented applications. Its core architecture is a derivate
of MVC (see Chapter 2).

The MFC classes CDocument and CView correspond to the model and view components
of MVC. The fact that a CDocument object can have several CView objects to display its
data (i.e., model) closely resembles the MVC concept. How the controller aspect of MVC
is handled in MFC is discussed below in the next section.

Another property of class CWinApp is that a CWinApp object conceptually manages any
number of CDocument objects. (The actual MFC implementation deviates slightly from
this conceptual view. Since this detail is irrelevant in this context we will not discuss it.)

6

Figure 6.4 applies the OMT notation [Rumbaugh et al. 1991] to depict the object structure
of an MFC-based application. In the figure, the upper CDocument object refers to one
CView object, through which the end user views and edits its data. The contents of the
other CDocument object are displayed and edited by two CView objects. The CWinApp

object takes care of all CDocument objects. For example, if the user quits the application,
the CWinApp object asks the CDocument object to check whether changes in their data
should be saved or not.

(CDocument)

(CView)

(CWinApp)

(CDocument) (CView)

(CView)

. . .

Figure 6.4 Principal object relationships in an MFC-based application

If the initial MFC adaptation is generated by AppWizard, the programmer can choose
whether the application manages exactly one document (Single Document Interface, SDI)
or an arbitrary number of documents (Multiple Document Interface, MDI). Class
CWinApp can also be used to implement dialog-based applications such as desktop
calculators.

Event Handling

The way events are handled in MFC is pretty close to the conventional C function library
called Windows Software Development Kit (SDK). The SDK library supports a callback
style of programming: the library functions read events and call out to various functions
which the application programmer has previously registered with the library functions.
These callback functions are invoked with an event identifier and parameter values, with
details regarding a particular event. So applications based on SDK usually have functions
with extensive switch statements determining which particular event happened.
Depending on the event identifier, the additional parameter values have to be type cast.
This way of handling events is error-prone—break statements might be forgotten,
inappropriate type casts can cause subtile run time errors, etc.

MFC alleviates this problem a bit by encapsulating the identification of incoming events.
Depending on the identified event, certain methods are called with the corresponding
parameters.

7

Unfortunately, these event handling methods are not declared as dynamically bound
methods in the MFC classes. Dynamic binding is reimplemented (for efficiency
reasons?!) via clumsy macro statements. Let us illustrate this by an example. When the
left mouse button is pressed over a CSampleView object (CSampleView being a subclass
of CView), MFC calls method OnLButtonDown of the CSampleView object only if

• This method is overridden in CSampleView.

• The overridden method is marked as special event handling method by the add-on
afx_msg in the class definition, see Figure 6.5.

• The macro DECLARE_MESSAGE_MAP is called in the class definition, see Figure
6.5.

• The macro ON_WM_LBUTTONDOWN() is contained in the message map declaration
of the implementation file, see Figure 6.5.

Though this significant overhead for implementing event handling methods can be
generated by the ClassWizard tool, the readability of header and implementation files
suffers.

header file with class definition:
class CSampleView: public CView {
public:

. . .
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
DECLARE_MESSAGE_MAP()

protected:
. . .

};

implementation file:
. . .
BEGIN_MESSAGE_MAP(CSampleView,CView)

//{{AFX_MSG_MAP(CSampleView)
. . .

8

ON_WM_LBUTTONDOWN()
. . .
/ /}}AFX_MSG_MAP

END_MESSAGE_MAP()
. . .
void CSampleView::OnLButtonDown(UINT nFlags, CPoint point)
{

. . .
}
. . .

Figure 6.5 MFC-specific reimplementation of dynamic binding for event handling methods

If an object does not react to a Windows event MFC forwards the particular event to other
objects. This forwarding mechanism is based on Windows-specific strategies which we
do not discuss here.

OLE Support

In order to ease the development of OLE controls, MFC provides an object-oriented layer
on top of OLE’s C interface. Before presenting the integration of MFC and OLE let’s first
discuss the relevant concepts of OLE: The Component Object Model (COM) comprises a
standard for defining the interface of objects. COM underlies OLE. COM interface
descriptions cannot be changed or extended. Instead, additional interfaces can be defined
for one component so that a component can offer a whole set of interfaces. Overall, COM
allows interoperability between objects that are implemented in different languages and/or
compiled by different compilers. Furthermore, the implementation of a component is
changable without rippling its clients.

