DEC-TSP

Distributed Evolutionary Computing applied to the Traveling Salesman Problem

Dominik Knoll
Simon Sigl
Contents

- Evolutionary Algorithms
- EA Framework
- DEC – Distributed Evolutionary Computing
- Traveling Salesman Problem
- Solving TSP with DEC
- [Demonstration]
- Results
Evolutionary Algorithms (EA)

- Natural Evolution
- EA: `simulated´ Evolution for solving computational problems
- Abstraction of biological concepts

 - Phenotype: solution to a complex problem
 - Genotype: encodes this solution
 - Fitness: a measure of solution quality
 - Mutation: random variation in the encoding
 - Selection: comparison between some phenotypes, keeping the 'winner', deleting the others
EA (2)

- Basic generational EA

```java
public void doEvolution() {
    population = generateInitialPopulation();
    while (!isEndCriterionReached()) {
        matingPool = selectToMatingPool(population);
        population = recombineAndMutate(matingPool);
        computeFitneses(population);
        nextGeneration();
    }
}
```

- Application is justified for hard problems with no conventional algorithm available
EA Framework Adaptation

- EA is Meta-heuristic
- To specify for solving a concrete problem:
 - Solution encoding
 - Genetic operators
 - Fitness function
- Suitable for parallelization:
 - Fitness evaluation
 - Application of genetic operators
DEC – Distributed Evolutionary Computing

Evolutionary Algorithm

Remote Monitor

Distributed Machine

WPDef

WPRes

Remote Node 1

Remote Node 2

Remote Node N
Traveling Salesman Problem

Problem Statement

Given:
- set of n cities,
- cost for traveling from city i to city j: c_{ij},
- defined start and endpoint

Question:
- What is the cheapest round-trip that visits each city exactly once?
- In terms of graph theory: what is the shortest Hamiltonian cycle in a complete, weighted graph?
TSP (2)

- Classification
 - TSP is an NP complete, multimodal, single-objective, combinatorial optimization problem

- Complexity
 - Example: Homer's Ulysses
 - *The Odyssey*: 16 cities \(\rightarrow\) 653,837,184,000 possible routes

- Padberg / Rinaldi Problem
 - from TSPLIB
 - 532 cities in USA
Solving TSP with DEC

- **Solution encoding**: Permutations

 ![Permutation Diagram]

- **Fitness function**
 - Euclidean length of the round-trip
 - WPDefinition: Permutation, WPResult: Tour length

- **Genetic Operators**
 - Transposition, Displacement, 2-Opt (computationally expensive)
 - Ordered Crossover, Partially Mapped Crossover
 - WPDefinition: Permutation, WPResult: Permutation
Results

- EA is robust with respect to parameter choice
 (well-known property of EAs in general)
Results (2)

- Selection pressure is means for balancing exploration and exploitation
Results (3)

- 2-opt improves results drastically
Results (4)

- Distribution is justified:
 - Computationally cheap operators, 540 evolutions, 2 machines: ~46h
 - Computationally expensive operators, 90 evolutions, 5 machines: ~18h
- As expected: overall CPU utilization depends on computation time/communication time ratio.
Thanks for your attention