OLE 2.0 represents a library that manages the various resources (keyboard, mouse,
screen) shared among components. Most available OLE components correspond to
traditional applications. Usually server and client components are discerned. For
example, the capital gain analysis could act as server whose documents can be referred to
from an OLE client such as Microsoft Word. Word is an example of an OLE application
that can act both as client and as server.

In order to enable communication between arbitrary clients and servers a minimal
protocol has to be supported. In essence, a client asks its server documents to display,
edit and serialize (i.e., write to an output stream) themselves. Thus if a user works with
an embedded document, the client application passes control to the particular server
application.

Two MFC classes have to be considered to provide an OLE client: COleClientDoc and
COleClientItem. The application-specific document class has to be a subclass of
COleClientDoc. COleClientItem objects represent the embedded or linked components that

9

are managed by the particular COleClientDoc object. Most of the OLE functionality is
already implemented in the two MFC classes. The programmer has to override methods
such as OnInsertObject, OnEditPaste, and OnEditPasteLink in the specific View subclass.
The OnChange method has to be overridden in a subclass of COleClientItem so that the
displayed server document is updated.

The corresponding MFC classes to implement a server component are
COle(Template)Server, COleServerDoc, and COleServerItem. Server components
especially have to react to requests from clients. For this purpose several methods, which
we don’t discuss further, have to be overridden. For example, the framework calls the
server method OnCreateDoc in case that a client application inserts a new embedded item.
This method returns the appropriate OleServerDoc object.

6.4 Adaptation Support

AppWizard and ClassWizard strongly support the adaptation of the MFC framework to a
specific application. In effect, an application is produced by a combination of program
generation and overriding, plus some coding. Microsoft’s Developer Studio integrates
these and other tools into an environment.

In order to demonstrate adaptation we develop a capital gain analysis application, a part of
which is shown in Figure 6.1.

Generation of the Application Skeleton

AppWizard is used once in the adaptation process. A programmer specifies various
options via a dialog, for example, whether the application should handle exactly one
document (SDI) or any number of documents (MDI). If the user chooses MDI,
AppWizard generates the corresponding subclasses of CWinApp, CDocument, CView and
CMDIFrameWnd (see Figure 6.6).

CObject CCmdTarget CWinApp
CDocument CCaptialDoc
CWnd CFrameWnd CMDIFrameWnd

CView ...
CScrollView

...
...

CCaptialApp

CMainFrame

CCaptialView

Figure 6.6 Classes generated by AppWizard (written in bold face)

Viewing a Document’s Data

According to the MVC-related separation of data and their graphical representation, we
add the required instance variables and access methods to CCaptialDoc: For this simple
captial gain analysis, a CCapitalDoc object stores the initially invested amount, the

10

monthly payment, the interest rate, and the date when the capital is invested. The
corresponding values can be entered by the application user via a dialog box whose
implementation is sketched in the next section.

In order to display the data, a grid consisting of a time axis and a captial axis as well as
the capital gain curve have to be drawn. For this reason, the programmer overrides
OnDraw of class CView in the subclass CCaptialView. The framework calls OnDraw to draw
on the screen and the printer. MFC takes care to redraw views, for example, if windows
are brought in front of others. If the data change, the document causes a redraw operation
of all associated views by invoking its method UpdateAllViews.

MFC encapsulates SDK-specific stuff for producing graphical output by classes such as
CDC (for drawing context), CPen and CFont. Figure 6.7 shows some fragments of the
OnDraw method.

void CCapitalView::OnDraw(CDC *pDC)
{

CPen penStroke,
penStroke.CreatePen(...,...,...);
. . .
pDC->MoveTo(CPoint(...,...));
pDC->LineTo(CPoint(...,...));
. . .
// access to document’s data
...= GetDocument()->GetInterestRate();

// GetDocument() is a method generated by AppWizard
// in class CCapitalView; it returns a CCapitalDoc pointer

. . .
pDC->TextOut(xPos, YPos, ". . .");
. . .

}

Figure 6.7 Fragments of CCapitalView's OnDraw method

Menu and Dialog Handling

This section explains how the resource editor and the ClassWizard tool automate the
adaptation of the MFC framework.

11

Figure 6.8 Snapshot of the Initial Parameters dialog box

Remember that a document's data should be entered via a dialog box. The application
user should be able to open this dialog by choosing a menu item. We assume that the
menu item Initial Parameters opens the corresponding dialog box (see Figure 6.8).

In order to implement this behavior, a programmer simply draws the menu with a
resource editor. This tool works like other user interface building tools to create and
rearrange items in menus, dialog boxes, and the tool bar, in a direct-manipulation
interface style. A programmer defines user interface element properties in dialog boxes.
Besides these item-specific properties, the resource editor assigns to each item an
identifier and relates unique integer numbers to these identifiers. The identifier names can
be changed by the programmer. Figure 6.9 illustrates that we chose the identifier
ID_INIT_PARAMS for the Initial Parameters menu item.

Parameters

Initial Parameters...

Axis Parameters...
ID_INIT_PARAMS

ID_AXIS_PARAMS

Figure 6.9 Menu specification with the resource editor

Figure 6.10 shows how to implement the handling of the Initial Parameters menu item
using the ClassWizard tool.

12

Figure 6.10 Snapshot of the ClassWizard tool

In the upper left combo box of ClassWizard, the class CCapitalDoc is selected as the
message handler.

In connection with menu items a programmer can do the following:

• Handle the actual menu item selection.

• Enable or disable a menu item.

In order to react to a menu item selection, COMMAND has to be chosen in the right hand
message list (see Figure 6.10).

By pressing the Add Function button, the necessary changes are accomplished in the
header and implementation files of class CCapitalDoc analogous to the description in
Section 6.3 on event handling. The programmer only has to provide the application-
specific code then. Figure 6.11 lists the code generated by ClassWizard in bold face.

header file with class definition:
class CCapitalDoc: public CDocument {
public:

. . .
afx_msg void OnInitialParameters();
DECLARE_MESSAGE_MAP()

protected:
. . .

};

13

implementation file:
. . .
BEGIN_MESSAGE_MAP(CCapitalDoc,CDocument)

//{{AFX_MSG_MAP(CCapitalDoc)
. . .
ON_COMMAND(ID_INIT_PARAMS, OnInitialParameters)
. . .
/ /}}AFX_MSG_MAP

END_MESSAGE_MAP()
. . .
void CCapitalDoc::OnInitialParameters()
{

// TODO: Add your command handling code here
}
. . .

Figure 6.11 Code generated by ClassWizard

In order to implement OnInitialParameters, an appropriate CDialog subclass has to be
implemented first. The resource editor and ClassWizard allow the programmer to
generate this class. Using the resource editor, a programmer can quickly create the dialog
box. Similar to menu items, dialog controls such as buttons and edit fields have unique
identifiers.

The CDialog subclass that deals with the corresponding resource is created simply by
invoking ClassWizard. ClassWizard automatically prompts an Add Class dialog where
the programmer can change the proposed class/file names. After the CDialog subclass is
generated, the programmer can add instance variables that correspond to dialog controls
(see Figure 6.12).

IIIInn
niiiitt

t
tii
i
iaa
allll PP

P
Paaarrraaammmeeettttee

errrsss

class CInitParamsDlg: public CDialog {
public:
 ...
protected:
 double initialAmount;
 float interestRate;
 ...
};

Amount:

Interest Rate:

[0; 20]

Figure 6.12 Mapping between dialog controls and instance variables of a CDialog subclass

14

ClassWizard declares these instance variables in the class definition and initializes them in
the constructor. Depending on the type of an instance variable, a value range can be
specified, too. In this case, ClassWizard generates the necessary code in the dialog class
to ensure the entering of valid data. For example, the instance variable interestRate should
only accept values between 0 and 20.

The generated class CInitParamsDlg can now be used in method OnInitialParameters (see
Figure 6.13). The method DoModal opens the dialog as a modal dialog (i.e., the user has
to close the dialog before continuing to work with the application) and returns IDOK after
the OK button was pressed.

void CCapitalDoc::OnInitialParameters()
{

CInitParamsDlg initParamsDlg;
// dialog controls <- values of document instance variables
initParamsDlg.initAmount= initAmount;
. . .
if (initParamsDlg.DoModal() == IDOK) {

// document instance variables <- values displayed
// in dialog controls
initAmount= initParamsDlg.initAmount;
. . .
UpdateAllViews(...);

}
}

Figure 6.13 Handling of the Initial Parameters menu item

Figure 6.14 illustrates the interaction between the principal components of the capital gain
analysis application after the user has chosen the Initial Parameters menu item.

Parameters

Initial Parameters...

Axis Parameters...

(CInitParamsDlg)(CCapitalView)(CCapitalDoc)(CCapitalApp)

OnInitial-
Parameters

DoModal

Update

OnDraw

Figure 6.14 Dynamic aspects of the capital gain analysis application

15

6.5 Design Issues

The tool support for adapting MFC substantially eases application development. On the
other hand, we recognize some short comings when taking a look at the design of the
MFC framework.

Several GUI frameworks have gone through an evolutionary development process. For
example, early versions of MacApp constituted a thin layer above the conventional
Macintosh toolbox. Experience with a GUI framework that wraps a conventional library
has corroborated that it takes time to smoothly integrate advanced abstractions of the GUI
domain that significantly ease the implementation of sophisticated features (see below).
MFC lacks support for features that are often essential in the GUI domain. In general,
MFC is apparently a GUI framework in its early development stages for several reasons:

• MFC programmers are often confronted with SDK-related details. The MFC
framework is still a thin layer on top of SDK. For example, MFC programmers have to
know Windows message identifiers in the realm of event handling. Another example is
that programmers deal with the Windows-SDK-specific device context when coding
graphical output. Though SDK-pitfalls are avoided, MFC programmers have to be
familiar with SDK-specific mechanisms. (This can also be advertised as an advantage:
SDK programmers can transfer their know-how when using MFC.)

• Besides numerous spots where the MFC programmer strongly feels the Windows
SDK pulse there are various features that are essential in the GUI domain but not
adequately addressed by MFC:

• MFC does not incorporate a mini-framework for undoable commands. Each MFC-
based application has to implement this aspect on its own.

• MFC does not support the implementation of direct-manipulation features (e.g.,
rubber-band feedback in the case of mouse tracking).

• Scrolling/splitting of the window contents still requires too much implementation
effort compared to state-of-the-art GUI frameworks (such as ET++ and MacApp).
Zooming is not supported at all in MFC.

Due to these deficiencies, enormous efforts would, for example, be attached to the
implemention of an MFC-based hypertext system which allows a user to edit hypertext
documents (including a text drag-and-drop functionality) and to edit the graph that shows
how the hypertext documents are linked.

A reason for the last two deficiencies might be that the abstraction CWnd is inappropriate.
CWnd represents too heavyweight an abstraction for visual objects. All subclasses, such
as control items, inherit, for example, the clipping property. Thus, it would be inefficient
to base other components—such as a collection view that displays a list of items—on
CWnd. For example, ET++ offers a lightweight abstraction called VObject instead of

16

CWnd, see Chapter 7. Many other ET++ components such as Menu, CollectionView,
TreeView, GraphView, Scroller, Splitter, and Zoomer are based on VObjec, so that the last
two deficiencies can be avoided elegantly.

As far as language-related implementation details are concerned, MFC confuses the
programmer. Dynamic binding works in C++ only if objects are generated dynamically
(new). Since MFC circumvents this C++ language feature in the realm of message
handling and reintroduces it via macro calls, the programmer can declare variables
statically and still have the dynamic binding flavor. But other (C++) dynamically bound
methods won’t work then because of the static variable declaration.

6.6 Summary

Despite MFC’s deficiencies, it turns out to be significantly easier and less error-prone to
develop Windows applications with MFC, compared to the conventional C function
library SDK.

Though MFC does not directly address the development of sophisticated GUI
applications (e.g., applications relying on an easy-to-use and intuitive direct-manipulation
user interface style), MFC is well suited to produce applications with numerous dialogs.
Many traditional commercial applications apply dialogs for entering parameters for
database queries and displaying their results.

The MFC framework enormously benefits from the well integrated framework adaptation
and development environment. Beginners might even be confused—what’s in the
framework and what does the environment?

Acknowledgement

I thank Helmut Hoffmann for proofreading this chapter and for discussions on various
aspects of the presented framework.

17

Further Reading

Brockschmidt K. (1995) Inside OLE Microsoft Press

Microsoft Corporation (1996) Visual C++ and Microsoft Foundation Class Libary
Manuals

Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W. (1991) Object-
Oriented Modeling and Design Prentice Hall, Englewood Cliffs, New
Jersey

